
SRI
International

®

CRITERIA FOR DESIGNING COMPUTER
FACILITIES FOR LINGUISTIC ANALYSIS

Technical Note 354

April 1985

By: Stuart Shieber
Computer Scientist
Artificial Intelligence Center
SRI International

and
Center for the Study of Language and Information
Stanford University

This paper to appear in Linguistics.

This research was made possible,in part by a gift from the Systems
Development Foundation; additional support was provided by the
Defense Advanced Research Projects Agency under Contract
N00030-84-K-0078 with the Naval Electronics Systems Command.
The views and conclusions contained in this document should not
be interpreted as representative of the official policies, either
expressed or implied, of the Defense Research Projects Agency or
the United States government.

333 Ravenswood Ave.• Menlo Park, CA 94025
1415; 326-6200 • TWX: 910-373-2046 • Telex: 334-486

1

Criteria for Designing Computer Facilities

for Linguistic Analysis

Stuart M. Shieber
Artificial Intelligence Center

SRI International
and

Center for the Study of Language and Information
Stanford University

Abstract

In the natural-Ianguage-proce88ing re8earch community, the u8efulne88 of
computer tool8 for te8ting lingui8tic analY8e8 i8 often taken for granted. Lin
gUi8t8, on the other hand, have generally been unaware of or ambivalent
about 8uch device8. We di8cu88 8everal a5pect5 of computer U5e that are pre
eminent in e5tabli5hing the utility for lingui5tic re5earch of computer tool5
and de5cribe 5everal factor5 that mU5t be comidered in de8igning wch com·
puter tool5 to aid in te5ting lingui5tic analY5e5 of grammatical phenomena.
A 5erie8 of de8ign alternative8, 80me theoretically and 80me practically moti·
vated, i5 then based on the rC5ultant criteria. Wc pre8ent one way of pinning
down these choices which culminatC5 in a dC5cription of a particular gram
mar formali8m for use in computer linguistic tool5. The PATR-II formali5m
thus serves to ezemplify our general per5pective.

This research was made possible, in part, by a gift from the SystemB Development Foun~
dation; additional support waa provided by the Defense Advanced Research Projects
Agency under Contract N00039-84-K-0078 with the Naval Electronic. Sy6tems Com
mand. The views a.nd conclusions contained in this document should not be interpreted
as representa.tive of the official poJidest either expressed or implied, of the Defense Re~

sea.rch Projects Agency or the United States government.

The a.uthor is indebted to William Crolt1 Gerald Gazda.r, Ewart Klein, Fernando Pereira,
and Hans Us:z:koreit for their comments on earlier drafts of this paper.

1 INTRODUCTION

1 Introduction

2

This paper discusses factors that must be considered in designing computer
tools to aid in testing Iingnistic analyses of grammatical phenomena. A series
of design alternatives, some theoretically and some practically motivated, is
then based On the resultant criteria. We present one way of pinning down
these choices which culminates in a description of a particular grammar
formalism for use in computer linguistic tools. The PATR-I! formalism thus
serves to exemplify our general perspective. But before discussing a device
of this sort, some justification may be required. Why do we need computer
tools for linguistic research at all?!

2 Why Computer Tools for Linguistics?

In the natural-language-processing research community, the usefulness of
computer tools for testing linguistic analyses is often taken for granted.
Linguists, on the other hand, have generally been unaware of or ambivalent
about such devices. Three aspects of computer use are preeminent in estab
lishing the utility of such tools: the computer as straitjacket, as touchstone,
and as mirror.

2.1 The Computer as Straitjacket

The Chomskyan revolution of formal syntax provided linguists with their
first formal tools for the precise description of syntactic phenomena. The
generative framework opened up a veritable Pandora's box of options for
such formal analyses, linguists being quite dever at designing formal (and
quasi-formal) manipulations to describe phenomena. Now, more than ever,
the literature in syntax and semantics is producing a plethora of such de
vices.

Unfortunately, this freedom may soon seduce one into building analyses
by using such a variety of techniques or devices, or by using them in such
diverse ways, that the overall description is no longer consistent. Decisions
in one part of the grammar, while internally consistent, may not cohere

JIn the discussion to follow I we will concentrate prima.rily on tools for modeling synta.ctic
and semantic phenomena, a.lthough we believe tha.t computer tools a.re equally useful
for a. much broa.der range of linguistic phenomena..

2 WHY COMPUTER TOOLS? 3

with interacting decisions in another part. In such cases, any claims made
about eitber part of the grammar evaporate, since the two cannot be put
together to make a coherent whole. The problem becomes especially acute
as linguists attempt to encompass more and more of the phenomena of a
language with their formal techniques. In this light, it is interesting to note
that one rarely finds a linguistics monograph or dissertation that provides a
full listing (e.g., as an appendix) of the final versions of the rules which are
postulated in the course of the discussion-perhaps because these rules are
not (and were not even necessarily intended to be) consistent.

The computer can playa role in forcing rigorous consistency. A program
that interprets grammatical rules to yield some pseudolinguistic behavior
such as parsing or generating sentences, or performing any of the numcr·
ous other tasks artificial intelligence researchers have assigned to natural·
language·processing programs-allows no room for inconsistent analyses of
phenomena. Furthermore, if a portion of the task is not to be included in the
formal analysis, the machine's behavior makes that fact painfully apparent.
As Geoffrey K. Pullum has been known to say, with computers "there is no
rug." The idealizations one makes are forced to be explicit. In this way, the
envelope of one's theory is clearly delineated. Hand.waving is impossible
when one's arms are in a straitjacket.

2.2 The Computer as Touchstone

The computer serves another role by manifesting behavior under the guid·
ance of a particular formal analysis. Its behavior is an undeniable semaphore
indicating the correctness and completeness of an analysis. The linguist ar·
gues for particular rules or laws of grammar by showing that they account
for the distribution of judgments of grammaticality, synonymy, ambiguity,
entailment, etc. The computer, in modeling the judging process, serves as
an impartial adjudicator of these claims.

