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Abstract

We explore various methods for predicting library book use, as measured by cir-
culation records. Accurate prediction is invaluable when choosing titles to be stored
in an off-site location. Previous researchers in this area concluded that past use in-
formation provides by far the most reliable predictor of future use. Because of the
computerization of library data, it is now possible not only to reproduce these earlier
experiments with a more substantial data set, but also to compare their algorithms
with more sophisticated decision methods. We have found that while previous use is
indeed an excellent predictor of future use, it can be improved upon by combining
previous use information with bibliographic information in a technique that can be
customized for individual collections. This has immediate application for libraries
that are short on storage space and wish to identify low-demand titles to move to
remote storage. For instance, simulations show that the best prediction method we
develop, when used as the off-site storage selection method for the Harvard College
Library, would have generated only a fifth as many off-site accesses as compared to
a method based on previous use.






1 Introduction

It is a commonplace that libraries never have enough room. For instance, Widener Library,
the flagship of the Harvard College Library, is comprised of some 4.8 million volumes,’
whereas the library building itself has space for only 3.5 million of these. Library systems
must balance a desire to make titles generally accessible with the often prohibitive cost
of increasing the capacity of on-site library locations. The solution to this dilemma was
outlined over 250 years ago by Thomas Hollis, Harvard’s second great library benefactor.
(The first was John Harvard himself.) In a letter to the College Authorities of Harvard,
Hollis proposed that “If you want roome for modern books, it is easy to remove the less
usefull into a more remote place.” (Hollis, 1725) Former Harvard President Charles Eliot
echoed the proposal in his well-known address to the American Library Association, rec-
ommending “the division of a library into books in use, and books not in use, with different
storage methods for the two classes of books.” (Eliot, 1902 [1978])

The traditional solution to the overcrowding problem, then, is to move low usage titles
to a relatively distant off-site location, which can be built on less expensive land and
can use efficient compact storage techniques. The Harvard College Library has taken this
approach using a depository library in Southborough, Massachusetts. At current rates of
book acquisition, titles from Widener would not fill Harvard’s depository for another 160
years. Thus, the depository can for all practical purposes solve the problem of inadequate
storage. Ancillary benefits of a depository approach include climate control, enhanced
security, and improved preservation of fragile books. However, these benefits must be
balanced against the great inconveniences libraries and library patrons experience with a
depository system, notably the significant delay and cost inherent in retrieving volumes
from the depository.

Given the necessity for off-site storage and its costs, it becomes important to choose
those books to be stored off-site carefully. Ideally, books moved off-site would be those with
the lowest expected future usage, but future usage is a problematic concept in two ways.
First, the future is unknown and can only be predicted approximately, based on available
data concerning past usage. Second, even past usage is difficult to measure given the variety
of ways in which books are used: circulation, browsing, reference, and so forth. Only for
the first of these can comprehensive statistics be automatically accumulated. For this
reason, we concentrate on measured circulation statistics as an admittedly approximate
gauge of past use. We must be satisfied by previous reports (Fussler and Simon, 1969;
McGrath, 1971; Hindle and Buckland, 1978) that conclude the frequency of in-house use is
highly correlated with the frequency of checkouts, though these conclusions are admittedly
controversial (Hayes, 1981; Hayes, 1992). Henceforth, references to “use” should be thought
of as connoting measurable use, that is recorded circulations, except where explicitly noted.
For similar reasons of technological expediency, the studies we report on here perform the
analysis and choice at the level of titles rather than books, as the available bibliographic

L Aggregate statistics of this sort in this paper were provided by Dale Flecker and Curtis Kendrick of
the Harvard University Library.
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Figure 1: Performance of random and clairvoyant choice policies. These two provide ex-
pected extremes in terms of performance.

data are stored on computer by title.

Our goal, then, is to predict future circulation statistics for individual titles so as to
optimize off-site storage decisions. The dramatic impact of intelligent title choice can be
shown graphically by comparing two choice policies, one in which the titles to be moved
off-site are chosen randomly, and one in which titles are chosen clairvoyantly by looking
into the simulated future and picking those books that are circulated the least in that time
period. Figure 1 depicts a theoretical simulation of these two policies on a subsample of
titles from Widener library. In the left portion of the figure, the percentage of titles to be
stored off-site is varied along the horizontal axis. For each percentage, the choice policy
is applied to choose titles to remove to off-site storage. We plot along the vertical axis
the percentage of circulation transactions in the simulated future that involve the removed
titles. This percentage we call the hit rate for the policy. Of course, the lower the hit rate,
the better a choice policy is.

One would expect that under a random choice policy, the hit rate should be the same as
the off-site percentage. On the other hand, if we could clairvoyantly pick titles to be moved
off site that we know would not be circulated, making our decisions with full knowledge
of future circulation patterns, we would expect the hit rate would be reduced to 0 percent
until most of the books are moved off-site. The figure verifies this expected performance;
the hit rate is 0 percent for the clairvoyant method up until about 70 percent of the titles
are stored off-site.

In order to gauge the overall quality of a choice policy, we adopt a measure of how
much better it is than the benchmark random policy. By calculating the relative ad-
vantage of the choice policy over the random policy, averaged over all off-site percent-



ages, we get the FEzpected Advantage over Random (EAR), which provides a measure
of the quality of a choice policy. The EAR for a choice policy P can be calculated
as 1 — [number of hits using policy P]/[expected number of hits using random policy]. By
definition, the EAR for the random policy itself should be approximately 0. The EAR for
the clairvoyant policy is around .90, which we will state as a percentage: 90 percent. That
is, we would expect (given no assumptions about how many titles to store off-site) that the
clairvoyant policy engenders only one tenth as many hits off-site as the random policy.?
The EAR values for the two choice policies (0 and 90 percent, respectively) are graphed in
the right-hand portion of Figure 1. (This portion of the figure also shows the 95 percent
confidence interval for each EAR value estimate, as described in Section 3.2.) Although a
clairvoyant policy is not implementable — we cannot see into the future — the thought ex-
periment shows that there is tremendous room for improvement over random choice when
deciding which books to put in a depository.

