The Computational Complexity of Cartographic
Label Placement

Joe Marks and Stuart Shieber

March 22, 1991
Revised April 11, 1993

Abstract

We examine the computational complexity of cartographic label
placement, a problem derived from the cartographer’s task of placing
text labels adjacent to map features in such a way as to minimize
overlaps with other labels and map features. Cartographic label place-
ment is one of the most time-consuming tasks in the production of
maps. Consequently, several attempts have been made to automate
the label-placement task for some or all classes of cartographic fea-
tures (punctual, linear, or areal features), but all previously published
algorithms for the most basic task—point-feature-label placement—
either exhibit worst-case exponential time complexity, or incorporate
incomplete heuristics that may fail to find an admissible labeling even
when one exists. The computational complexity of label placement is
therefore a matter of practical significance in automated cartography.
We show that admissible label placement is NP-complete, even for very
simple versions of the problem. Thus, no polynomial time algorithm
exists unless P = N P. Similarly, we show that optimal label place-
ment can be solved in polynomial time if and only if P = N P, and this
result holds even if we require only approximately optimal placements.
The results are especially interesting because cartographic label place-
ment is one of the few combinatorial problems that remains NP-hard
even under a geometric (Euclidean) interpretation. The results are
of broader practical significance, as they also apply to point-feature
labeling in non-cartographic displays, e.g., the labeling of points in a
scatter plot.

Key words: Automated cartography, computational complexity, com-
putational geometry, computer graphics, heuristic methods, label place-
ment, NP-completeness.

Contents

6

7

Introduction and Overview

Previous Research on Cartographic Label Placement
The Simple Label-Placement Problem

Reduction of Planar 3-SAT to Simple Label Placement
Complexity of Optimal Label Placement

Generalizing the NP-Completeness Proof

Conclusion

A Proof Constructions Without Unlabeled Points

10

19

21

23

25

1 Introduction and Overview!

Text labels are an essential part of almost all maps: labels identify point
features like cities and towns, linear features like roads and rivers, and areal
features such as parks and lakes (see Figure 1 for an example of a densely
labeled map). Before the widespread use of computers in cartography, letter-
ing tasks (i.e., all tasks involving labels, explanations, and numbers) some-
times accounted for more than 50 percent of the production time for maps
[15]. Label placement is also a significant problem in the production of other
kinds of graphical displays. For example, labeling the points in a scatter plot
is another instance of the problem discussed here. Cartographic labeling is
a skilled task, requiring the cartographer to consider many competing crite-
ria when choosing the location, orientation, shape, and typography of text
labels. In a classic paper on cartographic label placement, Imhof illustrates
many of the concerns affecting label placement with over 100 examples of
good and bad labeling decisions [6].? Two concerns stand out as being of
particular importance: the first concern is the degree to which labels overlap
and obscure cartographic features (including other labels); and the second
concern is the degree to which labels are unambiguously and clearly asso-
ciated with the features they identify. The latter concern is illustrated in
Figure 2, which shows relative rankings for various label placements relative
to the point features they identify.

Informally, the setup of a point-feature-label placement problem involves
the positioning of labels for point features, where a label can be placed in
any one of a set of locations adjacent to the point it labels. A problem
instance is given by a set of points, with their positions in the plane and their
label size, along with a set of constraints on the labeling. The constraints
may be binary (for instance, a prohibition against a label overlapping a
point, another label, or some other cartographic feature) or continuous (for
instance, giving preferences among label positions or penalties for degree of
overlap of two labels). As a minimum requirement, however, the constraints
must provide for some penalty for labels overlapping other points or labels.
Schematically, we disprefer situations like the following two:

!The research reported in this paper was funded under a contract with U S West
Advanced Technologies. We would like to thank Stanley Chen, Jon Christensen, Scott
Decatur, Steve Feiner, Harry Lewis, Victor Milenkovic, Christos Papadimitriou, Fernando
Pereira, Sivan Toledo, and Mark Tuttle for helpful discussions on the topic of this paper.

2An English translation of this paper was published subsequently [7].

Figure 1: A sample map [Rand-McNally Company, Universal World Atlas
(third edition); reproduced by permission of the publisher]

Fo-========== bl === ======== A If """""" bl
2 1 L7
Lo - I T, a Fo=====" SRty ':. R g i A
[1@f """"""" bl H 64______5_@‘____]5 K
4 3 : 8
[T 4 [T 4
[T 4

Figure 2: Desirability of different point-feature-label placements

(The possible label regions are given by dashed lines, the actual label
position by a solid line.) In the first case, a label overlaps another label; in
the second, a label overlaps another point.

The problem of label placement is to determine an optimal labeling of
the points, or, in the case where all the constraints are binary, an admissi-
ble labeling of the points. Even more simply we might want to determine
whether such an admissible labeling exists. The size of a problem is conve-
niently given by the number of points to be labeled.