A popular misconception among some linguists is that, while computers
may perform the minor, ancillary function of finding typographical or oth
erwise inconsequential errors in an analysis, they serve no purpose in the
real heart of linguistics, because they are incapable of uncovering nontrivial
and unanticipated conceptual problems. The experience among artificial in
telligence researchers engaged in natural·language·pro cessing work certainly
contradicts this view. Robinson has noted that

2 WHY COM.PUTER TOOLS?

"A problem is always incurred when extending the rules to cover
more expressions, whether by writing new rules explicitly or by
deriving them from old rules. ... Introducing new rules almost
inevitablY has a perturbing effect as they interact with the old
rules in unfore~een way~. IEmphasis added.] These perturba
tions are worth studying for the light they shed on the English
language, or more precisely, on a grammarian's intuitions about
the English language." 122)

4

With an increasing number of linguists outside the artificial-intelligence com
munity using computers to help build and test their theories, we lind evi
dence from that sector, as well. For instance, Hewlett-Packard has under
taken an effort to implement a natural-language system based on a gener
alized phrase-structure analysis of English under the guidance of several of
the linguist founders of the formalism. They note that

"In some Cases we actually changed our minds about what the
correct analysis was when we saw the machine draw out the full
range of consequences of a given proposal. Some consequences of
an entire grammar cannot be seen by the unaided human brain,
just as some visual details cannot be seen bY the unaided human
eye." 121]

In fact, we have found that among those who have actually attempted to
write a computer-interpretable grammar, the experience has been invaluable
in revealing real errors that had not been anticipated by the Gedanken
processing typically used by linguists to evaluate their grammars-errors
usually due to unforeseen interactions of various rules or principles.

A side effect of the computer's ability to verify analyses is that it can be
quite effective in helping a linguist lind deficiencies. Grammar "debugging"
is at best a long and difficult process. The large grammars compiled by
Sager 123] and Robinson In) have been under constant development since
1963 and 1974 respectively, much of that time being devoted to debugging
the grammar. Computer tools can expedite this process by presenting useful
information about the grammar and the way it relates to specific pieces of
language.

2 WHY COMPUTER TOOLS? s

The computer thus serves as a touchstone for verifying the correctness
of a grammatical analysis. Unlike the actual touchstone used for determin
ing the purity of precious metals, however, this test also has the alchemic
potential of converting the spurious to the genuine.

2.3 The Computer as Mirror

We have already alluded to the manifold possibilities of formal analyses
for grammatical phenomena. But if, as we have said, the computer is a
straitjacket, an unforgiving touchstone of correctness, why should we want
to use it; would it not actually keep us from exploring these alternatives?

In fact, it does not. Although the computer requires a precise and inter
nally consistent analysis, it imposes few a priori limits as to which analysis
it uses. This is the paradox of the computer as a modeling tool.2

Of course, the actual computer tools that have been implemented do in
volve such a priori constraints. Some do so because of ideology: the program
is intended to manifest the same constraints that humans are claimed to be
subject to by virtue of universal grammar or performance limitations. Other
computer tools do so for more pragmatic reasons: without the constraints,
the implementation would be far more difficult or, given the state of the art,
even impossible. Nonetheless, the computer does provide a degree of flexi
bility that allows it to assist in arbitration among diverse linguistic analyses
and theories, since it can be used to reflect such analyses objectively and
independently.3

Indeed, this raises another methodological question. If the goal of lin
guistics is to form cons/rained theories of grammar, should computer tools
permit this latitude of freedom? Prima facie the answer should be "no,"
but it is important not to confuse linguistic tools with linguistic theories. A
powerful, flexible computer tool can be used to test many (perhaps highly
constrained) theories of grammar. In working towards constrained theories

~In fact, all tha.t seems to be required ill tffe(.UtMne" or reeur,iutlt/ (in the technical senae
of complexity theory). Though ,orne lingui.t5-e,peciaUy Langendoen and Po.tal!14I
deny the effective cha.racter of natural languages, we will not dillcuu this issue here.

aWe do not mean to imply that choices among analyses made on the basis of computer
implementation are inherently objective: only that subjectivity is necessarily limited to
the evaluation of the analY1Jcs on the basis of accurate, objective informa.tion~

3 DESIGN CONSIDERATIONS 6

of grammar, nothing should prevent us from using as powerful a tool as
possible to test these theories; the tool is not itself the theory.

The computer serves as a mirror, objectively reRecting everything within
its purview. It is thus a linguistic agnostic, bound to no particular analysis
or theory, yet requiring precision and consistency of all analyses and theo
ries. Paradoxically both constraining and anarchistic, it constitutes an ideal
instrument with which to compare, and even unify, disparate theories of
grammar and analyses of linguistic phenomena.

3 Considerations in Designing Computer Tools
for Linguistic Analysis

3.1 General Considerations

Broadly delineated, computer facilities for testing linguistic analyses operate
by interpreting symbolic encodings of the analyses, Le., grammars, in some
way that yields useful information. Various modes of interpretation have
been utilized; among the most useful is the analysis of sentences with re
spect to the grammar, thereby yielding the grammar's implicit judgment of
sentential grammaticality, ambiguity, semantic content, etc. Its usefulness
derives from the fact that it yields much the same information that linguists
employ to build the analyses in the first place.·

The choice of the language in which the analyses are encoded, the gram
mar forma/i,m, is critical, since it determines the following three parameters
which serve as important evaluative criteria:

.fIn addition, interpretation by generating sentencel!l haa been widely used. Less com
mon is interpretation by symbolic manipulation of grammarB t e.g., a. program that
could determine whether certain properties of a. grammar (ny, conteJdt.freeneS8", off·line
parsability [181) provably obtained. Such a program might be used to determine it some
postula.ted axiom of one theory might be an emergent property of gramman in another.
This approach merits much more attention than it haa previou81y received.

Note that, in our view, the fact that a. framework is llgenerativell doee not preclude
analysis as a mode of grammar interpretation, nor does it indicate the primacy of
generation as interpretive mode. It merely indicates a particular style of delinea.ting
the language described by a grammar-namely, the language that is generated by a
sta.ndard generating function operating on the grammar.

