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Abstract

Multiagent systems require techniques for effec-
tively allocating resources or tasks to among agents
in a group. Auctions are one method for structuring
communication of agents’ private values for the re-
source or task to a central decision maker. Different
auction methods vary in their communication re-
qguirements. This paper makes three contributions
to the understanding the types of group decision
making for which auctions are apprpriate meth-
ods. First, it shows that entropy is the best measure
of communication bandwidth used by an auction
in messages bidders seadd receive. Second, it
presents a method for measuring bandwidth usage;
the dialogue trees used for this computation are a
new and compact representation of the probablity
distribution of every possible dialogue between two
agents. Third, it presents new guidelines for choos-
ing the best auction, guidelines which differ signif-
icantly from recommendations in prior work. The
new guidelines are based on detailed analysis of the
communication requirements of Sealed-bid, Dutch,
Staged, Japanese, and Bisection auctions. In con-
tradistinction to previous work, the guidelines show
that the auction that minimizes bandwidth depends
on both the number of bidders and the sample space
from which bidders’ valuations are drawn.
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the same assumptions. A difference of four bits of informa-
tion may seem insignificant by today’s standards but modern
systems may make millions or billions of related team deci-
sions every second. While sacrificing no team decision qual-
ity, a system designer could save over 80 percent of its com-
munication bandwidth just by implementing a different det o
auction rules.

Previous work has made recommendations for the best
choice of auction for making group decisions. However, the
assumptions that led to those recommendations are incempat
ible with real systems in which communication bandwidth is
costly, such as those using Internet-like networks.

This paper makes three main contributions to the under-
standing of communication for decision making in multia-
gent systems. First, we argue for entropy as the metric of
communication bandwidth used by all messages exchanged.
Communication in any multiagent system is made up of a se-
ries of messages that one agent sends to another. System de-
signers need to choose an encoding for messages. For exam-
ple, the number nine is commonly given the binary encoding
“1001” but in ASCII code it is assigned the binary encoding
“0011 1001". Measuring communication in decision-making
algorithms using a particular message encoding could tead t
results that are applicable only for that encoding. Thisgpap
uses principles of Information Theory to measure informa-
tion in a coding-independent way. The receiver of a message
can generate a probability distribution over the set of jbess
messages it can receive. The entropy of that distribution is
a lower bound on the average size of the encoding for each
message.

Second, we provide details of a three-step method for mea-

Multiagent system designers can achieve significant cest sasuring bandwidth used by an algorithm. In the first step, the
ings by making the correct choice of algorithm for team de-analyst builds a dialogue tree that represents all possésle
cision making. The results in this paper show that no singleguences of messages exchanged between the auctioneer and
auction type minimizes bandwidth usage for all team sizesach bidder. In the second step, the edges of the dialogrie tre
or for all possible valuations for the resource. For instanc are labeled with the probability associated with each nggssa
Sealed-bid auctions require the least communication fatlsm Finally, in the third step, the expected information in tie-d
problems. The Dutch, Staged, and Bisection auctions eadague is calculated using the tree representation.

require least communication in some situations.

Third, we apply the analysis to Sealed-bid, Dutch (de-

A Sealed-bid auction requires each bidder and the auctiorscending), Japanese (ascending), Staged (ascending), and

eer to exchange 5 bits of information in a system with 60Bisection auctions and provides system designers with the
agents where each agent’s valuation is drawn independentlnowledge necessary to choose the auction that minimizes
and uniformly from the range $1 to $32. A Dutch auction re-communication bandwidth. Auctions are particularly attra

quires an exchange of approximately one bit on average undéwe for multiagent decision making because they provide a



way to structure the allocation of a resource or task to theSealed-bid. All bidders send their value to the auctioneer.
member of a multiagent system that values it most, when th&he winner is the bidder that sends the highest value.
resource’s value is private to each group member. Equiva-

lently, auctions are used to assign a task to the member of . . o

a group that is best suited to perform it when the suitabilityJapanese (Ascending). The auctioneer maintainscarrent

of each group member to the task is priv&thunsberger and price, |n|t|a”y set to 0. The auctioneer sends each bidder in
Grosz, 2000; Rauenbusch, 2004 turn the current price. If a bidder’s value is greater than or

