Tromt latuwighonal Eacy lopdia of Livgonstice (1961) Oxbd Univesity Press |

NLP: Grammar Formalisms. Grammar formalisms
arc artificial languages whose purpose is to
characterize precisely other artificial or natural
languages. They are used descriptively in linguistics
for characterizing—and thereby, under certain
assumptions, explaining the properties of—
fragments of particular natural languages, and
normatively in computer science for characterizing—
and thereby providing a reference standard for—
computer languages, especially computer
programming languages. Their application to
natural-language processing (NLP) combines aspects
of both of these uses, grammars for this latter
purpose requiring descriptive accuracy yet serving as
a precise norm for computers to adhere to.

Formalisms for NLP can be evaluated according
to the following criteria:

Linguistic felicify: The degree to which
descriptions can be directly (or indirectly)
stated as linguists tend to state them.

Expressiveness: Which class of analyses can be
stated at all in the formalism.

Computational effectiveness: Whether there
exist computational devices for interpreting
the grammars expressed in the formalism,
and, if such devices do exist, what
computational limitations inhere in them.
(Sec entries for Parsing and Computational
complexity.)

The tradeoffs among these criteria typically
preclude them from coexisting optimally within any
single formalism. For instance, as the power of the
formalism grows, sufficiently efficient algorithms
for parsing may no longer exist. Alternatively, as a
formalism becomes oriented toward the style of
analysis of one particular linguistic theory, the class
of expressible analyses may diminish. Furthermore,
the use to which the formalism is to be put may
arguc for quite different weightings of these criteria.

NLP: Grammar formalisms

Willdam Bright (ed)

For instance, linguistic theories typically minimize
expressiveness as a means of cxplaining
learnability; NLP formalisms, on the other hand,
may maximize expressiveness of formalisms as a
means of gaining flexibility.

Grammar formalisms can characterize languages
procedurally, by providing a method or algorithm
for generating all of the strings of the language, or
declaratively, by providing a direct description of
the language elements. Further, a procedural
description can be synthetic in that the algorithm
specifies how the strings of the language can be
constructed, or analytic if the algorithm specifies
how the strings can be recognized.

The Rewriting Hierarchy

Early research on formal language theory,
motivated by problems in linguistics, led to the
codification of a series of four language classes, each
a strict subset of the previous. Each member of the
so-called Chomsky hierarchy of four language
classes corresponds to a different grammatical
formalism, in particular a rewriting system. A
rewriting system is a grammar formalism that
defines languages procedurally (in fact,
synthetically) by giving rules for substituting one
substring for another in a given string. (Sce entry for
Rewriting hierarchy.) Of particular interest is the
formalism corresponding to Type 2 rewrite rules, the
so-called context-free grammars (CFG), as the CFC
formalism was developed as a codification of the
type of immediate-constituent analysis found in
structural linguistics, and as CF grammars have
served as components of later formalisms in
linguistics (e.g., the base component of a
transformational grammar) and NLP (as we shall
see).

The languages defined by these grammars are
specified procedurally as the output of a string-
generating algorithm. However, the more

Stuart M. Shicber

restrictive (non-type-0) classes have an alternative
declarative interpretation under which the rules
arc viewed as admissibility conditions for sets of
nodes in parse trees. This distinction in the
interpretation method for grammars can have
mathematical ramifications—Peters and Ritchie
demonstrated that Type 1 grammars under the
admissibility interpretation can express only Type 2
languages (see entry on Computational
complexity)—and therefore highlights the
importance of distinguishing procedural and
declarative formalisms.

Greibach (1981) provides a detailed history of
the origins of formal language theory, including the
development of the rewriting hierarchy and
categorial grammars and their relationship to
mathematical and computational linguistics.

Grammar Formalisms in Linguistic Theory

After the pioneering work on the rewriting
hierarchy and its relation to classes of automata,
the design of grammatical formalisms diverged in
the ficlds of computer science and linguistics and,
within computer science, between those engaged in
the study of formal language theory and those
intcrested in natural-language processing.
Nonectheless, many NLP researchers have
attempted to use formalisms from linguistic theory
directly for the purpose of automatic processing of
natural language.

Chomsky's immediate use of his results from
formal language theory was to motivate the
necessity for the more powerful formalism implicit
in standard theory transformational grammar
(g.v.), which augments a context-free or context-
sensitive string-rewriting component with tree-
rewriting rules of a certain sort, called
transformations. Many NLP projects have
attempted to make use of transformational

NLP: Grammar formalisms

grammars (e.g., Zwicky, et al., 1965), in spite of the
discovered difficulty of “reversing transformations”
(Petrick, 1965). The theories of Generalized
Phrase-Structure Grammar (GPSG) and Lexical-
Functional Grammar (LFG) and Head-Driven
Phrase-Structure Grammar (HPSG) incorporate
grammar formalisms without transformations; they
have also been used for NLP tasks (see, for instance,
the references provided by Gazdar, 1984).