3 DESIGN CONSIDERATIONS 7

Linguist.ic felicity: The degree to which descriptions of linguistic phenom
ena can be directly (or indirectly) stated as linguists tend to state
them.

Expressiveness: Which class of analyses can be stated at all.

Comput.at.ional effediveness: Whether there exist computational de
vices for interpreting the grammars expressed in the formalism, and, if
such devices do exist, what computational limitations inhere in them.

The trade-offs among these criteria preclude them Crom coexisting optimally
within any single language. For instance, as the power of the formalism
grows, sufficiently efficient algorithms for parsing may no longer exist. AI·
ternatively, as a formalism becomes oriented toward the style of analysis
of one particular linguistic theory, the class of expressible analyses may
diminish.s

Nevertheless, these criteria can serve to divert us from certain prospec
tive grammatical formalisms. For instance, a general-purpose programming
language meets the second criterion; it is certainly a powerful tool for testing
analyses, since it can be used to write parsers for an object language-often
efficient ones. However, programming languages fail miserably as linguistic
tools because they encode analyses at the wrong level linguistically-that is,
they fail the first criterion. Linguists typically state grammars declaratively,
as rules, filters, and constraints-that is, they describe what the strings of
the language are like; with few exceptions, programming languages are too
procedural to be used in this manner-they describe how to compute certain
properties oC a string.6

3.2 Some Particular Design Choices

Let us consider how these admittedly programmatic criteria can be applied
to the actual desigu decision process. As we have noted, these criteria

&RecatI t.hat, although thifj il the point of a constrained linguistic theory, it is a detriment
for a linguistic tool.

"To a I....r .xt.nt, ATNsI27!oufl'er from the sam. probl.m of proc.dura.lity. It should
be noted, however, that 3 programming la.nguage with an independent declarative in~

terpretation, Prolog, has been found quite useful for na.tural-Ianguage processing in the
direc.t implemention of definite-clause grammars. Pereira. and Warren 117] discuss these
issues more thoroughly.

3 DESIGN CONSIDERATIONS 8

do not force a particular choice of formalism. Consequently, the decisions
discussed here will not be the only ones possible, but are merely examples
demonstrating how this perspective on linguistic tools might lead to the
choice of a formalism.

Our interest is in building a computational tool to test analyses by per
forming automatic analysis of sentences relative to a grammar written in
the selected grammar formalism. Inherent in this mode of interpretation
is the requiremen t that the analyses we encode be ,ur[ace-ba,ed-that is,
they should at some point describe the actual surface order of string ele
ments, associating with the strings information about the particular senten
tial analysis.7 In summary, the interpretation of the grammar yields a pair
ing between strings in the language and elements from some informational
domain. Given this quite broad requirement derivable from our notion of
linguistic tool, we consider each of the foregoing three criteria individually.

8.2.1 Linguistic Felicity

In ensuring that the formalism will allow statements to be made in the way
linguists tend to make them, the felicity criterion supports two further de
sigu decisions in the formalism. First, linguistic analyses are inductive; in
other words, the pairings are defined recursively, new pairings being derived
by merging substrings according to string-combining operations (concatena
tion, wrapping, substitution, etc.) and merging the associated informational
elements by information-combining operations (logical operations, unifica
tion, even phrase-marker building, etc.). Second, the informational elements
tend to be broad Iy characterizable as associations between feature. (also
called attribute., label" etc.) and tlalue. taken from some well-defined, pos
sibly structured set.s

As we will discuss more fully in Section 4.1, we can take this domain of
informational elements to be a set of graphs over a finite set of arc labels
and a finite set of atomic values. This will provide a useful mathematical

'This requirement makes problematic the use or government-and~binding~style analpes
1'6]. until such time as the rules in the phonological-form component have developed
sufficiently to explicate the connedion of GB grammars to surface order.

liBy uchara.cteriza.ble" we mean that the linguistic formalisms either use such structures
directly or can encode them within a reature-value domain. This distinction exempH6es
the difference between the direct versus indirect encoding of analyses.

3 DESIGN CONSIDERATIONS 9

abstraction of the notion of informational element which admits of sev·
eral combinatorial operations currently in use in linguistics. For example,
consider the combination of two sets of feature/value pairs which iovolves
taking the union of the feature/value pairs (as long as they are consistent)
and, in case both sets have values for the same feature, recursively combin·
ing these values. This mode of combination can be de6ned formally as a
graph-combining process to reffect this informal description, and is called
unification, a primary operation of functional unification grammar (FUG),
lexical·functional grammar (LFG), generalized phrase·structure grammar
(GPSG), and de6nite·clause grammar (DeG). Other operations (e.g., gen'
eralization, disjunction, and overwriting) can be similarly de6ned.

8.2.2 Expressiveness

In Section 5 we will discuss mathematical measures of the expressiveness of a
particular formalism falling within this methodological genus. The following
list is intended to help the reader develop an intuitive appreciation of the
breadth and diversity of formalisms that express analyses in this manner.

Categorial grammar: A pure categorial grammar, allowing forward ap·
plication only, uses string concatenation to form constituents. The
informational elements are complex categories which may be regarded
as having a category.valued functor feature and an argument feature.
For instance, a category (S/NP)/NP (e.g., for the verb "loves") might
be encoded in a feature value system with a functor feature whose
value is the recursive encoding of S/NP into functor and argument
features, and an argument feature whose value is the 6nal argument
NP. Variations on this technique are widely used in PATR·n grammars
and grammars based on the head grammar and HPSG formalisms.

Ades/Steedman grammar: Similarly, the categorial system of Ades and
Steedman [I), although including forward and backward application
and composition, still fits within this class.

Montague grammar: Montague grammars (e.g., [15]) are directly stated
as pairings of string.combining and denotation·combining rules-and
as such fall squarely within this genus. The informational elements
can be thought of as being comprised by a complex category feature

3 DESIGN CONSIDERATIONS 10

(as described above for categorial grammar) and a feature whose value
is the denotation of the expression.