1.1 Summary of results

In this paper, we explore the design of choice policies by examining a large class of such
policies, namely those that can be expressed as decision trees (Quinlan, 1986), described
in Section 3. Essentially all past research on the topic of choice policies has worked with
policies in this class, allowing us to replicate these results — albeit on a much larger scale
(Section 2). On the basis of these experiments,

e We replicate previous results, showing that, overall, past use is the best single pre-
dictor of future use.

e We demonstrate, however, that in certain commonly occurring cases (when only a
small percentage of books are to be stored off-site), past use is a worse predictor of
future use than LC class or publication date.

However, the availability of large databases of bibliographic and circulation information
and the relatively more sophisticated computer resources now available allow us to go well
beyond the simple decision trees previously considered. We can now examine trees orders
of magnitude more complex, using subsamples of much larger scale and variety. On the
basis of these experiments, described in Section 4,

2The EAR metric is, for many purposes, too general a metric in that it averages the choice policy’s
advantage over the entire range of possible depository sizes. For instance, at the Harvard College Library,
it is known that the percentage of books stored off-site will be in the range of 15 to 30 percent for many
years to come. Thus averaging advantage over the random policy over the full range of 0 to 100 percent may
give a misleading estimate of a policy’s performance. Where further information of this sort is available,
it should be taken advantage of. For example, our best policy, with an overall EAR of 73 percent actually
exhibits an advantage over random of 90 percent at an off-site percentage of 20 percent. For the purpose
of this paper, however, we make the weakest possible assumption, that all off-site storage percentages are
equally likely, as the basis for our evaluation.



e We demonstrate that the use of additional criteria in predicting future use can be
helpful, though care must be taken.

e We develop a practical choice policy with an EAR of over 73 percent, a significant im-
provement in predictive power over previous methods, with EARs of 45 to 60 percent.

1.2 Some methodological caveats

Before describing our experiments, we digress to mention several limitations of the present
study, which are shared by earlier research on the same topic. Some technical limitations
are described in Section 3.2.

First, as mentioned above, we use circulation as a proxy for, and approximation of,
general use. Though circulation seems to be highly correlated with in-house use, the
large quantity of in-house use means that any error in the correlation corresponds to large
amounts of in-house use for which circulation is a poor predictor. This observation has been
explicitly made by Hayes (1981; 1992). Thus, any off-site storage method in which usage
prediction is based solely on circulation may lead to a great decrease in the utility of the
on-site collection. Unfortunately, we have no efficient way of collecting reliable statistics
on in-house use on the scale required for use prediction, so we must be satisfied for a rough
predictor over none at all.

Second, we attempt to develop a methodology that, when implemented on a specific
collection, can help in choosing titles to move into secondary storage and is more accurate
in predicting future use than methods currently used. Not everyone agrees that future use,
even if accurately predictable, is the appropriate metric on which to base such a location
decision. Two main schools of thought have developed as to how to pick titles to move
off-site. One, which may be titled the “What readers should want” school, proposes that
experts in various fields pick those titles in their field that are the least “worthy” and send
them to remote storage. Proponents of this view hope that because of the work involved
in recalling a title from the depository, casual students of a topic will be guided to the
higher quality titles in the main collection (see, e.g., (Wortman, 1989, page 201)). The
other school of thought, the “What readers do want” school, believes the library should
try to minimize use of the depository by predicting patterns of future use. In this way,
titles that will not be used often in the future can safely be placed in the depository. By
taking the latter approach, we are following in the footsteps of earlier researchers in the
area (Fussler and Simon, 1969; Slote, 1982; Trueswell, 1971).

One way to ameliorate both these problems is to combine an automated procedure with
manual oversight. This can be done in a variety of ways. A manual pre-process stage could
specify individual titles or classes of titles (such as reference materials or other titles used
frequently in-house) to be exempted from consideration by the automated procedure. A
manual post-process stage could follow a computerized method with expert review. For
instance, a decision algorithm could be made to list more titles than need to be moved,
and experts could pick the requisite number of books from the candidate list. In either
case, a good prediction algorithm can ease the burden of deciding on titles to move to



remote storage when a main collection becomes too crowded, even if it does not eliminate
the burden entirely.

2 Previous Research

In order to design a choice policy to minimize the expected use of titles stored off-site, we
must have a model that allows predicting the use of individual titles. The two problems of
predicting book use and designing choice policies are thus closely related (but see Section 1.2
for a discussion of some differences between the two problems).

Note that what is needed is a method of predicting the use of individual titles; it is
not sufficient for our purposes merely to predict aggregate book use (though it is sufficient
for other purposes, such as aiding resource allocation). A great deal of previous research
in predicting book use addresses the aggregate prediction problem (McGrath, 1976-77;
Lazorick, 1979; Burrell, 1980; Hayes, 1981; Tague and Ajiferuke, 1987; Burrell, 1988;
Hayes, 1992; Lee, 1993; Burrell and Fenton, 1994), modeling future use distributions in
toto as, for instance, mixtures of Poisson processes, perhaps incorporating a decay factor
to model book aging.® Such models are insufficient for our purposes for two reasons. First,
we must select individual titles for removal off-site; aggregate statistics provide no aid in
determining which books will fall in the tails of the distribution, but merely predict what
the distribution will look like. Second, aggregate models must somehow extrapolate past
use as a predictor of future use. Thus, they presuppose exactly the kind of model that we
are interested in developing. However, because the information they must deliver is much
coarser, there is little or no motivation to subdivide the books into subclasses for separate
prediction; this would only be useful if the combination of the aggregate predictions for
the two classes were more accurate than the aggregate prediction for the union of the two
classes. For this reason, aggregate prediction methods can (and should) rely on relatively
simple models of prediction, essentially just past use. The sophistication in the models is
in the distribution modeling method or the combination with economic models, not in the
prediction criteria.