Given the difficulty of label placement, cartographers have looked for
ways to automate the label-placement task. Although the labeling of linear
and areal features are by no means easy tasks, the most difficult task is that
of label placement for point features. We can use the two most important
of Imhof’s concerns to fashion a formal statement of the optimal label-
placement problem for point features as a purely combinatorial problem.
Suppose we are given a set of points P to label, each with a position in the
plane and a label size, together with a fixed set V of possible label positions.
For each point p € P and label position n € N, it is straightforward to
determine the region of the plane covered by the label for p at position n. We
will notate that region region(p,n). In general, this can be computed from
the point’s position and label size and the relative positioning of the label
position. A diagram such as Figure 2 can be thought of as a specification of
the region function.

We will assume that there are costs or penalties associated with violat-
ing certain standard criteria for label placement. First, penalties for the
overlapping of a point’s label by some other cartographic feature (includ-
ing other points) is specified as a function ¢, : P x N — Z*. We require
that this cost function be consistent with the placement of the points in the
problem, that is, that

cpi(p,m) > 0 if there is a point p' € P (1)
such that p’ € region(p,n)

(Here, we are using set notation applied to points and regions in an obvious
way, and will continue to do so.) Other than this constraint, the ¢, cost

function is free to assign any costs to particular point/position combinations.
In particular, any a priori preferences among relative label positions can be
folded into this cost function.

Second, overlapping labels must be penalized. We require a cost function
¢y : P XN xPx N — Z* that must penalize overlapping labels, that is,

cu(p,n, p'yn') > 0if region(p,n) N region(p',n’) # 0 . (2)

Having defined the characteristics of the cost functions, we can define
label-placement problems more formally. We first consider label placement
that optimizes the cost functions.

Optimal Point-Feature-Label Placement (OLP)

Instance: A set P of point features each with a position in R? and a
label size, each of which can be labeled in one of a set N of relative
positions (for example, the eight relative positions in Figure 2);
cost functions ¢,; and ¢y satisfying (1) and (2), respectively.
Question: What label placement g : P — N minimizes the cost

function
> ealp,g(p)+ Y culp,9(p)a,9(0)) 7
peEP p,qeP

Although the description is geometrically evocative, the problem as stated is
purely combinatorial, in that nothing requires us to interpret the region(p, n)
function in accord with any particular geometry, although we will in general
interpret it in the standard Euclidean manner.

By further refining c¢,; and ¢;, we can instantiate this general problem
to form a specific variant that ignores issues of preference among label posi-
tions and optimization of degrees of overlap and that is stated as a decision
problem so as to be amenable to N P-hardness arguments. We do so by
specifying further constraints on ¢,; and ¢y, which now take their values
from the set {0,1}:

cpi(p,n) =1 if there is a point p’ € P (3)
such that p’ € region(p,n)

cu(p,n, p'yn') = 1if region(p,n) N region(p',n’) # 0) (4)

Because solution of the problem now depends only on whether there
are any overlaps, and not on their number or degree, the problem involves
finding a merely admissible (non-overlapping) labeling, as opposed to an
optimal one.

Admissible Point-Feature-Label Placement (ALP)
Instance: A set P of point features each with a position in R?
and a label size, each of which can be labeled in one of a set N of
relative positions; cost functions c¢,; and ¢y satisfying (3) and (4),
respectively.

Question: Is there a label placement g : P — N such that

> eulpg)+ > culp,g(p).a.9(q))=0 7

peEP p,geP

All previously published algorithms for various variants of OLP are
heuristic in nature. (See Section 2.) Some of these algorithms do not guar-
antee to place labels for all point features, even though some such labeling
exists. Of those algorithms that do guarantee to find a labeling if it ex-
ists, all exhibit exponential worst-case time complexity. The computational
complexity of point-feature-label placement is therefore a matter of practi-
cal significance in automated cartography. We show that OLP is solvable
in polynomial time if and only if P = NP by showing that a particular
instance of ALP is NP-complete. We then generalize the results to include a
broader class of label-placement algorithms, including algorithms that gen-
erate approximately optimal labelings.

Of particular interest is the fact that the instance of ALP that we choose
respects the geometric interpretation of the problem. Thus cartographic la-
bel placement is one of the few purely combinatorial NP-complete problems
that does not get easier by restricting it to its geometric variant. (Another
notable exception is the Traveling Salesman Problem. [10])

2 Previous Research on Cartographic Label Place-
ment

One of the earliest attempts at automating label placement was due to Yoeli
[15]. Yoeli’s algorithm is basically a deterministic greedy algorithm for label
placement; it considers each point feature in turn, placing labels at the best
position that does not result in an overlap. (The ranking of relative positions
used by Yoeli is similar to that of Figure 2.) If a point feature cannot be
labeled, it must be placed manually.

Jones [8] presents a nondeterministic greedy algorithm. Rather than
requiring manual intervention when a label cannot be placed, Jones’s al-
gorithm will backtrack recursively in its search for an admissible labeling.