GPSG: GPSG [7] (as well as LFG and DCG), since it uses a context-free
base, involves only concatenation to build up the surface string. Its
feature system is a straightforward feature/value system, involving
both simply-valued features (e.g., number, case) and complex-valued
features (e.g., slash, reflJ.9

Head grammars: Head grammars [19J and head-driven phrase-stnlcture
grammars (HPSG) [20] extend GPSG by introducing head-wrapping
string operations and removing the restrictions on the feature system
that yield GPSGs context-freeness. Nonetheless, such grammars be
long to a surface-based feature-value methodology.

LFG: LFG's [8] informational stnlctures, f-stnldures, are a recursive fea
ture/value system with certain specialized types of features (e.g., pred)
and information (e.g., concerning bounding and constraints).

FUG: Through FUG's [12] patterns, concatenation is mandated as the
constituent-forming operation.lo Functional stnlctures, as the infor
mational entities, are a generalized feature/value system.

DCG: Terms are the basic information-bearing stnlctures in DCG [17J.
They can be thought of as a degenerate case of a feature/value system
in which the features correspond to argument positions. In particular,
a term f(a,b,c) may be thought of as having afunctorCeature whose
name is f and whose arity is 3, and three argument features with
respective values a, b, and c.

In fact, viewed from a computational perspective, it is not surprising that
such a broad class of analyses can be directly encoded with generalized
feature/value structures of this sort. Stnlctures of exactly this kind have
been put forward by various computer scientists as general mechanisms for

"The use of mehrules requires some flexibility in interpreting this paradigm. We merely
disrega.rd them a.nd view GPSGs a.'!I alrea.dy being dosed under metarules. Note tha.t
recent versions of GPSG have made less and less use of metarules, preferring ra.ther to
esta.blish generaliza.tions in the lexicon.

JORecent work extending the expressivity of the pa.ttern language allows for more flexi~

bility in combining strings.

3 DESIGN CONSIDERATIONS II

knowledge representation [2] and data structures [51. Thus, we have hardly
constrained ourselves at all by being limited to this methodology.

In summary, the methodological class outlined above involves

• The association of strings with elements in a system of features and
(possibly structured) values.

• The inductive building of sucb associations by the simultaneous rule
based combination of substrings as well as of the associated informa
tional elements.

3.2.3 Computational Effectiveness

Ideally, we would like our formalism to be able to model any analysis within
this class. Unfortunately, computational limitations require us to be more
modest in our approach. Instead the formalism we will discuss is a first
order approximation to the general case of inductively defined complex
feature-based surface analyses-albeit the most general such approximation
achievable within our current capabilities.

The constraints we impose in the name of computational effectiveness
are the following:

Concatenation: Concatenation is prescribed as the sole string-combining
operation. This causes our formalism to be context-free-based (though
certainly not context-free, as discussed in Section 5).

This first constraint eliminates the possibility of directly stating head
grammar analyses (which use an operation of head-wrapping) and
those Montagovian analyses that use such string operations as wrap
ping [31 and substitution [15]. However, analyses within these systems
can often be modeled indirectly.

Unification: Unification is prescribed as the sole information-combining
operation. This causes our formalism to be completely declarative (see
the discussion of Section 3.1) and its interpretation order-independent.

Reliance on unification is in happy concurrence with linguistic prac
tice, since unification is a primary operation in many current linguistic
grammar formalisms, and its typical applications-pattern-ma.tching,

4 PATR-II 12

equality testing, and feature passing-are found in an even wider range
of linguistic analyses. Furthennore, unification can be used to model
analyses with many other combining operations, and can sometimes
even substitute for nonconcatenative string operations.

Keep in mind that these constraints are technological in nature, not lin
guistic. As we become better able to provide rigorous definitions of compu·
tationally effective formalisms that overcome such constraints, they will ipso
facto be reduced. In fact, certain relaxations of these constraints are already
known to be feasible. Efficient algorithms for parsing formalisms that aug
ment concatenation with head-wrapping operations are known [19]. Certain
of our own tools allow, in addition to unification, operations of disjunction,
negation and overwriting.1I

4 PATR-II

We have developed the PATR·II formalism to embody these design decisions
in an actual grammar formalism. PATR-II is a language for writing gram
mars that makes exactly those choices that were outlined in the preceding
sections. The quite simple syntax of the PATR-II formalism has been dis
cussed in previous work, as has its use in modeling various syntactic and
semantic phenomena [26,24]; in addition, its semantics has been rigorously
defined by applying the techniques of Scott's domain theory [16]. We will
discuss the PATR-II formalism itself only briefly here, offering as an exam
ple the construction of a grammar fragment that embodies an analysis of
agreement and control that loosely resembles LFG,I2 An appendix discusses

110verwriting is a. noncommutative operation akin to unification except that in the case
of unification "clasheslt one of the operands: (ny, the rightmost) is given precedence.
Overwriting, certain types of negation, and generaliza.tion all have the unfortunate
property of eliminating order-independence and magnifying the difficulty of providing
simple denotational semantics for the formalisms:. Nonethe-Iess, they can prove useful if
used sparingly. In pa.rticula.r, Karttunen 191 discusses linguistic motivation for nega.tion
a.nd disjunction.

I:ZThis example is for expository purposes only a.nd is not being a.dvanced as the recom
mended modeling of LFG in PATR-II. Though it does follow rather c105ely analY5e5 of
Bresnan and Kaplan ((8), p. 206). we have ignored aspect5 (such as semantic forms)
which require more complex encodings. See (26) for a. diSGussion of semanticb in PATR·
II. Also, see Figure 1 for an exa.mple of control tha.t ma.nifests itself in the semantics.

4 PATR-I1 13

the implemented linguistic computer tool for which the formalism serves as
the basis.