There is, however, a body of previous research on predicting library book use that
is applicable to designing choice policies. Almost all researchers agree that some direct

3Modeling the effect of aging on our future predictions is, by itself, immaterial to the enterprise we are
concerned with, as we wish merely to predict usage in the near future. Usage in the more distant future
can be predicted on the basis of similar models built at that later date. That is, as long as we make each
prediction on the basis of the most recent data, we need not concern ourselves with how the prediction fares
as it ages. However, an ancillary effect of aging is quite important for present purposes, namely, deciding
on the size of the window into the past that we use to measure past use. There is a tradeoff between
having a long window, which provides more data and therefore more reliable statistics, and having a short
window, which provides data that has aged less and is thus more accurate. Our assumption, by no means
proven, was that more data was better, especially as only the CHECKOUT HISTORY data would exhibit the
ill effects of a too long window, and this criterion outperforms even LAST USE in our experiments. Fully
exploring this reliability /accuracy tradeoff is beyond the scope of this paper, though doing so would be
quite interesting and a useful adjunct to previous work on aging (Burrell, 1985; Burrell, 1987; Tague and
Ajiferuke, 1987).



measure of past use is the most significant predictor of future use. Fussler and Simon,
in their seminal 1969 study, concluded that past use is the only good indicator of future
use (Fussler and Simon, 1969). Slote, in his study of 1971, agreed: “The most recent use
pattern as reflected by the current circulation is a strong and valid predictor of the future
use [of books]. ... The most recent shelf-time period should be the sole criterion for weeding
and for identifying useful core collections” (Slote, 1971, p. 34). Slote reports on a study by
Jain that claims to find a single predictor that does better, but Slote also notes that Jain
does not really offer any evidence that his predictor is better than past use.

The value of past use information is limited, however, by the fact that many titles in a
research library are never checked out at all, and hence have identical past use history. In
1975, for instance, researchers at the University of Pittsburgh determined that 40 percent
of all titles purchased by the university had never been circulated (Kent et al., 1979).
Data from Harvard’s computerized transaction database show that these results transfer
to Widener library: 40 percent of all titles in Widener have not been checked out in the
last 20 years, the period for which computerized records exist.

An obvious method for distinguishing among these low-use titles is to take into account
bibliographic information when trying to predict future book use. Fussler and Simon did
s0, examining combinations of decision criteria for predicting book use. For instance, they
ranked titles that had never been checked out based on their date of acquisition by the
library. In addition, they analyzed titles in different LC classes separately, so LC class was
also an implicit decision criterion in their study. These two criteria were used in addition
to past use statistics; when Fussler and Simon disallowed past use statistics as criteria,
they needed to combine even more criteria to obtain an adequate choice policy.

Before the advent of computerized transaction systems, research into these more com-
plicated decision schemes was limited by the computational difficulty of managing all the
necessary information about library books. Possible prediction methods had to be arrived
at through ad hoc methods, and only small amounts of data could be gathered to evaluate
their efficacy. Fussler and Simon’s study, probably the largest, examined a total of only
1642 titles — all of them books — generating 1601 transactions. Their titles were not
uniformly distributed throughout the library system, but were instead concentrated in two
subject areas, Economics and Teutonic Literature. In addition, the researchers found it
difficult to estimate past use information, since the sheet of paper containing book use
information, stored in the rear of each volume, was replaced after a few dozen entries.
The computerization of library records, combined with computer algorithms that can be
automatically trained to predict book use, makes possible a more complete examination of
algorithms for predicting library book use, which we describe below.

With the availability of computerized databases of bibliographic and circulation in-
formation and more sophisticated computer resources, we can reproduce these previous
studies using a much larger data set in a more exhaustive evaluation. The six decision
criteria that we examine are shown in Table 1. These criteria include all those examined
by Fussler and Simon with the exception of acquisition date, which was not available for
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Figure 2: Performance of single criterion choice policies. The two past use criteria perform
the best overall.

the Widener data. In addition, we consider CHECKOUT HISTORY and COUNTRY OF PUB-
LICATION, which Fussler and Simon did not. We refer to two of these criteria — CHECKOUT
HISTORY, measuring the number of past uses, and LAST USE, measuring the time since the
last use — as past use criteria, as they rely on the book’s circulation behavior in the past.
In the simulation experiments reported on here, we use circulation records from July 1975
to June 1984 as the “past” for use by these criteria. Data from July 1984 to June 1993 are
not available to the past use statistics and are used to analyze decision trees. (See Section 3
for a fuller description of the methodology of evaluating decision trees.)

In Figure 2 we compare the performance of various decision criteria on an 80,000 title
random subsample of books in Widener library. For comparison purposes, the figure also
includes the benchmark policies based on random and clairvoyant choice.

Consistent with previous studies, the past use criteria definitively outperform other
criteria. The best of these criteria, CHECKOUT HISTORY, has an expected advantage over
the random policy of 58.9 percent. However, when few titles need to be stored off-site, the
advantage of past use criteria is not so clear-cut. Figure 3, which details the performance
of the criteria at small off-site percentages, shows that LANGUAGE is the best performer in
this range, and both LANGUAGE and LLC CLASS outperform the past use criteria. Previous
studies may not have noted this behavior since it only holds when less than about 18 percent
of all titles need to be moved off-site; Fussler and Simon’s study, for instance, only tested
their criteria with simulations of 25, 50, and 75 percent of titles stored off-site.