When backtracking fails to yield an admissible labeling, the algorithm starts
over with lower tolerances for overlap detection. Deletion of point features
is the option of last resort if an admissible labeling cannot be found. Jones’s
algorithm includes a number of useful efliciency measures, such as an initial
phase in which groups of point features that can be labeled independently
are identified.

The identification of independent point-feature groups was suggested
originally by Ahn and Freeman [1]. Their algorithm is based on the idea of
state-space search: in the initial state no point features are labeled, and in
the goal state all features are labeled. They explore the state space using a
heuristic search method that they claim is similar to the A* algorithm [9],
though few details are given. If a state is encountered in which no additional
features can be labeled, backtracking is performed.

Hirsch’s heuristic algorithm is based on the notion of an “overlap vector”
[5]. In Hirsch’s algorithm all labels are placed initially in their most pre-
ferred positions. All overlaps are then detected. For each overlap a vector is
computed that indicates a direction of movement that would eliminate the
overlap. All overlap vectors for a label are summed to give an accumulated
overlap vector. Hirsch suggests a number of ways in which accumulated
overlap vectors can be used to modify label placement. For example, labels
can be moved to the nearest preferred position in the direction of the ac-
cumulated vector. The process of overlap detection, vector calculation, and
label movement is repeated an arbitrary number of times.

The algorithms discussed above may not guarantee to find an admissible
labeling when one exists. Zoraster’s algorithm [16], on the other hand, will
find an optimal labeling if one exists, but has exponential time complexity
in the worst case. Zoraster formulates the label-placement problem as the
following 0-1 integer programming problem:

Variables: One label-placement variable z, , for each point fea-
ture (1 < p < |P|) and relative label position (1 < n < |NJ).
Each z,, is constrained to have value 0 or 1 (a 1 indicates that
the label for feature p is to be placed in position n).

Constraints: To ensure exactly one position per label: Elnj\;ll Tpp =
1 for each p, 1 < p < |P|. To avoid overlapping labels: z, , +
T, < 1 for each pair of label positions, z,, and z,s,, that
overlap.

Cost Function: Elﬂl Elnj\;ll Wy pTp p, Where w, , is a weighting that
reflects the desirability of the label position z,, ,.

In essence, Zoraster solves a version of OLP where

cp(pym) = wy p

and

1 if region(p,n) N region(p’,n') #
culP; n7pl7nl) :{ 0 othei’JWiS(Ep7) gion(s/, ') #

Various methods are available for the approximate solution of 0-1 integer-
programming problems, and Zoraster mentions several as being of potential
use for this problem.

The less-demanding—but not trivial—problems of label placement for
linear and areal features have received relatively little attention. The integer-
programming approach devised by Zoraster can also accommodate labels
for a special kind of linear feature (a seismic shot line) that appears on
oil-industry maps [16]. A comparison of simple mathematical methods for
spot-symbol placement inside areal features is presented in [2]: the methods
described there could be applied to the placement of areal-feature labels.
Van Roessel [14] describes an algorithm for identifying candidate rectan-
gular zones for labels within polygonal areal features. Ahn and Freeman
[1] also address areal-feature and linear-feature labeling. Their approach to
areal features is unique in that it takes into account the shape of the fea-
ture and tries to conform the label to that shape. The complexity of some
related computational-geometry problems has also been analyzed: Chazelle
has considered the problem of polygon containment (some versions of the
areal-feature-label-placement problem can be stated in terms of placing one
polygon within another) [3], and Souvaine and Van Wyk have analyzed the
difficulty of arranging the labeled sectors of a pie chart [12].

3 The Simple Label-Placement Problem

The problem that we begin with is a very simple variant of the ALP problem
presented above, namely, one that allows only four relative label positions
(as depicted in the left half of Figure 2), fixed-size labels, and penalties given
exclusively by overlap with other point features and labels. Since we assume
that all labels are of a given fixed size, the label size will be a parameter of

the problem. A particular pair of cost functions will be specified that assign
penalties only for overlap of a label with another label, a labeled point, or
one of a set of unlabeled points also given as a parameter of the problem.
The use of a set of unlabeled points lets us use a uniform cost function c¢;
for all instances of the simple label-placement problem. In particular, only
those binary cost functions that can be specified in terms of overlapping
of a set of points are allowed. The more general problems are not subject
to this implicit restriction, so that it would be possible to specify a cost
function that disallowed some label position for one point but allowed some
label position for another point, even though the two label regions were
coextensive in the plane. This kind of cost function is eliminated in the
simpler setup.