Our recommendations, based on a minimizing Commu_equal to the current price, it sends a message affirmingiits co

nication requirements, differ from those of economists an&'gug?n%?ég%'ﬁa?én dlgs'ti?g tacl)ul(;t;?/g. tﬁéhael:\(l:vtli?)er{ 'El_?]eenglﬁg;]
computer scientists. Economic analysis typically ignore 9 9 :

communication costs entirely. Some computer scientist hen increments the current price, and repeats the proless.

[Shoham and Tennenholtz, 2q0iave focused on prefer- only one participating bidder remains in the auction after a
ence revelation, which coné:erns the willingness to disclos round, the auction ends and that remaining bidder is the win-

information. They consider only those messages sent fro er. If no participating bidders remain, the winner is ctose
a bidder to an auctioneer and ignore message sent in the o om the bidders in the previous round. Once a bidder leaves

posite direction. Some researchf@vigorievaet al., 2004 € auction, it may not rejoin.
have used communication complexity or other metrics that

assume a particular message encoding. Their results may,qeq (Ascending). The auctioneer maintains aurrent
be misleading for measuring bandwidth requirements in sySsjce initially set to 0. In Stage 1, the auctioneer sends bid-

tems that employ more efficient encodings—our results ar@er 1 the current price. If the bidder's value is greater than

coding-independent. or equal to the current price, it sends its value and the ntirre
This paper is organized as follows. In Section 2 the sinprice is updated to this value. Otherwise, it sends a message
gle item allocation problem is formally defined, and the fiveindicating its desire to leave the auction. The auctioneent
auctions are described. Next, Section 3 details the processoves on to Stage 2, sends the current price to bidder 2, and
for measuring communication in a dialogue using Dialoguethe process repeats. The auctioneer continues in this why wi
Trees. Section 4 describes the application of dialogus teee each bidder and the process ends aftenthestage. The win-
auctions. Guidelines for system designers choosing auctioner is the last bidder that did not leave the auction.
rules that minimize communication are given in Section 5.
Section 6 highlights important related work and Section 7
gives conclusions and suggests areas for future work. Dutch (Descending). = The auctioneer maintains @airrent
price, initially set to2® — 1. The auctioneer sends each bid-
der in turn the current price. The bidder sends a message
2 Item Allocation and Auctions indicating whether its value is equal to the current pride. |
no bidder’s value is equal to the current price, the auctone

A single-item allocation problem is characterized by a arou decrements the price and repeats. If one or more bidder has
9 p yagrou aue equal to the current price, the auctioneer chooses one
of n bidder agents and a seller agent (also called the aucUorgs the winner

eer) that possesses a single, atomic item. Each bidder has
a value for the item that is private and drawn independently

and uniformly from the set of integers from 026 — 1in-  Bigection. The auctioneer maintains dower bound de-
plusiye. Another way to look ata bidder_’s yalug is that it noted; andupper bound denotedu, initially set to 0 and2%,
is being drawn from one OZ_R bins. The distribution from  regpectively. The auctioneer also maintains a list of activ
which each bidder’s value is drawn is common knowledgepqqders, initially the set of all bidders. The auctionedcuoa
Bidderi’s value is denoted by;. The goal of the seller is |ates thecurrent price asu — “=. The auctioneer sends each
to allocate the task to the bidder with the highest value. Ifyigder in turn the current price. Each bidder sends a message
there is a tie for the highest value, the task may be allocategs gjther “Yes” or “No” to indicate whether its value is great
to any of the bidders with the highest value.sélutionto a  than or equal to the current price. If there are two or more bid
single-item allocation problem is the indexwherez; isthe  gers that sent a “Yes” message, the lower bound is updated to
maximum value among ail bidders. the current price, the set of active bidders updated to declu
We analyze five auction types: Sealed-bid, Japanes@nly those that sent a “Yes” message, and the process repeats
Staged, Dutch, and Bisection. This particular list of five-au If no bidder sent a “Yes” message, the upper bound is updated
tion types is representative of the range of auctions tylgica with the current price and the procedure repeats. If one bid-
used to allocate a single item and is not intended to be exhauder sent a “Yes” message, that bidder is declared the winner
tive. For reference, the rest of this section provides arifiesc  and the procedure ends. If the upper bound and lower bound
tion of each auction type. Rauenbug2004 provides more differ by only one, one of the active bidders is chosen as the
detail, including pseudocode for each. In each auction, wavinner. After finding a winner, typically the bisection aiact
assume bidders are honest. Prices are used to structure comay proceed into a “price determination” phase that pravide
munication with the bidders and not as a tool for building inincentives for honesty. Because we assume honesty, the pric
incentives for honesty. determination phase is omitted from our analysis.