Using the same 80,000 title sample, we can evaluate approximations to the various

4We use PUBLICATION DATE as an approximate replacement for acquisition date.



Criterion Description
Ezample values [number of attested values]

CHECKOUT Number of times the book circulated in the past.
HISTORY

0 times, 1 time, 9 times, 1898 times [90 values]

LAST USE Number of months since the last use in the past.

0 months, 1 month, 108 months, never used [110 values]

LC cLAss Alphabetic prefix of the Library of Congress call number. Harvard
University keeps some titles under an older classification scheme. Such
titles are given an “LC class” by prefixing the Widener prefix with
“WID”.

A, PQ, WID ECON [486 values]

PUBLICATION | Date of publication of the book.
DATE

1789, 1900, 1986 [357 values]
LANGUAGE | Language in which book is written.
English, Swahili, Achinese [127 values]

COUNTRY Country in which the book was published, following the Library of
Congress specification, in which states of the US and certain other sub-
national units are classified as countries.

Australia, West Germany, Massachusetts [276 values]

Table 1: Criteria considered in models of predicting book use. The number of values
evidenced in an 80,000 title sample is provided in brackets in the second column.

multi-criterion policies that Fussler and Simon developed, and compare them to the LAST
USE criterion, the best-performing single criterion. The comparative results are shown in
Figure 4. The “no use records” policy uses LANGUAGE and PUBLICATION DATE to rank
titles, while the “use records” policy uses LAST USE and PUBLICATION DATE. Fussler
and Simon did not explicitly consider LC CLASS as a predictive criterion, but did treat
separately the two LC classes they studied, so we also look at the performance of the two
policies when augmented with the LC CLASS criterion.

Of the first two variants, the one taking advantage of past use information is again
better overall, but when few titles need to be put in the depository, it performs worse than
the method based purely on bibliographic information. This makes sense, since in this
low range all titles being considered will have never been checked out, and the LAST USE
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Figure 3: Detail of Figure 2 for small off-site percentages. In this range LANGUAGE and
LC cLAss outperform the past use criteria. The clairvoyant line cannot be seen because
it lies along the horizontal axis.

policy will be picking titles basically at random. Surprisingly, using LC CLASS as an extra
criterion can degrade performance: Adding LLC cLASS to the “no use records” policies
reduces the EAR from 52 to 47 percent. It is possible that adding another criterion makes
the algorithm prone to overtraining. (See Section 4.3.)

In summary, past use statistics are the best single criterion for predicting book use,
although contra previous studies, other criteria dominate when small percentages of books
(less than about 18 percent) are stored off-site. The addition of extra criteria to past use
can, to an extent, further improve predictive power, but care must be taken, as degradation
can also result.

3 The Methodology of Decision Trees

The multi-criterion algorithms of Fussler and Simon can be seen as variants of a general
class of methods based on decision trees. A decision tree is a hierarchical structure for
classifying objects, composed of nodes that correspond to primitive classification decisions.
For the task at hand, the objects to be classified are titles and we wish to classify them
in such a way that the classes are maximally predictive of their future use. The primitive
classification decisions are simply the criteria that are available for classifying titles, as
listed in Table 1.

At the top of a decision tree (called, perversely, the root; decision trees grow down
rather than up) is a node that specifies the main dividing criterion for subclassifying the
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Figure 4: Performance of choice policies recommended by Fussler and Simon (1969). Poli-
cies using use records outperform those that do not in general, but not when less than
20 percent of books are in the depository. Adding LC cLASS does not always improve
performance, perhaps because of overtraining.

titles. The dividing criterion might be, for instance, LANGUAGE. For each value of this
criterion — English, Swahili, Achinese, etc. — the node has a child node, which can be
thought of as classifying further all the titles with the given language value. Associated
with each node, in addition to a dividing criterion, is a set of titles. The root node contains
all the titles, while child nodes contain those titles they inherit from their parent. In our
example, the ENGLISH child node inherits from its parent all titles written in English, while
the SWAHILI node inherits titles in Swahili, and so on.

Each of these nodes in turn can have a dividing criterion and children of its own. In this
way, the set of titles can be subclassified into finer and finer subgroups, where the nodes at
the bottom of the tree, the leaves, constitute an exhaustive classification of all of the titles
into disjoint classes. Figure 5 shows a simple decision tree. Titles are divided first on the
basis of the language they are written in. Those written in English are further subdivided
on the basis of their country of publication. (For purposes of exposition, we limit attention
in the figure to a small subset of the possible values for these criteria.)

Decision policies treat each leaf as a unit, ranking each leaf on the basis of its expected
future use — or rather, the average expected future use of titles in that leaf. The variation
in prediction quality among decision trees comes from the choice of decision tree. The
number of levels in the tree, the methodology for detecting and weeding out ineffective
leaves, and even the order in which we choose the dividing criteria, can all affect the quality
of prediction. By way of example, we have already seen the difference in performance using
a zero-level tree (RANDOM) as opposed to a good one-level tree (LAST USE).

10
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Figure 5: A simple decision tree.

3.1 Defining and evaluating choice policies

A decision tree can be used as the basis of a choice policy by ordering the leaf nodes
according to which classifications are expected to have the lowest hit rate. We calculate
this expected hit rate for each node using data from 1984-1993. (Recall that data from
1975-1984 are reserved for the past use statistics.) That is, each node is assigned a value
based on the number of times titles in that node were checked out in the period 1984-1993.
We can, in this case, think of the data from 1984-1993 as the “recent past” and data used
by past use statistics as stemming from the “distant past.”