Simple Admissible Point-Feature-Label Placement (SLP)
Instance: A set P of point features each with a position in R2,
and each of which can be labeled in one of the 4 relative positions
given in Figure 2(a); a set U of point features each with a position
in R? that are not to be labeled; numbers X and Y that give the
fixed horizontal and vertical extent of a label.
Question: Is there a label placement g : P — N such that
Y eulpg@)+ Y culp,9(p),g,9(9)) =0
pEP p,q€P
where
1 if there is a point p' € PUU
cp(p,m) = such that p’ € region(p,n)
0 otherwise

and

1 if region(p,n) N region(p’,n') # 0
Cn(p,n,p’, nl) :{ 0 othei’JWiS(Ep7)? gion(s/, ') #

Any algorithm to solve Zoraster’s problem can be used to solve SLP.? Simi-
larly, Zoraster’s problem can itself be reduced to ALP. Thus, a proof of the

It is worth noting that although SLP reduces to Zoraster’s problem, it is not necessarily
the case that label placement for the four-position case reduces to label placement with
other sets of label positions. That is, all instances of Zoraster’s problem are not equally
difficult. One need only observe that the one-position label-placement problem has an
obvious n? algorithm; there is only a single layout to be checked. Thus, separate proofs are
needed for, say, the six-position variant, or the continuous variant proposed by Hirsch [5].
Nonetheless, for many interesting cases of label placement, SLP will reduce appropriately.
We return to this issue in Section 6.

NP-hardness of SLP constitutes a proof of the NP-hardness of Zoraster’s
problem and ALP. That these problems are in NP, hence NP-complete, is
essentially trivial: we merely guess the correct layout from among the at
most | N|!P| possible layouts and check that its cost is 0. This can clearly
be done in polynomial time, as the cost is a function of pairs of points. In
the next section, we prove the NP-hardness of SLP, and in Section 5 we use
this result to prove relative upper and lower bounds on OLP, namely that
OLP is solvable in polynomial time if and only if P = N P.

4 Reduction of Planar 3-SAT to Simple Label Place-
ment

The NP-hardness of SLP is shown by a polynomial reduction of an NP-
complete problem, PLANAR 3-SAT, to the SLP label-placement problem.

An instance of the PLANAR 3-SAT problem is given by a planar propo-
sitional formula # in 3-disjunctive normal form. A formula is planar if the
following bipartite graph is planar: the graph (V, F) where V' contains one
node for each clause in F and one for each variable, and there is an edge
in ¥ connecting nodes ¢ and z if and only if the clause corresponding to ¢
contains a positive or negative occurrence of the variable z. For instance,
(1) is a planar 3-DNF formula, whereas (2) is nonplanar.

l.(a+b+c)x(@+b+7)
2. (a+b+e)x(@+b+2)x(a+b+7)
The bipartite graph for example (1) can be laid out as

a

clause 1 clause 2

c

but adding the vertex for the third clause generates the well-known non-
planar graph Ks3. Thus, no planar graph exists for example (2).

10

The planar 3-SAT problem—the problem of determining if a planar 3-
DNF formula is satisfiable—is an NP-complete problem [4]. In order to
reduce a planar 3-SAT problem to a label-placement problem, we provide
a method for constructing from any planar 3-DNF formula sets of labeled
and unlabeled points such that there is an admissible labeling of the points
if and only if the formula is satisfiable. Further, the number of points is
polynomial in the size of the planar 3-SAT problem, given as the product of
the number of clauses |C'| and the number of variables |U|. We define o to
be |U| + |C].

Before describing the construction, we show a few useful subconstruc-
tions that can be formed from points. First, we note that we can construct
a point set with exactly two possible labelings:

Here, a labeled point (notated with its possible label regions as usual) and
two unlabeled points (conventionally notated with an x) are combined such
that the only permissible labelings are the northwest and southeast.

The following construction has the property that at least one of the
shaded regions must be used to label its associated point, because if all
three nonshaded regions are used for labeling the outside points, then the
inner point has no region in which to place its label.

This construction will be used to encode a clause, and will be referred to as
a clause unit. To satisfy a clause (@ + b+ ¢), one of the three literals a, b, or
¢ must be assigned the value {rue. The three outer points will correspond to
the literals a, b, and ¢, and placing a label in the shaded region corresponds
to selecting that literal to be true. Placing a label in the nonshaded region
corresponds to a “don’t care” condition. We are not requiring that literal

11

to be true; it may be true or false. Thus, this unit enforces the condition
that at least one of the literals in the clause be true. We will call the literal
that has its label in a shaded region the selected literal.

We can place instances of this construction in the plane, one for each
clause. (This requires O(|C|) points.) The only further requirement is that
the label placements correspond to a consistent choice of values for the
literals. In particular, we must guarantee that if a literal e in one clause
is selected to be true, a literal @ in another clause is not also selected. We
know that the formula is planar, so that we can lay out the clause units
corresponding to the positions of the clause vertices in the planar graph.
For each variable, we will transmit to a central location the information
about its selection status in each clause in which it occurs. Here, we will
make use of a transmission line construction:

N 1%
Y%
I L - ,,x, |
,,,,,,,,,,,,,,,,, @x
Ff,f o ff‘ﬁf,f 7x77 77‘
Y%
I L - ,,x, |
,,,,,,,,,,,,,,,,, @x

(We have used two different types of dashed lines to delineate the overlapping
regions more clearly.) If a label from another point intrudes into the upper
shaded region, then the label for the lower point must be placed in the
lower shaded region. The label intrusion into the upper region is therefore
“transmitted” to the lower region. The transmission line thus has two states,
the selected state, in which the following labeling is forced:

12

| | x |
I O x
| +,,,x,,,J
,,,,,,,,,,,,,,,,, @x
Ff,f o 7T777x77 77‘
Y %
| +,,,x,,,J
,,,,,,,,,,,,,,,,, @x

and an unselected state, in which the lowest label region is not forced to be
used, as demonstrated by the following possible (but not forced) labeling:

N 1%
Y%
I L - ,,x, |
,,,,,,,,,,,,,,,,, @x
Ff,f o ff‘ﬁf,f 7x77 77‘
Y%
I L - ,,x, |
,,,,,,,,,,,,,,,,, @x

(The shaded regions correspond to the label placements.)

In this way, the information about which literals were selected can be
transmitted from one place to another. Since we can construct both hori-
zontal and vertical transmission lines, we can transmit this information from
any place on the plane to any place else, so long as the transmission lines do
not have to cross. In particular, since the formula is planar, we can transmit
the information about literal selection from all literals of the same variable
to a single region of the plane. For the graph for (1) above we have:

13

4)
snet T] s [|[Ff [o
L T \) L T
4)
L) own [T
\ J

e e

The method of Tammasia and Tollis [13] can be used to lay out a planar
graph of V points along an integer grid of space O(V') x O(V') with at most
a constant number of bends per line. Recall that the vertices in the planar
graph correspond to the union of the clauses and variables. Thus, each point
in the integer grid must have room for a clause unit or a variable region.
The maximum width and height of a clause unit is constant. As we will
see shortly, the maximum width and height of a variable region is O(0o), so
the integer grid must have an area of O(¢?) x O(o?). Each transmission
line can traverse the width of the grid at most a constant number of times
(corresponding to the maximum number of bends) so the maximum number
of points needed in all transmission lines is O(¢?).

For each region of the plane corresponding to a variable, there will in
general be several transmission lines coming in, some corresponding to posi-
tive occurrences of the variable, and some to negative occurrences. We must
guarantee that a positive and negative occurrence cannot both be selected
in two clause units. We do this by constructing a unit for the variable that
enforces the constraint. Consider the general situation:

14

e
<
e
<

incoming x X X
transmission
lines

4)

YYvvvyy

region for variable x

. J

(Note that we can always arrange for the transmission lines to enter from
above in the fashion given in the figure. The extra routing needed is clearly
on the order of the width of the variable region, which is itself linear in o.)
For any adjacent pair of transmission lines of the same parity (that is, both
come from positive occurrences or both from negative occurrences in their
clauses), we can coalesce the transmission lines into one with the following

merge unit:

incoming
transmission
lines

outgoing
transmission
line

If either of the incoming transmission lines comes from a selected literal,
the outgoing transmission line will continue transmitting the information.
Now we can simplify the incoming transmission lines so that they alternate
positive and negative literals.

15

incoming X X
transmission
lines

4)

x|
|
X
x|
X

Yyv vyy

region for variable x
- J

Furthermore, we can coalesce all of the positive literal transmission lines
into a single line.

incoming X X
transmission
lines

4)

x|
|
X
x|
X

Y

region for variable x
- J
The next step is to coalesce the negative literal transmission lines. But

this requires us to cross transmission lines. For this purpose we use the
following crossover unit:*

*We are indebted to Stanley Chen for a dramatic simplification and generalization of
our original crossover, which involved 15 labeled and 22 unlabeled points, to the current
one of 5 labeled and 8 unlabeled points.

16

incoming
transmission linex

4— incoming

""""""""" transmission liney

OUtgOiNG e |
transmission liney o .

outgoing
transmission linex

This unit has the following behavior. If the z incoming transmission line is
selected, then the central point must be labeled in one of the two positions
marked z y and = . In either case, the lower right point must be labeled
in the outgoing transmission line’s selected state, as shown below:

incoming
transmission linex

~a—————— incomi ng

""""""""""" transmission liney

OUtQOING et

transmission liney

outgoing
transmission linex

Note that the outgoing transmission line for z is thereby selected. Similarly,
selection of the y transmission line is passed through from upper right to

lower left.
Using the crossover unit, we can extend the variable region layout as

follows:®

®Some comment is warranted about the planarity or nonplanarity of the layout. There
are two graphs being used in the construction, the bipartite graph of clauses and variables,
and a more articulated graph of transmission lines. Although the bipartite graph is planar,
the use of crossovers induces nonplanarity within a subgraph of the more articulated graph,
namely, the subgraph corresponding to a single node of the bipartite graph (a variable

17

x|
|
X
x|
X

incoming X X
transmission
lines

4)

7T\

LT\

Y Y

_ region for variable x Y,

Now, we have successfully coalesced all the x and Z transmission lines
into a single line for each. We must only guarantee that both lines are not
selected, which we can do by connecting the ends of the two lines with a
junction unit:

: L incoming x
'ncoming x transmission
transmisson N 3 .
line ~ ‘r : J@ 4— line

F—— - @ e X

\ X [o N | D

L - - L |

If both lines are selected, this unit cannot be labeled.