Encoding Probability therefore use entropy to measure expected information com-

Message Encl Enc2 AlgA AlgB municated.
a 0000 O 0.0625 0.99
b 0001 10001 0.0625 0.000333 3.2 Direction of Communication
c 0010 10010 0.0625 0.000333 . _ . _—
d 0011 10011 0.0625 0.000333 It is convenient to distinguish betweerordination mes-
sages, which are those sent by the auctioneer to a bidder,
p 0011 10011 0.0625 0.000333 from revelation messages, which are those sent by the bid-

der to the auctioneer. In this paper, the communicatiorscost

_ . . associated with coordination and with revelation are abnsi
Table 1: Two encodings for sixteen messages used by Algqsyed when calculating the expected information transthitte

rithms AlgA and AlgB in an auction. In particular, the results provided are fa@ th
sum of coordination and revelation costs. This assumption
3 Communication Properties of a Dialogue is supported by Internet-like computer networks in which in

creased bandwidth requires costs associated with inatease
This section serves three main purposes. First, it presents infrastructure for both directions of communication.
argument for the use of entropy and information theory to In a Sealed-bid auction, each bidder always reveals its
measure communication for team decision making. Secondialue. Therefore, Sealed-bid auctions have the highest-ban
it highlights the need to consider all communication. In-auc width requirements for revelation messages. As the reisults
tions, this means that complete analysis requires evafyati Section 5 indicate, it would be misleading to rely on revela-
communication in two directions: both from the bidders totion messages alone when choosing an auction. Even though
the auctioneer and from the auctioneer to the bidders. ThirdSealed-bid auctions require more information transmitted
it presents dialogue trees—a tool for using entropy to mearevelation than any other auction, they require no coordina
sure the expected information transmitted in successive metion. For that reason, they have low communication require-
sages between agents. It details the use of dialogue treesiients in settings with small teams and coarse distributions
measuring communication for team decision making. from which bidders’ values are drawn.