This ordering of nodes induces a corresponding ordering on the associated sets of titles.
When we need to pick titles to place off-site, we start taking titles (in arbitrary order) from
the lowest-ranked node’s classification, moving on to higher-ranking nodes as the earlier
nodes are emptied. If use patterns from the recent past, which we used in our ordering,
hold into the future, the ordering we generate will be the best one.

This procedure is adequate for creating and using decision trees, but we need some more
data in order to test their efficacy. One way to do this is to garner some “future” data
and, as we move titles to the depository, track how many times the titles are checked out
in the “future.” This technique allows us to calculate the hit rate at different percentages
of off-site storage. In this way we can generate curves such as those in the previous figures.

This method can be improved upon by using a different data set of titles to test the
decision tree, which we call the testing set to distinguish it from the training set used to
construct the structure and ordering of nodes in the decision tree. This way we are sure
that we are evaluating the predictive power of the way the tree divides titles in general as
opposed to its predictive power on the specific training set titles. We would use testing set
circulation data from the “recent past” to calculate past use statistics; this is necessary so
that we can determine the appropriate node for each title of the testing set. Then we could
use the data from the “future” to evaluate how well the tree predicts future use.

11
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Figure 6: A single-criterion decision tree that divides on the LAST USE criterion.

Unfortunately, we have no data from the future. However, since the data in the testing
set are unrelated to the data in the training set, it is acceptable to move the entire time
frame for the testing set backwards. Therefore we can use the “distant past” for past use
information and the “recent past” to simulate the future. This technique will fail only
if patterns of use change rapidly enough to make predictions based on the “recent past”
(1984-1993) invalid in the future. We do not expect this to be the case.

A few examples may clarify the process. The random choice policy is defined by a
decision tree with a single node. Since no dividing goes on, all titles in the training set
are placed in that one node as a single class. That node is the only leaf node, so that
the sorting of the leaf nodes according to their recent past use is trivial. Next the node is
cleared and replaced by titles in the testing set; again since there is only one node all the
titles are placed in it. These titles are then chosen in an arbitrary order to be moved to
the depository. Since the books are chosen arbitrarily from the single group, hit rate goes
up linearly with off-site percentage.

The single criterion choice policies of Figures 2 and 3 correspond to decision trees of
a single level, with a root node that divides on the given criterion. For example, consider
the LAST USE single criterion choice policy. The corresponding decision tree is depicted in
Figure 6. The root node is the only non-leaf node of the tree. The leaf nodes are sorted
based on their performance in the “recent past” (undoubtedly with more recent last use
nodes sorted ahead of less recent ones). The nodes are then cleared of titles and replaced
with titles from the testing set. The “distant past” behavior of the testing set titles is
used to divide the titles according to the LAST USE dividing criterion. The titles from the
testing set are then selected for off-site storage according to the sorting order previously
determined. The “recent past” use data for the testing set are then used to determine the
hit rate as a function of off-site percentage.

The “no use records” Fussler and Simon policy of Figure 4 corresponds to a decision
tree where the root node divides on LANGUAGE and the children of the root node divide
on PUBLICATION DATE. Figure 7 displays this decision tree.
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Figure 7: One of Fussler and Simon’s choice policies shown as a decision tree.

3.2 Sampling issues

At the time of this study, 2.2 million of the estimated 3.8 million Widener library titles have
been cataloged in Harvard University’s on-line library computer system, having generated
a total of 6 million transactions since July 1975.°> A campaign is in progress to computerize
the rest of the titles, most of which have not generated a single transaction. The results
we have obtained thus apply not to Widener as a whole but to some “sub-Widener” that
excludes many relatively unpopular titles. However, the relative comparisons are still
valid, assuming that one decision scheme would not benefit inordinately from the non-
computerized titles. This seems probable. Once the ongoing effort to computerize all titles
has been completed, it should be possible to tailor the decision-making policy to the true
population of Widener.

Because of computational limitations, we do not divide the entire collection into two
data sets of 1.1 million titles each. Instead, we make the training and testing sets somewhat
smaller, approximately 80,000 titles. In subsampling the data, it is important to ascertain
that a sufficiently large subsample is being used. Figures 8 and 9 show the performance
of a simple LAST USE decision tree on subsamples varying in size from 5,000 to 80,000
titles. Notice that the performance of the decision tree converges rapidly as the sample
size increases, indicating that the results of our experiments, which use data sets of 80,000
titles, should be applicable to larger and smaller data sets as well. Additional tests showed
that the same trend holds for other decision trees, including the much more complicated
ones discussed in future sections. Thus, a sample size of 80,000 titles seems sufficient.

As another verification of the reliability of the EAR figures that we calculate through
simulations, we calculate the maximum error for the EAR value of each choice policy due

5Unfortunately, for those titles that are in the system, computerized circulation records for a particular
11-month period were lost. The tests reported here presumably suffer from some inaccuracy due to this
missing data as well.
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Figure 8: Performance of LAST USE criterion with subsamples of various sizes. As sample
size increases, performance improves slightly as well, quickly converging to a standard value.

to subsampling. Each choice policy is tested on eight different test sets. In the left-hand
portions of the figures, a set of averaged curves is shown, one for each choice policy. In the
right-hand portion of the figure, the mean EAR value is shown with error bars bracketing the
95 percent confidence interval. This serves to delimit the range that, with high probability,
the EAR value would have fallen within if no subsampling had been performed. The right-
hand policies are keyed to the left-hand legend with the bracketed numbers. In general,
the intervals are quite small and serve to confirm the reliability of the differences among
the choice policies.