FEach variable region requires at most O(o) merge units and crossover
units and one junction unit. The extra transmission line routing is O(o)
for each transmission line, giving a total of O(o?) points per variable region.
The total number of points needed for all variable regions, then, is O(o?|U]).

This completes the construction of a label-placement problem from a
planar 3-SAT problem. The constructed point set can be admissibly labeled
just in case we can select one literal point from each clause unit and label it
in the shaded region. Consider a potential choice of selected literals. If they
are inconsistent (that is, some z literal and some 7 literal are selected) then
by virtue of the merging the single final z transmission line will be selected
as will the single final Z line. Hence, the junction unit will be unlabelable. In

region). The transmission line graph as a whole is thus nonplanar, but we can still rely
on the complexity results of planar graph layout, as the nonplanarity is localized within
nodes of the planar bipartite graph.

18

summary, if the choice of literals is inconsistent, the system is unlabelable.
Thus, the system is labelable just in case the original formula is satisfiable.

The total number of points needed is O(|C]) for the clause units, O(c?)
for the transmission lines, and O(¢?|U|) for the variable regions, the sum of
which is O(c?), that is, O((|U] + |C])?) < O((|U] - |C])?). Thus, the con-
struction of the label-placement problem for a given planar 3-SAT problem
is polynomial in the size of the 3-SAT problem. Thus, if label placement
were solvable in polynomial time, so would planar 3-SAT. Label placement
is thus an NP-hard problem.

This concludes the argument that SLP label placement is NP-hard, and
thus NP-complete. The NP-completeness of Zoraster’s problem and ALP
are immediate corollaries.

5 Complexity of Optimal Label Placement

We can use the NP-completeness of SLP to provide bounds on the complex-
ity of the optimization version of the label placement problem, OLP.

A lower bound is straightforward; clearly, any algorithm for OLP solves
SLP as well. Thus, OLP cannot be solved in polynomial time unless P =
N P. As it turns out, the other direction holds as well. That is, if P = NP
then OLP can be solved in polynomial time; OLP is “NP-easy” [4]. In
summary, although OLP is not an NP-complete decision problem, it has the
hallmark of one, solvability in polynomial time if and only if P = N P.

We prove this by considering an intermediate decision-problem variant
of OLP, the problem of determining if there is a point-feature labeling of
cost B € Z* or less. We state a general version of this decision problem

19

below that also incorporates the notion of extending a partial labeling;:

Extendible Optimal Point-Feature-Label Placement (EOLP)
Instance: A set P of point features each with a position in R? and
a label size, each of which can be labeled in one of a set NV of
relative positions (for example, the eight relative positions in Fig-
ure 2); cost functions ¢,; and ¢y satisfying (1) and (2), respectively;

a partial labeling Ax = {(px,, 72,), (Pas, ry)s - -+ (Pags M2,) }; and
a cost limit, B.

Question: Is there a label placement g : P — N that is a superset
of A, and that has cost

> culp,g(p)+ Y culp,9(p),q,9(q)) < B?

peEP p,geP

It is easy to show that EOLP is in NP and that an arbitrary instance of
ALP can be reduced in polynomial time to an instance of EOLP, thereby
establishing the NP-completeness of EOLP. These straightforward results
are left for the reader to prove. We use the NP-completeness of EOLP to
show that OLP is NP-easy.

Assume that we have a procedure Sgorp for solving EOLP. Let (),
be the largest integer that appears in the definition of ¢, and ¢; in the
statement of an arbitrary instance of OLP. Each of the |P| labels may be
responsible for as many as |P| + 1 non-zero terms in the cost formula, each
with maximum value C,,,,. We can therefore state the following bounds
on the optimal labeling cost, B,,;: 0 < B,y < Crar(|P)? +|P|). We can
determine the cost of an optimal labeling for an arbitrary instance of OLP
by setting up a corresponding instance of EOLP (with A = () and us-
ing procedure Sgorp and binary search. This approach requires at most
[10g5(Crnae(|P|*+ | P|))] calls to Sgorp, a number that is polynomial in the
length of the problem statement.”

Having used Sgorp to compute B,,; for an arbitrary instance of OLP,
we can go on to use corresponding instances of EOLP and procedure Sgorp
to determine an optimal labeling. A partial labeling that is a subset of
an optimal labeling is called an extendible partial labeling. Given an ex-
tendible partial labeling Ax = {(pr,>7a,), (Prss 2as)s - - -5 (Pay, Ma,)}, We can
determine a labeling for point-feature py,,, that results in a new extendible
partial labeling Agy1 = {(Pas7a0), (Pass)5 -+ o5 (Pans s)s (Paesns Tangs)}

A suitable definition for the length of an instance of OLP is |P| + [logs (Crmaz)]-

20

as follows: by labeling p,,,, in each of the |N| possible ways, we can gener-
ate |N| candidates for Ajy;; using at most |N| — 1 corresponding instances
of EOLP and |N|— 1 calls to Sgorp we can then determine which of these
candidates is in fact an extendible partial labeling. (At least one of them
must be, and it does not matter which one we choose.) This procedure can
be started with Ag = (), and will terminate with an optimal labeling Ajp|
having cost B,,, using at most |P|(|N|— 1) calls to Sgorp.