3.1 Entropy: Metric for Measuring 3.3 Dialogue Trees

Communication A dialogue is a sequence of messages sent from one agent

A metric for measuring communication is required to com-to another agent, in which the agent that sends the odd-
pare auction rules by their communication cost. In each aucAumbered messages receives the even-numbered messages.
tion, information is exchanged between the auctioneer an®ialogue trees simplify the construction of a probabitisti
each bidder by sending and receiving messages. In any immodel of the messages. In this section, we describe dialogue
plementation of an auction, the center and the bidders mustees and provide a detailed method for calculating the ex-
agree to an encoding of messages. pected information in a dialogue. We use dialogue trees to
Measuring information required by a multiagent algorithm measure expected information in an auctions by analyziag th
using a particular encoding for messages may lead to miglialogue between the auctioneer and each bidder. Dialogue
leading results. To illustrate why, we refer to the exampletrees apply equally to other dialogues and are not limited to
given in Table 1. The columns labeled Encl and Enc2 showanalysis of auctions.
two possible encodings for each of sixteen messages labeledA dialoguetree is a tree data structure with labeled edges.
a throughp. Two algorithms, labeled AlgA and AlgB, each Each node represents a message, and is labeled with the mes-
require one of sixteen messages to be sent from one agentsage it representQuery messages are those sent by the auc-
another but they differ in the frequency with which each mestioneer to request a message from the bidd#aty messages
sage is sent. The probability associated with each messagée those sent by the bidde#tatus messages are those sent
for each algorithm is shown in the two rightmost columns ofby the auctioneer to which no reply is expected. Figures that
the table. represent dialogue trees (such as Figure 1) show query nodes
With encoding Enc1, both AlgA and AlgB require four bits reply nodes, and status nodes enclosed by circles, box@s, an
to transmit the message. But with encoding Enc2, AlgA re-diamonds, respectiveliodes(d) denotes the set of all nodes
quires 4.75 bits and AlgB requires 1.04 bits in expectationin dialogue treel.
Therefore, the algorithm that requires the least communica The children of a node in a dialogue tree represent the
tion depends on the encoding chosen. Just as in this toy exarsample space from which the next message is drawn, given
ple, conclusions about the communication properties of audhat the message represented by the parent node has been
tions using a particular encoding are misleading because #ent. Children(m) denotes the set of child nodes of node
is not clear whether those conclusions hold for other possim. Parent(m) denotes the parent node of nade
ble encodings. Work in Information Theofghannon, 1948; A label on an edge between a parent and child node indi-
Cover and Thomas, 199has shown that the entropy of a cates the receiver’s belief, prior to receiving the messtige
random variable describing a message is a lower bound otihe message represented by the child node is the one that the
the average size of the encoding for that message. Rathsender will sendln(m) denotes the edge label thatis incident
than evaluate an algorithm using a particular encoding, wen nodem in a dialogue tree.



The edge labels define a probability distribution over theof information sent by the center is the sum of the contribute
sample space represented by the children. The probabilitiynformation of all reply nodes. This is counter-intuitiveda
distribution and sample space together define a probadbilistarises because contributed information of each node is de-
model for messages in a dialogue. rived from the probabilities associated with the edgesgi-

In the auctions described in this paper, a bidder alwaysating at that node, which define the information content of
sends a reply after receiving a query; therefore, a querg nodthe messages represented by its child nodes. Section 4 de-
is never a leaf in a dialogue tree. A reply node may be either acribes the dialogue tree in Figure 1 and how it is used to
leaf or a non-leaf node, depending on whether the center magnalyze the Bisection auction.
follow the corresponding reply message with a message. A
status node is always a leaf in a dialogue tree. ; ;

The remainder of this section details how a dialogue tree igr Analysis of Auctions
used to calculate the expected information in a dialogue. ThUsing dialogue trees as a tool, in each auction we first deter-
procedure uses edge labels for two purposes: to calculkate ttmine the structure of the tree, then calculate the appripria
information content of a node and to calculate the probgbili edge labels. To aid in determining the structure of the tree,
of visiting a node. messages in each of the five auctions are divided into the fol-

The information content (IC) of nodem is the entropy of lowing two types of query/response pairs: (1) best response
the random variable represented by the labels of all edgesnd (2) value. In a best response query, the auctioneer sends

originating at the node. Formally, the bidder a message that includes a price. The bidder then
responds with the messades if its value is higher than the
IC(m) =— Z In(c) log In(c) (1)  price and the messadi@ otherwise. In a value query, the auc-
c€Children(m) tioneer sends a message, and the bidder responds by sending

a message containing its value.