4 Designing Decision Trees

Once we characterize previous algorithms for predicting book use — from simple one-
criterion tests to the more complicated tests developed by Fussler and Simon — as decision
trees of one or two levels, it seems natural to look at even larger decision trees. After all, it
surely cannot hurt to consider as much information about a title as possible before deciding
whether to move it off-site.

Once a node in a decision tree divides on a given criterion, it makes no sense to divide
again lower in the tree on that same criterion. Therefore, if we can consider up to n criteria,
a tree can include at most n levels. Of course, we may choose to make a decision tree that
is not so deep. Trees of maximum depth we call mazimal trees. Since the present study
examines six different criteria (Table 1), maximal trees have six levels between the root and
each leaf node. In order to maximize the amount of information used in making storage
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Figure 9: Performance of LAST USE criterion with subsamples of various sizes, detail.

choices, we should consider maximal decision trees.

Indeed, the question arises as to why previous researchers did not examine these more
complicated methods themselves. The reason is undoubtedly one of impracticality. Some
decision trees we consider have over 46,000 leaf nodes. That is, the 80,000 titles have 46,000
distinct combinations of values for the six division criteria. Trees of this size are impossible
to analyze without a computer. Even with the use of computers, computational limitations
remain. Instead of creating a decision tree, which considers only a single classification
criterion at a time, it might be better to calculate a regression analysis on the various
criteria, determining not only how each criterion contributes to future book use but also
how combinations of criteria contribute. Unfortunately, such analyses on data sets of
greater than 5,000 titles, even when calculated using only a limited subset of the possible
criteria, proved to be impossible given current technology. Nevertheless, it is certainly
possible to evaluate maximal decision trees using the current technology.

4.1 Randomly selected maximal decision trees

All maximal trees differ only in the order of the dividing criteria; their leaf nodes classify
the titles into the same disjoint classes. That is, the maximal trees have the same leaves
but in a different order. Since our evaluation technique reorders the leaf nodes (based
on predicted hit rate), all maximal trees are theoretically the same for the purposes of
evaluation. It should not matter which we choose to evaluate.

The only exception to the equivalence of maximal trees would arise if the observed hit
rate for two nodes is identical. In this case, some method for “breaking the tie” must be
instituted so as to fully order the nodes. Unfortunately, such ties are quite common. For
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example, a maximal tree for one 80,000 title sample had 46,000 leaf nodes but only 247
distinct past use values to be used for sorting those nodes. There tend to be many ties
because each leaf contains only a few titles. In contrast, a simple decision tree based only
on LAST USE might have 110 leaf nodes with 93 different values. Nodes with the same value
look the same to any ordering algorithm, so a tie-breaking method must be invoked. An
arbitrary decision here is not necessarily appropriate: it may be that one node is superior
to the other in fact, but our sample size is too small to let us determine it.

The hierarchical structure of the decision tree turns out to be useful here. If two nodes
are tied in the number of checkouts of their constituent titles, we can compare the nodes’
parents instead. The parents have less rigorous dividing criteria, and therefore contain more
titles; the more titles a node has, the less likely its average hit rate is repeated in some
other node. If another tie does arise, the remedy can be repeated, leading to examination
of grandparents, and so forth. Only rarely will this technique fail to differentiate between
two nodes, forcing us to pick one over the other arbitrarily. By using the parent nodes
to perform the ordering, we can effectively increase the sample size at the cost of some
specificity.

Thus, for large trees, the ordering of the decision criteria becomes important in de-
termining the breaking of ties. (Order of division is also important when we smooth the
maximal trees to eliminate problems of overtraining, as discussed in Section 4.3.) This can
lead to varying performance among the different maximal trees.

In order to gauge the quality of maximal trees in general, rather than a specific maximal
tree, we create each maximal tree randomly, assigning each node a random dividing category
from the set of legitimate categories remaining to it. Each of the eight testing sets uses a
different, randomly created maximal tree. This randomness explains the large confidence
interval in the exhibited performance for maximal trees.

Figure 10 presents a comparison of such random maximal trees against the various trees
proposed by Fussler and Simon. Surprisingly, the maximal tree is not the unequivocal top
performer. For instance, Fussler and Simon’s past use tree differentiated by LC class —
which divides only on LC CLASS, LAST USE, and PUBLICATION DATE — is significantly
simpler than the maximal tree, but performs almost as well, particularly when few titles
need to be put in the depository. This does not mean, however, that maximal trees are
inherently flawed; in fact, due to the large confidence interval it is hard to tell exactly how
well maximal trees perform. We need a way of choosing the order of dividing on maximal
trees in order to tighten the confidence interval, preferably improving mean performance
at the same time.

4.2 1ID3-ordered decision trees

It is possible to use an algorithm called ID3, developed by Quinlan (1986), to find a
good dividing order. For each node, the ID3 algorithm uses a heuristic to calculate the
information gain inherent in dividing on different criteria and picks the criterion with the
greatest gain. Information gain is highest when the output values of the children of a node
are as different as possible. For instance, suppose the titles in a node are checked out on
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Figure 10: Performance of a maximal decision tree compared with choice policies recom-
mended by Fussler and Simon (1969). The maximal tree does not perform much better
than the others despite its far greater complexity.

average 3.5 times in the “recent past” — the time period used to order the nodes. If we
divide the node and create two children, one with an average checkout of 0 and the other
with an average of 7, we have gained a lot of information because it is easy for us to decide
which node to rank higher. On the other hand, if the children have average checkouts of
3.4 and 3.6, we have gained less information. For a mathematical description of how the
ID3 algorithm decides on dividing criteria, see Appendix A.