Thus an instance of OLP can be reduced to a polynomial number of
instances of EOLP, a problem we already know to be NP-complete. OLP is
therefore NP-easy. Given that OLP is also NP-hard, we see that OLP can
be solved in polynomial time if and only if P = N P.

6 Generalizing the NP-Completeness Proof

Although we have shown that SLP, ALP, and OLP are (probably) in-
tractable, there may be other instances of OLP that are more tractable.
In this section, we demonstrate that certain other natural instances are at
least as hard. First, the NP-hardness proof for SLP relied on using a set
of unlabeled point features. If we restrict the problem further to disallow
unlabeled point features (so that the set U is empty), the problem remains
NP-hard. The appendix provides the appropriate constructions for clause
units, transmission lines, crossover units, and so forth.

Some presentations of label placement algorithms use more label posi-
tions, say by adding positions directly to the east and west. We can always
reduce such problems to SLP by adding unlabeled points to disallow use of
the extra positions. This works even for certain methods that assume an
unbounded number of positions, say all positions tangent to a unit circle
around the point (as proposed by Hirsch [5]). We can add a finite number of
unlabeled points to bound the usable label positions to within an arbitrarily
small variance from the standard four positions, as shown:”

| o |
X, + X
% © i
| [|
"Note that infinite precision is not needed in specifying the positions of the unlabeled
points in this construction, because we do not have to restrict the labels to exactly the

four standard label positions. Variation from the standard positions by a sufficiently small
error still allows the several constructions to work.

21

Finally, we may hope that there is an efficient algorithm that, though
it cannot guarantee an optimal solution to OLP, can generate one within
some factor . This is also not possible unless P = N P. We go into this
proof in more detail.

An e-approxzimation algorithm for an optimization problem A is a polynomial-
time algorithm with the property that

Capproa(A) = Cope(A)
<=g,
COM(A)

where Cypproz(A) is the cost found by the approximation algorithm, and
Copt(A) is the optimal cost [11]. In this section we prove that unless P =
N P, there is no e-approximation algorithm for OLP.

The proof is by contradiction. Assume there is an e-approximation algo-
rithm for OLP. We show below that such an algorithm can be used to solve
SLP in polynomial time.

We do this by taking an instance of SLP and converting it to a similar
instance of OLP. Informally, we construct an instance of OLP in which each
potential overlap (as enumerated in the corresponding instance of SLP) is
assigned a cost of more than [¢| P[], where | P| is the number of point features
to be labeled. More formally, let an instance of SLP be defined by sets P
and U and numbers X and Y, which in turn define functions ¢,; and ¢;;, and
let the corresponding instance of OLP be defined by the same set P, the set
N being the four positions used in SLP, and functions ¢; and ¢}, defined as
follows:

Cl (n) - 1 if Cpl = 0
PP =N 24 Te|Pl] i ey =1

c’(pnp' TLI)I 0 ifC”IO
ulpy 1 P 14 [e| P[] ey =1

We can then use the approximation algorithm to solve instances of OLP
created by this conversion process. Suppose the algorithm finds a labeling
of cost |P|. Then we know there is an admissible labeling of all the point
features, i.e., a solution to the corresponding SLP problem.

Suppose the algorithm returns a labeling of cost greater than |P|. This
could be because of a point-label overlap or a label-label overlap. In the
former case, the cost of this labeling has to be at least |P|—14(2+4 [¢|P|]) >
14 (1+ ¢)|P|. In the latter case, the cost of the labeling has to be at least

22

|P|—0+(1+[e|P[]) > 1+(1+¢)|P| once again. Now if there is an admissible
labeling, the cost of the corresponding optimal labeling will be | P|. Thus if
there is an admissible labeling the approximation algorithm cannot return
a labeling of cost greater than |P|, because the labeling returned by the
approximation algorithm would then not meet its own defining criterion,
because

(1+(1+e)|P])-|P| 1
=—=+e>ec
Pl 1P|
So if the algorithm returns a labeling of cost greater than | P|, there cannot
be an admissible point labeling.

Thus the polynomial-time approximation algorithm for OLP can be used

as a polynomial-time decision procedure for SLP. But this is a contradiction,
because we know the latter problem is NP-complete. Therefore there can be
no e-approximation algorithms for OLP—regardless of the size of e—unless
P = NP. Whether an eflicient approximation algorithm exists when the
cost functions are restricted in some way (e.g., when each overlap has unit
cost) is an open problem.