4.1 Feature System

The informational structure associated with phrases in PATR-II is the dag
(an acronym that will be elucidated below), which is a straightforward
generalization of feature/value systems. Dags can be thought of as sets
of feature/value pairs, in which the values are drawn from a finite set of
atomic symbols plus the set of dags themselves. This view of dags as sets of
feature/value pairs allows for a notation-akin to the functional-structure
notation of FUG or the f-structure notation of LFG-in which the set of
feature/value pairs is listed within square brackets, with a colon separating
the feature label from the value (which is itself notated in this manner).
To model the information LFG associates with a constituent, we might use
a feature cat for the syntactic category, and a feature f-structure for the f·
structure, with the latter itself having such features as subj, obj, tense, and
num. The dag notated as

cat v

~
~ns~:~resent :

. num: sg
[-structure: subJ. person: thlr~

vcomp: [partiCiPle: pr~,~n~

might be the informational structure associated with a third-person, singu
lar, present tense verb such as "is" (though we have purposefully left out
the subject control information). The fact that the feature values are them
selves structured leads us to the term "complex-feature-based formalism,"
to avoid confusion with simple feature systems in which values are required
to be atomic-namely, systems based on so-called "feature bundles.' The
former obviously subsume the latter.

An important property of dags is that two features can share the same
subdag as their common value. This leads to feature elements having a
reentrant nature, that is, one can arrive at a given node by following more
than one path in the dag. When such a node is instantiated further through

4 PATR-I! 14

unification, this new information is visible whichever of the paths on~ reach~s

the dag by.

Making use of these properties, we could express the fact that a verb
such as "is" displays subject control by unifying with the verb's dag the
following "subject control" dag:

r FUbj: meL ~l
(structure: Lvcomp: Lsubj: ujJjJ

The boxed numbers mark the reentrancy, indicating that the values of the
two features are the same. Thus, if information is added to one, it will affect
the other as well. Combining this information with the previous dag for "is"
through the process of unification, we get

cat: v

r-structure:

tense,L.P.:resent
.Wfnum: sg 1

subj. [person: lhlr<!l

fparUs.!Ple: presen~
vcomp: l'ubj: W J

Note that the unification of the reentrant dag has caused the verb's subject
features to be placed on the subject of the verb's participial complement.
The rationale for placing the subject control information in a separate dag
will be discussed in Section 4.3.1.

4.1.1 Feature structures as graphs

Dags can be viewed as rooted, directed, acyclicl~ graph structures (from
which the term "dag" is derived as an acronym) whose arcs are labeled with
feature names. Each arc points to another such dag or an atomic symbol.

HIN ate that certain implementations allow cyeti<; graph structures, i.e., directed graphs
(dgs) in which a descendant dg has a feature whose value is the dg itself. These can be
useful for modeling the variabl. label. ofLFG as in equations ofthe form (I (l p....)) =!.

4 PATR-II 15

The dag notated above would be expressed in a graph-structural notation14

as

cat f-structure

v
tense vcomp

present 5ubj
participle

5ubj

present
nurn person

'g third

Underlying the graph-theoretic VIew is a twofold rationale. First, graph
theory provides a simple and mathematically well-defined vocabulary with
which to model the various feature systems of linguistic theories. Second, it
leads to a coherent framework for investigating possible structure-combining
operations.

Such operations on graph structures abound. Notions of unification,
generalization, disjunction, negation, overwriting, and other more idiosyn
cratic operations can all be formally defined. As mentioned in Section 3.2.3,
we distinguish unification as the combining operation on dags. From an
intuitive standpoint, unification of dags corresponds to aggregating the in
formation in the dags. It was used initially in logic and theorem-proving
research, more recently finding its way into the linguistic theater as a basic
operation in LFG, FUG and GPSG.

The dag notion is thus the generalization of feature/value systems that
PATR-II uses as the basic informational structure. In keeping with the
general linguistic methodology outlined in Section 3, elements from this do
main of dags are recursively associated with phrases by using the operation
of unification to combine the information from constituent dags. How these
combinatory rules are specified is the topic of the next section.

14Reentra.ncy in the gra.ph corresponds to coindexing in the feature matrix notation.

4 PATR-!I

4.2 Grammar Rules

16

PATR-l! grammars consist of specifications of the rules of combination. Re
call that the basic string-combining operation is concatenation and that
the basic dag-combining operation is unification. A combinatory rule must
therefore specify how the dag associated with the whole string is related
to the dags that are associated with the concatenated substrings. This is
done in PATR-l! by a rule consisting of a context-free base with a set of
unifications. For example, the following is a well·formed PATR·l! rule.

S - NP VP
<S f-structure> = <VP f-structure>
<S f·structure subj> = < NP f·structure>

The context-free portion states that the constraint applies among three
constituents, the string associated with the first being the concatenation
of that associated with the second and third in that order. In addition, it
requires that the values for the cal features of the constituents be S, NP
and VP, respectively.Is Furthermore, the first unification requires that the
f-structure associated with the VP be equal to (because unified with) the
f·structure of the S. Finally, the subject feature of the S is equal to the
f-structure of the NP.

For these unifications to succeed, the f·structure associated with the
NP would have to be compatible with the VP's subject feature. Given
the reentrancy in the dag shown above for the VP, this in tum requires
compatibility with the subject of the VP's verbal complement. In other
words, the subject NP fills the role of the complement's subject.

As an example of stringfdag pairs admitted by this rule, consider the
following pairings.

Hi-The treatment of cal features in this special manner (requiring their prescnce and atom
icity) is the only further technologicallimita.tion on the genera.l characterization of rule
combination presented in Section 3.2.3. Other than this restriction-i.e., that every
constituent have a value for the tuJt fea.ture-any combinatory rule involving concate
nation of strings and unification of clags can be expressed in PATR·II. The most recent
implementation even removes this constra.int by allowing the Use of a special nonter
minal X in the context-Cree base that imposes no restriction upon the ud fea.ture, thus
regaining fuB generality. The original limitation derived from the need for efficient
parsing algoTithtns; only reeently h.. parsing without it become f...ibl. 125).