The ID3 algorithm is not guaranteed to give improved performance. However, we see in
Figure 11 that an ID3-ordered tree performs better than a maximal tree on average. The
mean EAR value for the ID3-ordered tree lies just at the top of the 95 percent confidence
interval for maximal trees, showing that the ID3 ordering is better than the vast majority
of orderings for maximal trees. Equally important, the ID3-ordered tree has a much smaller
confidence interval.

4.3 Overtraining and smoothing

In addition to being subject to the tie-breaking problem described in the previous section,
large decision trees are prone to overtraining: As the tree classifies titles into finer and
finer classes, the ordering of the leaf nodes tailors itself to idiosyncrasies of the data set it
is training on. Instead of capturing trends relating criteria to future use, the tree captures
information specific to the particular titles they are trained on. As an extreme case, consider
a tree so large that it has one leaf node for every title. Then the nodes would be ordered
based on the use of each title in the training set, capturing a lot of information about
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Figure 11: Performance of ID3-ordered tree and a maximal tree. The ID3-ordered tree
outperforms the maximal tree with its dividing order picked at random. In addition, it has
a smaller confidence interval, making it easier to analyze its efficacy.

the title itself but little about the criteria appropriate for the title. Unfortunately, this
specialized information is useless once the titles are replaced with titles from the testing
set.

One way to reveal that a tree is overtrained, then, is to test it on the training set. Since
overtrained trees are optimized for the data set they were trained on, they do much better
when tested on their training set than when tested on a separate testing set. This problem
is inherent in the size of the tree and cannot be solved by reordering the nodes. In fact, we
see in Figure 12 that the ID3-ordered tree suffers greatly from overtraining. Performance of
the tree when tested on the training set approaches that of the clairvoyant policy, showing
that the training process was quite successful in tuning the ordering to the training data.
The far inferior performance on separate testing data shows that much of this training was
spurious.

Overtraining can be eliminated by smoothing the tree to remove excess leaf nodes. We
smooth by combining many small nodes into a larger node. Instead of many unreliable,
“bumpy” data points from many small nodes, we have one “smooth” data point that
averages the behavior of the small nodes. Good smoothing methods leave many nodes
where they are needed to make fine distinctions between titles but eliminate nodes that
contribute to overtraining without making any real contribution to categorization accuracy.

We explore the use of two smoothing methods on the maximal decision tree. The first
uses a heuristic to find places where the tree is more developed than the data warrant.
The heuristic looks at the variance of the hit rates for titles in each node. Nodes with
small variances are themselves good predictors of book use and do not need to be divided
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Figure 12: Performance of an ID3-ordered decision tree when tested on the training set and
when tested on a separate testing set. The far superior, almost clairvoyant, performance
of the tree in the former case is evidence of overtraining.

further. The algorithm looks for such nodes, choosing the node whose variance is the
smallest with respect to the average variance of its children. It then makes that node a leaf
node, deleting its children and further descendents from the tree. The process is repeated,
creating a succession of smaller and smaller trees. Each tree is evaluated and the tree with
the best performance is chosen as the smoothed tree. Because of the way children are
removed, we refer to this method of smoothing as pruning.

The second method of smoothing works in the opposite direction: Instead of pruning
the children of a given node, it folds a given node into its parent. We refer to this method
as backing off. We back off a node if we doubt the reliability of its estimate of the future
hit rate for that node. We determine reliability by looking at the number of circulation
events that the titles classified by the node account for. In particular, we define a node’s
size as the number of titles in the node plus the number of past checkouts for all titles in
the node. Nodes with small size are unreliable because their scant use history increases the
variance of their future use information. We ignore small nodes, considering their much
larger parents in their stead. As in the pruning method, a succession of trees is created,
each formed using a different maximal size for backing off. Again the tree with the best
performance is chosen as the smoothed tree.

Both smoothing algorithms generate a series of trees and require us to judge their
performances. What data set can be used to make this judgment? We cannot use the
training set, because the whole point of smoothing is to alleviate the tree’s dependence on
the training set. We cannot use the testing set for the same reason we cannot train using the
testing set: it would constitute cheating and cause the testing procedure to underestimate
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Figure 13: Effect of smoothing on performance of ID3-ordered trees. The right type of
smoothing can dramatically improve performance.

the true hit rate. We must instead use a third data set, which we will call the smoothing
data set. To do this, we divide the training data set in two, using half of it as the new
training set and the other half as the smoothing set.%

We compare ID3-ordered trees produced by the two smoothing methods with the un-
smoothed tree in Figure 13. The backed-off tree, with an EAR of 73.1 percent, performs the
best, while the pruned tree performs worse than the unpruned tree, leading us to question
the efficacy of the pruning heuristic. As shown in Figure 14, the backed-off, ID3-ordered
tree performs consistently better than trees developed by Fussler and Simon and other
researchers. The improvement is particularly striking when 20-40 percent of titles need to
be moved off-site, a reasonable range for many research collections. In all ranges, however,
the backed-off, ID3-ordered tree is the best decision tree we have studied.

4.4 Further improvement

Although our best choice policy is a significant improvement over previous proposals, it is
still far from matching the performance of the clairvoyant policy. Various possibilities might
be entertained to further close this gap. First, the ID3 method has been surpassed in recent
years by other algorithms for ordering decision trees that apply increasingly sophisticated

6 Another small change is required in our evaluation procedure. Recall that only leaf nodes are considered
when taking titles to put in the depository. With backing off, however, some leaf nodes effectively move
their titles to their parent, so some parents of leaf nodes may include titles that need to be considered for
the depository. It is not difficult to modify our evaluation algorithm to include the appropriate non-leaf
nodes.
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Figure 14: Performance of a backed-off, ID3-ordered tree compared to trees recommended
by Fussler and Simon (1969). The smoothed, ID3-ordered tree is clearly superior to the
simpler trees.

statistical tests to the data. Unfortunately, these more complicated algorithms do not lend
themselves to the large number of criterion values found in the library data set, and they
are prohibitively slow as a result. If a more modern algorithm can be tailored to the library
data, however, it may give improved performance.