7 Conclusion

We have presented a proof that a particularly simple variant of the car-
tographic label placement problem is NP-complete, hence, the more gen-
eral versions, including determining admissible or optimal label placements
are computationally intractable. Several generalizations of the problem, in-
cluding determining approximately optimal placements, or placements un-
der other simplifications of the problem, also reduce to NP-hard problems.
Thus, unless P = N P, none of these problems has a polynomial algorithm
for its solution, but if P = NP all do. To solve label-placement problems,
we must therefore look either to heuristic methods or to further constraints
on the problem (perhaps arising from the structure of problems that appear
in actual maps) that allow for efficient computation of solutions.

References

[1] J. Ahn and H. Freeman. A program for automatic name placement.
Cartographica, 21(2&3):101-109, Summer& Autumn 1984. Originally
published in Proceedings of the Sixzth International Symposium on Au-
tomated Cartography (Auto-Carto Siz), Ottawa/Hull, October 1983.

23

2]

[12]

[13]

[14]
[15]

[16]

Laurence W. Carstensen. A comparison of simple mathematical ap-
proaches to the placement of spot symbols. Cartographica, 24(3):46-63,
1987.

B. Chazelle. The polygon containment problem. In F. P. Preparata,
editor, Advances in Computing Research, Vol. 1: Computational Ge-
ometry, pages 1-33. JAI Press, Greenwich, Connecticut, 1983.

Michael R. Garey and David S. Johnson. Computers and Intractabil-
wy: A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, New York, New York, 1979.

Stephen A. Hirsch. An algorithm for automatic name placement around
point data. The American Cartographer, 9(1):5-17, 1982.

Eduard Imhof. Die Anordnung der Namen in der Karte. International
Yearbook of Cartography, 2:93-129, 1962.

Eduard Imhof. Positioning names on maps. The American Cartogra-
pher, 2(2):128-144, 1975.

C. Jones. Cartographic name placement with Prolog. IEFE Computer
Graphics and Applications, 9(5):36-47, September 1989.

Nils J. Nilsson. Problem-Solving Methods in Artificial Intelligence. Mc-
Graw Hill, New York, 1971.

Christos H. Papadimitriou. The Euclidean TSP is NP-complete. The-
oretical Computer Science, 4:237-244, 1977.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Opti-
mization: Algorithms and Complezity. Prentice Hall, Englewood Cliffs,
New Jersey, 1982.

Diane L. Souvaine and Christopher J. Van Wyk. How hard can it be to
draw a pie chart? Mathematics Magazine, 63(3):165-172, June 1990.

Roberto Tamassia and loannis G. Tollis. Planar grid embedding in
linear time. IFEE Transactions on Circuits and Systems, 36(9):1230-
1234, September 1989.

Jan W. van Roessel. An algorithm for locating candidate labeling boxes
within a polygon. The American Cartographer, 16(3):201-209, 1989.

Pinhas Yoeli. The logic of automated map lettering. The Cartographic
Journal, 9(2):99-108, December 1972.

Steven Zoraster. Integer programming applied to the map label place-
ment problem. Cartographica, 23(3):16-27, 1986.

24

A Proof Constructions Without Unlabeled Points

The proof can be made more general by eliminating its reliance on unlabeled
points. This problem variant is given as follows:

Simpler Admissible Point-Feature-Label Placement
Instance: A set P of point features each with a position in R?, and
each of which can be labeled in one of the 4 relative positions given
in Figure 2(a); numbers X and Y that give the fixed horizontal
and vertical extent of a label.

Question: Is there a label placement g : P — N such that

Yo culpgp))+ Y eulp. 9(p),a:9(q)) =0
pEP p,q€EP
where
1 if there is a point p’' € P
cpi(p,m) = such that p’ € region(p,n)
0 otherwise

and

1 if region(p,n) N region(p',n’) £ 0
0 otherwise ?

Cll(p7 n, pl7 n/) = {

To eliminate the reliance on unlabeled points, we modify all of the various
constructions to remove unlabeled points. A useful new construction is a
stop unit, a simple layout of four labeled points that has a completely forced

17

Stop units can be used to replace unlabeled points as the shaded label
positions (which are forced) can overlay any label regions we wish to render
invalid, as long as there is room for the extra points and labels of the stop
unit. The constructions in the text were designed so as to put all unlabeled

labeling.

points near the periphery of the constructions so that room is available.
For the transmission line construction, for instance, we can align a series
of stop units on one edge of the line.

25

(The ability to swap sides in a transmission line, or turn corners, is obviously
still possible with the new construction.)
The clause unit is augmented with four full stop units and a “partial”

stop unit (two of the points being made superfluous by neighboring stop
units) that serve the function of the original seven unlabeled points.

There is still room for transmission lines from the three outside label regions.
The merge, crossover, and junction units are especially simple to con-
struct using stop units instead of unlabeled points.

26

incoming
transmission
lines

outgoing
transmission

v line

The increased sizes of the constructions only introduces a constant into
the reduction. Hence, the proof is preserved using these constructions, and
we can dispense with unlabeled points.

27