Decomposing these algorithms into two types of con-
A path frglm Jhel rootkr;ode to ehach leaf node {re]presentgtituem query/response pairs is a tool used to simplifynef t
e}’??’ possibie dia 03.”? etwgenht e wo afgeh”ts.- ; e amoughyysis. The measurement of the expected information in a
of information In a dialogue is the sum of the information ¢i5|54e for each auction is independent of this decomposi-

content in each node on the path. Each of the possible dy,, “For example, if a bidder in the Staged auction responds
alogues represented by a tree has a different probability (1#

. i y < es when sent the first message, it always sends its value. It
occurring. This probab|I_|ty is the product of the edge label ig herefore not necessary to send a query message for the
along the path of the dialogue from the root of the tree t

a leaf. Theprobability of visiting (PV) noder (that is, the Oidder’s value after receiving the response. But, thereiie z

i . ommunication cost for the value query (because the proba-
probability that a message represented by a particular nocfﬁ”ty of sending it given ares response is 1)
will be sent in a dialogue) is the product of the probability o i

the message represented by its parent node and the label RI%TWO methods are used to determine the edge labels. The
its incident edge. There is unit probability of visiting tremt tand simplest way to determine the edge labels is by sim-

node. Formall ulation. An auction is run many times in simulation, and
' Y, the frequency of each message is recorded and used for the

A leaf node therefore has information content of 0.

1 if m is root edge labels. The main advantage of this approach is thatit re
PV(m) = { PV(Parent(m)) - Tn(m) otherwise ~ (2)  quires little labor, after coding the algorithm. One disaly
tage of the simulation method is that the time required to run
The contributed information (Cl) of a nodem is the prod-  the many simulations needed to accurately estimate the fre-
uct of the amount of information represented by the node anduency of low-probability messages usually found near the

the probability the node is visited. Formally, leaves of the dialogue tree may be prohibitive. In addition,
this method requires a different simulation for each sgttin
Cl(m) = PV(m)IC(m) ©) parameters of interest. For example, the results givengn Fi

We use expected information in a dialogue as the metriqre 2 would require 1220 sets of simulations: one for each of

for communication. Expected information of a dialogue (EI) 22 team sizes and 10 s_ettings for the number of bins.
represented by dialogue tréds the sum of the contributed _1"€ sécond method is to calculate the edge labels ana-

information of each node id. Formally, lytically. This approach uses the common knowledge from
¥ which the bidder’s value is drawn, and the knowledge ac-
El(d) = Z Cl(m) (4)  quired through messages represented by higher levels of the

tree. The main drawback with this approach is that it is labor
intensive because an analyst must reason about the réseiver

Contributed information provides a straightforward way to mental model for each message in each algorithm. The main
separate the information contribution of messages seritdoy t advantage of this approach is that the procedure for generat
center from those sent by the bidder. The child nodes of a reng edge labels in one particular setting (e.g., for a teag0of
ply node represent messages sent by the center and the chédents and 4 bins) applies equally well to other settingg, (e.
nodes of a query node represent messages sent by the biddet.agents and 8 bins) by substituting appropriate parameter
The amount of information sent by the bidder is the sum ofAn additional advantage is that the edge labels are catmlilat
the contributed information of all query nodes and the amounprecisely rather than estimated.

me&Nodes(d)
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Figure 1: Highest three levels of a dialogue tree for Bigercti /Sealed—b|d

auction with four bidders and sixteen bins 2 4 8 16 32 64 128 256 512 1024
Number of Bins

The results presented in this paper were based on generat-
ing edge labels using the second method. The first methoBligure 2: Algorithm with lowest expected information trans
was used to verify the results. The rest of this section promitted for varying numbers of bidders and bins
vides an example of a dialogue tree for the Bisection auction

to illustrate the use of dialogue trees to measure the eggect .
d 0 The edges incident on the next reply nodes are labeled 0.5.

amount of information transmitted in the five auctions. De- h : " hat the bidder’ | d
tails of the analysis have been omitted due to lack of space.N€ auctioneer knows (1) that the bidder's value was drawn

Rauenbusch2004 provides the details of the analysis of the unifyormly fr(_)m 0-15by common_knowledge; and (2) the bid-
dialogue trees for each auction. der’s value is greater than 8 by virtue of th&s response rep-

The calculation of the edge labels in any dialogue tree infesented in a higher level of the tree. Therefore, the anictio

volves reasoning about the knowledge of the receiver of eacﬁer’S k?e"?“’es that there is a probability of 0.5 that thelbits
value is higher than 12.