4 PATR-JI 17

"uther is storming cornwall"........ cal:.

f-structure:

II! len.e':":p':re.ent
,l1lfnum: '8 1

.ubJ, [person: thlr'!]

rparu'%Jple: pre.en~
VCQmp: rUbJ:111 J

'uther'

"is storming cornwall"

........ fcal: np 1
l!-structure: li!I

........ fcat: vp 1
l!-.tructure: IJ.lJ

Note that the NP is marked as being masculine in gender. Because of the
reentrancy in the dag for "is' the subject of the lIcomp is also marked as
masculine, so that on the assumption that reflexives agree in gender with the
subject of the enclosing f-structure, only the reftexive form "himself' will
be allowed. Similarly, semantic efiects of control can follow directly from
this approach (as in Figure 1). Thus, this rule, in coordination with the
dags presented above, models a fragment of an LFG-Iike analysis of subject
control.

4.3 Using PATR-I1 to model analyses

With just these simple tools, a wide variety of llJlalyses can be encoded
in PATR·I!. Some are directly statable; others require that the devices in
PATR-I! be used to model indirectly those employed in the llJlalysis. To fa
cilitate such modeling, a further set of tools is added to the implementation
that allows tailoring the system to a particular style of llJlalysis. Develop.
ment of these tools is just beginning. Consequently, they have been geared
towards modeling the style of analysis we have been most interested in,
namely, those with a lexical orientation. With this caveat, we will discuss
briefly templates and lexical fules, two devices for capturing lexical general
izations in this framework.

4 P.4TR-ll

4.ll.1 Templates

18

Dags similar to that shown above for present tense, third-singular Vs might
be employed quite frequently in, say, lexical entries for verbs. In particular,
such a template could be associated with the verbal suffix "-s" and made
use of during morphological analysis. By defining dag templates, the user
can build up a library of such frequently utilized dags. For instance, we can
define a template as follows:

Let Pres3Sing be
<f'structure tense> = present
<f-structure subj person> = third
<f-structure subj num> = sg.

We might want templates for the notions "verb" and ·subject control".

Let Verb be
<cat> = v.

Let SubjectControl be
<f-structure .ubj> = <f·structure vcomp subj>.

Alternatively, we can use templates to define a hierarchy of such concepts:

Let PresTense be
<f·structure tense> = present.

Let 3Sing be
<f-structure subj num> = sg
<f-structure subj person> =third.

Let Pres3Sing be
PresTense
3Sing.

Defining a verb as being Pres3Sing and SubjectControl (and adding
participial-form information) will thus associate with it the dag presented in
Section 4.1.1. By appropriate definition of lexical templates we can encode
assumptions and generalizations about the interrelationships of linguistically
salient notions.

4 PATR-II

4.3.2 Lexical Rules

19

Lexical rules are an even more powerful mechanism for manipulating the
dags associated with lexical entries. They provide a way of actually de
composing and restructuring dags, while still using unification as the basic
combinatory operation. Once again, we present the concept by example.
Consider an LFG·like definition of passive, one in which the object subdag
becomes the subject. We could define a lexical rule to model this analysis
as follows:

Define AgentlessPassive as
<out cat> = <in cat>
<out f-structure participle> = passive
<out f·structure subj> = <in f-structure obj>
<out f-structure obj> = nil.

This rule builds a passive lexical entry (referred to as out) from an active
entry (in) such that the category feature information remains the same, but
the subject and object features have been changed appropriately. Lexical
rules have been used in PATR-n grammars for treating passives, "there"
insertion, extraposition and other phenomena commonly viewed as relation
changing.

4..4 How Has PATR·II Been Used?

The PATR·n formalism has been used to build grammars for fragments
of English with steadily increasing coverage. We have experimented with
grammars covering a range of styles of analysis, from phrase-structural to
categorial, from highly lexical to predominantly syntactic. To convey an
intuitive sense of the expressive power of the formalism, we list here some
samples of the kinds of phenomena we have dealt with in our computer
implementation.

• Verbal 8ubcategorization for NPs, PPs, Ss, VPs, including raising and
equi phenomena, syntactic control, and auxiliary structure.

• Relation-changing rulea, including active/passive, "there" insertion,
and extraposition.

5 CONCLUSION 20

• Unbounded dependencies including Wh-movement and relative clauses.

• Complex NPs and PPs.

• Adverbials of certain types.

• Semantics for these constructs, given as encodings of logical formulae
in dag form.

Though by no means an exhaustive list of the coverage of our gram·
mars, this should provide evidence that nontrivial linguistic constructs can
be described effectively in PATR·n. The reader is urged to refer to previ·
ous publications [26,9] for a more thorough discussion as to how some of
these phenomena can be modeled and how the system is used for semantic
interpretation as well.

5 Conclusion

Looking back at the criteria of Section 3.1, we see that PATR·n meets them
in the following way:

Linguistic felicity: PATR-n has a completely declarative interpretation
(made explicit in its denotational semantics [161) that allows rules in
the grammars to be thought of modularly-as separate, independent
constraints on a natural language-as is the common view of such
rules in linguistics. It is similar to several of the popular grammatical
formalisms in use in linguistics and artificial intelligence (including
many of those listed in Section 3.2.2), and can be used to directly
model analyses from them.

Expressiveness: A precise, albeit unenlightening, characterization of the
expressive power of PATR·n can be gleaned from the existence of
PATR·n grammars for any recursively enumerable language. This
puts them into the most powerful class of the Chomsky hierarchy, well
in excess of context-free power [26J. Of course, not all languages are
expressed with equal ease, since the formalism is designed to facilitate
stating the kinds of constructs found in natural languages. But the
broad class of formalisms listed in Section 3.2.2 seems amenable to
modeling with PATR·I\. To the extent that this is so, PATR-n should

5 OONCLUSION 21

be considered a successful point in the space of design alternatives
discussed in this paper.

Computational effectiveness: The simplicity of the PATR-Illanguage's
formal definition enables a degree of rigor not normally found in gram
matical formalisms. It is its simplicity which allows a denotational se
mantics for the formalism to be given (which, incidentally, can thereby
provide a semantics for the other grammar formalisms it models).