Second, one could add more decision criteria. With good smoothing methods, it is
possible to include many more than the six criteria we considered while not overtraining
the decision tree. The problem remains of finding other predictive criteria. Preliminary
examination of the type of a title — monograph, serial, map, etc. — indicates that this
statistic does not improve the accuracy of prediction. Other criteria available in the Harvard
bibliographic database, examining the author’s name, for instance, or whether the title
includes illustrations, are even less likely to improve performance.

5 Conclusions

Given the importance of choosing a good decision tree to implement a choice policy for
off-site storage, we explored several approaches for constructing decision trees. These allow
us to say which combinations of criteria — out of the ones we studied — best predict future
use.

We follow most previous studies by endorsing past use as the best single predictor of
future use. We do so, however, with reservations. When a large percentage of a library’s
collection needs to be held off-site, the best criterion is CHECKOUT HISTORY, the number
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of past circulations. However, when only a small percentage of a collection needs to be
moved (less than 18 percent in our study), past use is less useful. This is because a large
proportion of a collection may have never been checked out, and past use statistics are
unable to distinguish among the books in this subpopulation. Instead, LANGUAGE OF
PUBLICATION or LC CLASS seem to be the best criteria when few titles need to be put in
the depository.

It is possible to combine the best of all worlds by using more than one criterion to
predict future book use. The logical extension of this is to use all the criteria available
in our prediction rules. Unfortunately, this causes decision trees to be too large for the
data set, causing several problems. Tie-breaking can be solved by picking the nodes of
the tree carefully; computational heuristics such as ID3 can be used to try to pick the
best ordering. Overtraining can be solved by smoothing, which shrinks the decision tree in
places the extra granularity is not needed. The smoothed, ID3-ordered, maximal decision
tree convincingly outperforms any single-criterion decision tree, and is the best method we
have tested for predicting book use.

By way of illustration, if the Harvard College Library had implemented a LAST USE
policy, as recommended by Fussler and Simon, to choose which 20 percent of its collection
to move to the depository in 1985, they would have had to retrieve volumes from the
depository about 34,000 times per year. If they had, instead, used the smoothed, ID3-
ordered, maximal tree, there would have been less than a fifth as many, only 6,200 hits per
year. In comparison, a random choice policy would have resulted in 60,000 hits per year,
while a clairvoyant policy would have garnered zero hits.
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A The ID3 Algorithm

The ID3 algorithm is used to choose a dividing criterion for a given node. By applying
the ID3 algorithm to the root of a one node decision tree we obtain a decision tree with
a root and several children. The ID3 algorithm can be applied recursively to each of the
children to create an entire decision tree, terminating when the algorithm determines there
is no appropriate dividing criterion for any leaf node of the tree. The following formulas
are taken from Quinlan’s original paper (1986).

Suppose we are considering leaf node N, which has py titles. Let ¢; be the number of
titles in N that were checked out ¢ times in the “recent past.” The information inherent
in node N, I(N), is defined to be

qi qi
Iv) zz: DN 1o, PN

This quantity is measured in bits, since it is supposed to represent the number of
computer bits needed to store the information in a node.

Suppose we tentatively choose criterion C' as a dividing criterion and divide N based
on criterion C'. Call the children of N Ny,..., N,, where v is the number of values for
criterion C'. Let p; be the number of titles N; inherits from N. The expected information
to create the children is defined by

E(C) =Y 21wy

i=1 PN
The information gain in dividing node N on criterion C' is therefore
gain(N,C) = I(N) — E(C)

The use of the term “gain” is perhaps a bit misleading, because while it indeed measures
the information gain of the children of N over N itself, it does not take into account the
information required to make the division. This statistic can be expressed as

pi

. pi
IV(N,C) = - — log, —
( ) izzlp g2p

We wish to maximize the quantity
gain(N, C)/IV (N, C)

This gain ratio statistic has the advantage over the gain statistic in that it does not
favor criteria that splinter the data into many criteria, which may make the gain quantity
large due merely to the overwhelming magnitude of the summation limit. The gain ratio
suffers from its own problem however, in that it may inordinately favor criteria that have a
near-zero value of I'V. We therefore use a combination of the gain and gain ratio statistics
in our final decision algorithm.

Suppose that there are n possible criteria on which to divide node N. We choose the
dividing criterion for node N as follows.
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Criterion Gain Gain ratio
CHECKOUT HISTORY .2307 bits | .1231
LAST USE .1993 bits | .0655
COUNTRY .1328 bits | .0376
LC crass .1601 bits | .0253
LANGUAGE .0813 bits | .0246
DATE OF PUBLICATION | .1167 bits | .0167

Table 2: The values calculated for the ID3 decision algorithm when picking a dividing

criterion for the root of a decision tree. The algorithm fails only in giving undue weight to
COUNTRY.

e Choose the n/2 criteria that have above-average gain for dividing on node N.
e Discard those criteria that have 0 gain. If no criteria remain, do not divide node N.

e Otherwise, output that criterion which maximizes the gain ratio

gain(N,C)/IV(N,C)

The gains and gain ratios for each criterion when calculated on the root node of a
decision tree are summarized in Table 2. The results predicted by the ID3 algorithm should
parallel those of the one-criterion decision trees (Figure 2). For the most part, the ID3
algorithm does well, ranking CHECKOUT HISTORY and LAST USE first, but it inaccurately
claims COUNTRY is the next most useful criterion. The algorithm is a heuristic and is not
guaranteed to give optimal results.
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