message: the distribution from which the bidder’s value is . o
drawn and all messages represented in higher levels of the The calculation of the edge labeled 0.661, incident on the

tree. Figure 1 shows the dialogue tree that represents ghe ﬁrnOde labeled 14 in the tree, is complex and full details are

. - itted. To get a feeling for why, the analysis begins with
five messages exchanged between the auctioneer and one b ; '
der in a Bisection auction. In the tree, the message containi the knowledge that given that the bidder senttEmessage

: : represented by the top of the edge, the message represented
tnhoedkéeviitt:]elz%%r’lse query with vahis represented by a query by the node labeled 14 will be sent if and only if at least one

T id le of th ing involved i other bidder also has value greater than 12. But the bidder
0 provide an example of the reasoning INVolved In COM-~ , 5 that at least one other bidder had value greater than 8.

puting edge labels, we specifically consider the edges on th‘?he calculation involves the bidder assiani :
gning a belief eect
path from the root node label@do the leaf node labeleth. representing is belief that each of one, two, and three other

Calculation of edge labels in the figure assumes that there af : - . .
four bidders, with values drawn from 16 bins—O0 through 15E)l)drgglrjs£es(}llljsrﬁ1rg?;]?slCetggraucnon. The value 0.661 is then

inclusive.
The root of the tree corresponds to the best response quegl Result
with value 8. The bidder replies to this query witks if its eults
value is greater than or equal to 8, addotherwise. The re-  Figure 2 indicates the algorithm that has lowest expected in
ceiver of theYes or No message—the auctioneer—believesformation transmitted for increasing numbers of bidders an
that theYes message will be sent with probability 0.5 be- for increasing numbers of bins. It clearly shows that chogsi
cause it knows the distribution from which the bidder’s walu the algorithm that needs least expected information trégism
is drawn. Therefore, the edge into thes node is labeled 0.5.  sion is highly dependent on the two parameters of the envi-
To compute the next edges, labeled 0.125 and 0.875, wenment. For large numbers of bidders and bins, Bisection
first assume that the bidder sent&s response to the first requires the least communication. Sealed-bid, Dutch, and
qguery. The bidder will win the auction (and will be sent a Staged auctions each require the least communicationfer pa
message indicating that it is assigned to the item) if angl onl ticular parameter settings.
if no other bidder sent #esresponse to the first query. Given  For a very small number of bidders and bins (fewer than
the common knowledge that bidders’ values are distributedive bidders with two or four bins, and fewer than three bid-
uniformly between 0 and 15, the probability that all threeders with eight bins) the Sealed-bid auction performs best.
other bidders sent ¥es query is(0.5)> = 0.125. There- A sealed-bid auction by definition requires the maximum
fore, the edge incident on th&ssign node is labeled 0.125, amount or revelation and no coordination. Therefore, for
and the edge incident on the 12 query node is labeled with itgery small problems, the savings in revelation from any othe
complement 0.875. auction method are outweighed by the cost of coordination.



o decision making. One such approach counted the number of

—~Sealed-bd] messages required to arrive at a team decifntiz et al.,
Dutch 2003, which is equivalent to assuming that each message has
10+ —— Japanese 1 . . . .
\iv e Bisection a fixed length. In systems with communication channels that

— =~ Staged | carry encoded messages, the assumption that each message
: has a fixed length does not hold. Under a fixed length assump-
tion, the Sealed-bid auction would always be preferred sThu
such analyses may be misleading because an algorithm with
fewer fixed-length messages will not always be the cheaper
algorithm in terms of expected information transmitted.
Sunderham and ParkEZ003 measure the volume remain-
ing in the space of feasible private information after bigde
e have sent the auctioneer constraints on their privaterinder
2 4 8 16 32 64 128 256 512 1024 tion in a multi-attribute auction. They use this metric torco
Number of Bins pare the amount of revelation in auctions. For our purposes,
entropy is a preferred metric because it provides a direat me
Figure 3: Expected information transmitted per bidder forsure of bandwidth required by an auction and it provides the
varying numbers of bins with 60 bidders comIm(_)n currency of bits to measure both coordination and
revelation.