There exist algorithms for implementing parsers for grammars written
in PATR-II (i.e., programs that provide a procedural interpretation of
the declarative semantics). Since PATR-II is a completely declarative
formalism (and thus interpretation of grammars is independent of the
order of processing), various algorithms can be (and have been) used
for parsing, including top-down backtrack parsing, Earley's algorithm,
the Cocke-Kasami-Younger algorithm, and, most recently, an extended
Earley's algorithm designed especially for such complex.feature-based
formalisms [25]. Efforts to implement a wide range of the aforemen
tioned related formalisms (such as current work being done not only at
SRI, but also at Hewlett-Packard and Xerox) are constantly improving
the efficiency of these algorithms.

In a paper discussing computer tools for linguistics, it may seem ironic
that we have emphasized the design of a specific grammar formalism-a
language for encoding linguistic analyses-relegating to an appendix any
mention of its use as the basis for an actual implemented tool for testing
linguistic analyses. This emphasis stems from our particular perspective:
that the critical properties of such tools are their linguistic felicity, their
expressiveness, and their computational effectiveness; that these considera
tions make the choice of grammar formalism of paramount importance; and
that they should be used not only to evaluate such tools, but also to guide
their design.

The computer as linguistic tool is a powerful concept. Our hope is that
linguists will take full advantage of this impartial mirror, this theoretical
touchstone, this liberating straitjacket.

A THE PATR-II EXPERIMENTAL SYSTEM

A The PATR·II Experimental System

22

The PATR-II formalism is the basis of several implementations. The PATR
II Experimental System is one of these, an implemented computer tool for
building and testing grammars. Researchers at SRI have been using it to
develop front ends for the KLAUS natural-language-processing system.iS It
supports all the functionality presupposed by this and earlier papers on the
PATR-II formalism (and includes some capabilities not discussed therein).
Written in Zetalisp for the Symbolics 3600 Lisp Machine, the PATR-I1 Ex
perimental System USes the style of window- and mouse-oriented user inter
face characteristic of that machine.

The functionality of the PATR-I1 Experimental System can be roughly
divided into two cJ asses:

Analysis: The system can analyze sentences with respect to a PATR-I1
grammar, in the process developing the pairings of the sentence and
its subconstituents with their corresponding dags.

Grammar development: The system allows grammars to be edited and
compiled, and information derived from sentence analysis to be dis
played, perused and traced.

A.I Analysis of sentences

Given a grammar written in the PATR-I1 formalism, the system is able to
analyze sentences with respect to a grammar by using chart-parsing algo
rithms desigued for this formalism. Every analysis leaves behind it a chari of
information concerning complete and partial 8ubphrases formed [II], along
with their associated dag. By using the grammar information to combine
these subphrases, increasingly longer phrases (with their dags) can be con·
structed, possibly culminating in deriving a dag (or, in the case of ambiguous
sentences, dags) corresponding to the sentence I1Il a whole. If the language

160ther implementations are discussed in more detail in [261. These include an Earley
algorithm parser written in Prolog by Fernando Pereira that uses structure-sharing dag
representations and a. version for the DEC 20 computer in Interlisp that uses a variant
of the Cocke-Kuami-Younger parsing algorithm.

Unfortunately, this software is not presently available from SRI International, since the
system is highly experimental and under constant development.

A THE PATR-JI EXPERIMENTAL SYSTEM 23

of the grammar does not include the sentence (i.e., the sentence is ungram
matical) then the parser will allow no such derivation.

Two parsing algorithms are currently incorporated into the system, the
user determining which one is to be actually invoked for parsingP One
is a left-corner parsing algorithm with top'down filtering that is based on
the work of John Bear [4]; the other is an extended version of Earley's
algorithm specifically designed for complex·feature-based formalisms [25],
that increases the amount of top·down filtering over that available from
either the left-corner algorithm or Earley's.

Morphological analysis of the input sentence is carried out by an analyzer
written by Bear; it is based on the two-level morphological model of Kosken
niemi [13] and related work by Karttunen [10]. Morphological analysis of the
individual words yields a list of morphemes and their associated template
dags or lexical rules. The combination of these templates and lexical rules
yields the dags associated with the words themselves. These pairings serve
as the basis for the grammar's inductive definition of phrasejdag pairing.

A.2 Grammar Development

Besides being able to analyze sentences, the system makes available a set
of tools for extracting information from the parse and interactively building
and modifying the grammar. The grammar development tools provide for:

Grammar compiling: Grammars written in PATR-n can be compiled
into tables suitable for Wle by the parsers.

Chart and grammar perusal: The chart, grammar rules, lexical items,
etc. can be displayed by means of a mouse·oriented, "browsing" mode
of interaction.

Grammar updating: Rules can be edited using a general-purpose edi·
tor (ZMACS) and the changes compiled incrementally for immediate
availability and testability.

Tracing: Rules can be traced, so that each invocation during parsing dis·
plays information to the user concerning that invocation.

ITSince we are also trying out different pa.rsing algorithms, this aHows us to compa.re them
directly with one another.

REFERENCES 24

All of these services are available through a consistent graphic user in
terface; operations are chosen by means of a "mouse", with which a menu
and icon-based interface is controlled. Fignre 1 shows a snapshot of the
user interlace after parsing a sentence. The user has displayed one of the
passive edges developed during the parse. The mouse cursor is situated over
an icon representing the rule used in building this edge, and the icon has
been highlighted by a circumscribing box. By clicking the mouse buttons,
the user can cause this rule to be displayed, edited, traced, and so forth.
Similar operations are possible for the other types of information the sys
tem manipulates, information concerning words, morphemes, edges, rules,
templates, lexical rules, etc.

References

11] Ades, A. E. and M. J. Steedman. On the order of words. Lingui.tic.
and Philo.ophy, 4(4):517-558,1982.

[2J Ait-Kaci, H. A New Model 0/ Computation 8a.ed on a Calculu. 0/
Type SUb8tlmption. PhD thesis, University of Pennsylvania, 1985.

[3J Bach, E. W. In defense of passive. Lingui.tic. and Philo.ophy,
3(3):297-341, 1980.

!4] Bear, J. S. A Breadth Fir&! Syntactic Component. Master's thesis,
University of Texas, Austin, Texas, May 1981.

[5] Cardelli, L. A Semantic. 0/ Multiple Inheritance. Technical Report,
Bell Lahoratories, Murray Hill, New Jersey, 1984.