Communication complexitjKushilevitz and Nisan, 1996

When there are two bins, the Japanese auction has the same,,ijes an alternative method for analyzing communicatio
communication properties as the Sealed-bid auction becauggtyeen agents. Grigorieva et B2002 use communication

the firstand only query in the Japanese auction is always seghmplexity to analyze the bisection auction. Communicatio
and the bidder reveals its value (by its response that iteica complexity evaluates the worst case amount of communica-

whether its value is in the higher or lower bin). tion required for two agents to compute a function. The com-
For all but the smallest numbers of bidders and bins, the Bix, inication complexity model assumes that sending each bi-

section, Dutch, and Staged Japanese auctions perform Well,ry message costs one bit. If any prior information is avail

The graph in Figure 3 shows the expected amount of inforyp e ‘it is ignored for the purposes of calculating communi-
mation transmitted between the center and each bidder for &ion complexity. As long as there seme arbitrarily small

varying number of bins for a constant 60 bidders. __possibility that an agent will send a ‘0", that communicatio
The first thing of note on the graph is that the COMMuNICatgsts one bit. Protocol tred¥ao, 1979 are used as a tool

tion requirements of the Sealed-bin auction increasetinea 5 eyajuate communication complexity of an algorithm while
as the number of bins increases exponentially. The Seale

; . SO . ialogue trees are used to calculate expected informatian i
bid auction has zero coordination cost and a revelation Co%ialogue that represents messages sent in an algorithm

thz%_tris Iogarri]thhmic in Lhe nun;ber of gins.f bins | The main benefit of this assumption is that there is no need
e graph shows that as the number of bins Increases expgs 4ssume a prior distribution, and that simplifies the analy

nentially, the expected amount of communication requised b s “he main drawback is that it assumes a particular encod-

the Bisection auction rises then levels off. For a small NUM{ng of messages and therefore no savings can be attained by

Riternative encodings. A system designer that relies on com

icati . ts actually d h bmunic:ation complexity in choosing an auction will select an
communication requirements actually decrease as the Mumbg, +tjon that performs well under a worst case assumption of

of bins increase. Therefore, as the number of bins inCreaseg,q encoding cosif each message. In this paper, we assume
the auction with the lowest communication costs is first they, 5 5y stem designers prefer choosing an auction baseeon th
S_taged auction, then the Dutch auction and finally the B'Secéxpected information transmitted.
tion auction. Shoham and Tennenholi200] use a method related to
communication complexity for the analysis of the functions
6 Related Work computed in team dgcisign-making meychanisms. They de-
Economic analysis of auctionRasmussen, 1989, inter dlia fine f as the maximum value of bidders’ willingness to pay
focuses on the effect of auction rules and prices on theestrat for an item, where each biddéhas a willingness to pay of
gies of non-cooperative bidders. While this paper is con<;. They imply that the domain of; is continuous on the in-
cerned with systems in which strategies can be imposed bigerval (0, maxprice) and assume that each bidderan com-
methods external to the auction itself, dialogue trees @n bmunicater; to the auctioneer with one bit by making use of
used to measure communication requirements of all types af common clock. They claim that by using an auction similar
auctions. In multiagent systems where the assumption of exe the Dutch auction, the functiofi can be computed by a
ternally imposed incentives does not hold, dialogue traes ¢ single bidder communicating a single bit.
be used to compare the communication costs of auctions that In both Yao’s theory of communication complexity and
impose desirable incentives on the bidders. Shannon’s theory of informatiofShannon, 1948 the cost
Researchers in computer science have used several alterrd-communicating an arbitrary value drawn from a continu-
tives to entropy for measuring communication in multiagentous interval is infinite, not a single bit, because there is an

Information (bits)
(o))

requirements. For small numbers of bins, the Dutch aucion



infinite number of messages that the bidder can send to ththat agents were honest—small adjustments to the auctions
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