[6] Chomsky, N. Lecture. on Government and Binding. Foris Publications,
Dordrecht, Holland, 1982.

[7J Gazdar, G., E. Klein, G. K. Pullum, and I. A. Sag. Generalized Phrase
Structure Grammar. Blackwell Publishing, Oxford, England, and Har·
vard University Press, Cambridge, Massachusetts, 1985.

J8] Kaplan, R. and J. Bresnan. Lexical-functional grammar: a formal sys
tem for grammatical representation. In J. Bresnan, editor, The Mental
Repre.entation 0/ Grammatical Relations, MIT Press, Cambridge, Mas
sachusetts, 1983.

REFERENCES 25

[9] Karttunen, L. Features and values. In Proceedings of the Tenth Inter·
national Conference on Computational Linguistics, Stanford University,
Stanford, California, 2-7 July 1984.

[10] Karttunen, L. KIMMa: a general morphological processor. Tezas Lin
guis/ic Forum, 22:161-185, December 1983.

[llJ Kay, M. Algorilhm Schemata and Data Slructures in Syntactic Process
ing. Technical Report, Xerox Palo Alto Research Center, Palo Alto,
California, 1980. A version will appear in the proceedings of the Nobel
Symposium on Text Processing, Gothenburg, 1980.

[12J Kay, M. Unification Grammar. Technical Report, Xerox Palo Alto
Research Center, Palo Alto, California, 1983.

[13) Koskenniemi, K. A Two-Leuel Model for Morphological Analysis and
Synthesis. PhD thesis, University of Helsinki, Helsinki, Finland, 1983.

{14) Langendoen, T. D. and P. Postal. The Vadness of Natural Language.
Blackwell, Oxford, England, 1984.

[15J Montague, R. The proper treatment of quantification in ordinary En
glish. In R. H. Thomason, editor, Formal Philosophy, pages 188-221,
Yale University Press, New Haven, Connecticut, 1974.

[16] Pereira, F. C. N. and S. M. Shieber. The semantics of gra.mmar for
malisms seen as computer languages. In Proceedings of Ihe Tenlh Inler
national Conference on Computational Linguistics, Stanford University,
Stanford, California, 2-7 July 1984.

[17] Pereira, F. C. N. and D. H. D. Warren. Definite clause grammars
for language analysis-a survey of the formalism and a comparison
with augmented transition networks. Artificial Intel/igetlee, 13:231
278, 1980.

[18J Pereira, F. C. N. and D. H. D. Warren. Parsing as deduction. In
Proceedings of the filst Annual Meeting of the ASMciation for Compu·
lational Linguislics, pages 137-144, Massachusetts Institute of Tech·
nology, Cambridge, Massachusetts, 11)-17 June 1983.

(19) Pollard, C. Generalized Phrase Structure Grammars, Head Grammars,
and Natural Languages. PhD thesis, Stanford University, Stanford,
California, 1984.

REFERENCES 26

[20] Pollard, C. Lecture notes on head-driven phrase-structure grammar.
February 1985. Center for the Study of Language and Information,
unpublished.

[21] Pullum, G. K. Personal communication, 1985.

[22] Robinson, J. J. DIAG RAM: a grammar for dialogues. Communications
of the ACM, 25(1):27-47, January 1982.

[23] Sager, N. Natural Language Information Processing. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1981.

[24] Shieber, S. M. The design of a computer language for linguistic in
formation. In Proceedings of the Tenth International Conference on
Computational Linguistics, Stanford University, Stanford, California,
2-7 July 1984.

[25] Shieber, S. M. Using restriction to extend parsing algorithms for
complex-feature-based formalisms. In Proceeding. of the eend Annual
Meeting of the A..ociation for Computational Lingui.tic., University of
Chicago, Chicago, Illinois, July 1985.

[26] Shieber, S. M., H. Uszkoreit, F. C. N. Pereira, J. J. Robinson, and M.
Tyson. The formalism and implementation of PATR-II. In Re.earch
On Interactive Acquisition and Use of Knowledge, SRI International,
Menlo Park, California, 1983.

[27] Woods, W. Transition network grammars for natural language analysis.
Communications of the ACM, 13(10), October 1970.

1 pane (oulld
pa.t(penuaded(mellyn, ulher, '1Otm(ulber, cornwaU»)

PATRlI
Edit

Stop

WFF.

Reaet

Table.

Window

Repareo

NIL
Load ~ATR>tn.rlyn penuld.ecl utb.r to sLonn cornwall

CI '" merlyn <t> ".r~adH oQ) utfHtr «> to 'G> storm ~ conn.
ea. all <I>

Automata

Hardcopy

Profile

-

"=

.,

--

J: I head:

I...
~:a: tab:.

'm~cat up ~1&:1: IMrlyn
Dp: .en••: merlyrn

fa.,:Iil 1
bead: Ltraol:TIl.l

[

ca. vI!.. Jbel4:W
vp: nut@]

L....! Ij'llca. U••~ l""'bda]

PATR-II experimental system
--notate forward RQtato bttek Swap I· . f I

RuioD Chart Show
TemplateB Lexical rulBs Directory

Passive dgG frQtn <J> to 4> S .. NP VP •
Ru!e u••d:@"NPVP.fgenerJcsentene.j
Co••r1tlJ wrmlnaJs: tHrlyn plK8Uoo6d uthftr to .tOl1'Jt ootTultwl
ChUdI_n: <IXD NP ... I1'I8rlyn ..

IDa> VP, .. VP. VP••

0 ..:1 ~t.

rn[l.,m: flul..

_,I: mrnum: lal
lFer: r»]
,-
pred: 'p-I'i

pud:...eenwadecb
U&t: ~[r.t: merly",]

"
. I 1",.2: [rot: "then]

alit. ,. [Jua ' pred: stormc

1113: lilt: [ret: "'then]

u&2: &.r: comW.lI~

lir S frot! 9' to 6
rdi·;i.W?A Tyi

Figure 1: Snapshot of the PATR·II Experimental System after parsing a
sentence and displaying one of the passive edges built.