Not all linguistic theories incorporate a grammar
formalism. Relational Grammar and Government-
Binding Theory (GB) are examples of theories
which state both language-particular and -
universal statements in a natural as opposed to
artificial metalanguage. However, recent work has
attempted to utilize the principles of GB theory,
appropriately cast, to aid in NLP (see e.g., Stabler,
1987 and works cited therein).

Grammar Formalisms in NLP

In parallel with the development of grammar
formalisms in linguistic theory, several formalisms
have been designed specifically for the task of
natural-language processing. As early as 1958,
Yngve developed the COMIT programming language
(Yngve, 1958) as a powerful procedural analytic
system for linguists to use in describing natural-
language structure to a computer. The language was
the precursor of string-processing computer languages
such as SNOBOL, whose use went well beyond NLP
tasks.

The Augmented Transition Network formalism
(see Parsing entry for an example) is a procedural
analytic formalism based on the augmentation of
pushdown automata (the automaton equivalent of
context-free grammars) with a procedural language
for assigning values to registers. |

This theme of augmenting context-free grammars

Stuart M. Shieber

-

with registers or features that can take on values
permeates the computer-science work on grammar
formalisms both for NLP and for computer-language
specification, as well as the linguistic formalisms
such as GPSG, LFG, and HPSG. Other procedural
NLP formalisms participating in this theme include
the Dialogic formalism (Robinson, 1982) and used to
build the large Diagram grammar of English, the
Linguistic String Project system (Sager, 1981),
Wilensky's phrasal grammar (Wilensky and Arens,
1980) and the Lingol formalism (Pratt, 1973)
(although in this last case the augmentations are
restricted to being used for preferences among rules
and for syntax-directed translation into a semantic
representation). For example, the Dialogic
formalism allows context-free rules to be augmented
with constructors that encode in an extension of the
LISP programming language constraints on features
associated with the constituents. The sentence
formation rule found in the Parsing entry might be
roughly recast in Dialogic as:

(St S=NPVP;
CONSTRUCTOR
(PROGN

(OR (AGREE NBR NP VP)
(F.REJECT 'F.NUMAGR))

(OR (AGREE PER NP VP)
(F.REJECT 'F.PERAGR))

(OR (@ VP TENSED)
(F.REJECT 'F.UNTENSEDS))

(@SET TYPE 'DECLARATIVE)))

Another important strain of NLP research
concerns the development of highly procedurally-
oriented formalisms that are intended specifically
to allow the stating of performance, rather than
competence, models of a language. Marcus's PIDGIN
formalism (Marcus, 1980) is primary among these
cfforts. Grammars in the formalism are comprised of
instructions as to what actions (such as node creation
or attachment) to perform on particular parsing data
structures in particular situations. Marcus used the
formalism to define a grammar modeling, among

other phenomena, the psycholinguistic phenomenon

NLP: Grammar formalisms

of garden-path sentences.

The move towards context-free-based formalisms
augmented with nonterminals structured as sets of
features and values led in the mid 1980s to the
development of a set of declarative (as opposed to
the previously discussed procedural) formalisms,
the so-called complex-feature-based or unification-
based formalisms, which include the linguistic
formalisms used in GPSG, LFG, and HPSG, as well as
the NLP formalisms Functional Unification
Grammar and PATR-II. These formalisms rely on
structured information associated with phrases (as
in categorial grammars) as opposed to unstructured
symbols (as in context-free grammars). In particular,
this set of structures can be thought of as the union of
a primitive set of atomic structures and the set of
finite functions whose domain is a set of features and
whose range is the set of structures itself. These
structures—called variously f-structures (in LFG),
feature bundles, feature matrices, or categories (in
GPSQG), attribute-value matrices (in HPSQG), or
feature structures—can be modeled mathematically
in various ways, as finite functions, graph structures
of a certain sort, or finite automata. Typically,
formalisms use these structures by allowing
grammars to specify constraints on the structures, for
instance, as equations. The PATR-II formalism,
perhaps the simplest member of the class, allows
rules to be augmented with equational constraints.
For instance, a rule for sentence formation with an
added constraint of agreement of subject and
predicate could be stated as:

S —> NP VP
<NP agreement> = <VP agreement>
<VP tensed> = yes
<S type> = declarative

Closely related to the unification-based grammar
formalisms are the logic grammar formalisms such

as Definite-Clause Grammars (DCG) (Pereira and

Stuart M. Shicber

Warren, 1980), Extraposition Grammars, Slot
Grammars, Gapping Grammars, and others. In these,
the structured nonterminals are typically first-order
terms, and the effect of equational constraints is
achieved by the sharing of variables. For example,
a DCG rule for sentence formation might be

s(Agr, decl) -> np(Agr), vp(Agr, yes).

where the sentence term arguments correspond to
agreement and type, respectively, the NP argument
to agreement alone, and the VP arguments to
agreement and tensedness. Shieber (1986a) gives
references for unification-based and logic-grammar
formalisms.

Comparing Formalisms

[n addition to true expressive differences among

grammatical formalisms, notational differences are
important, as they determine the ease of use of the
formalism and may push one towards certain styles
of analysis. However, the import of such notational
distinctions should not overwhelm that of the
analyses. One way to understand the relationships
among notationally distinct formalisms is to map
from one notation to another. A mapping is
revealing, however, only if it preserves some
important aspect of the grammars, ideally their
interpretation. To rigorously demonstrate such
semantic invariance, the input and output
formalisms must have explicit semantics defining
the interpretations of grammars, an area of research
that is only beginning to receive attention (Pereira
and Shieber, 1984). Nonetheless, at least informal
work on notational reductions has begun—for
instance, an attempt to reduce the GPSG formalism
to PATR-II (Shieber, 1986b). As a greater
understanding of the relationships among grammar
formalisms is achieved, it will be possible to place
them in their rightful role as ancillary devices,
secondary to the linguistic analyses that they are

NLP: Grammar formalisms

used to encode.

References

Gazdar, Gerald. 1984. Recent computer
implementations of phrase-structure grammar.
Computational Linguistics 10:3—4, 212-214 .

Greibach, Sheila A. 1981. Formal languages: origins
and directions. Annals of the History of Computing
3:1, 14-41.

Marcus, Mitchell P., 1980. A Theory of Syntactic
Recognition for Natural Language. Cambridge,
Massachusetts: MIT Press. :

Pereira, Fernando C. N. and Stuart M. Shieber.
1984. The semantics of grammar formalisms seen
as computer languages. In Proceedings of the 10th
International Conference on Computational
Linguistics,Stanford University, Stanford,
California, 123-129.

Pereira, Fernando C. N. and David H. D. Warren.
1980. Definite-clause grammars for natural
language analysis—a survey of the formalism and
a comparison with augmented transition networks.
Artificial Intelligence 13:3, 231-278.

Petrick, Stanley R. 1965. A Recognition Procedure
for Transformational Grammars. Ph.D. thesis,
Massachusetts Institute of Technology.

Pratt, Vaughan R., 1973. A linguistics oriented
programming language. Proc of the Third Int'l.
Joint Conf. on Artificial Intelligence. Stanford
University, Stanford, California, 372-381.

Robinson, Jane]J. 1982. DIAGRAM: A grammar for
dialogues. Communications of the ACM 25:1,
2747.

Sager, Naomi. 1981. Natural Language Information
Processing: A Computer Grammar of English and
its Applications. Reading, Massachusetts:
Addison-Wesley.

Shieber, S. M., 1986. An Introduction to Unification-
Based Approaches to Grammar. CSLI Lecture Note
Series Number 4. Stanford, California: Center for
the Study of Language and Information.

Shieber, Stuart M. 1986. A simple reconstruction of
GPSG. In Proceedings of the 11th International
Conference on Computational Linguistics,
University of Bonn, Bonn, West Germany,
211-216.

Stuart M. Shieber

Stabler, Edward P., Jr.; 1987. Restricting logic
grammars with government-binding theory.
Computational Linguistics 13:1-2, 1-10.

Wilensky, Robert, and Yigal Arens. 1980. PHRAN:
A knowledge-based approach to natural language
analysis. Memorandum No. UCB/ERL M80/34,
Electronics Research Laboratory, University of
California, Berkeley, California.

Yngve, V.H., 1958. A programming language for
mechanical translation. Mechanical: Translation
5:1, 25-41.

Zwicky, Arnold M., Joyce Friedman, B. C. Hall, and
Donald E. Walker. 1965. The Mitre syntactic
analysis procedure for transformational
grammars. In Proceedings of the AFIPS 1965 Fall
Joint Computer Conference, volume 27, part 1,
317-326. New York: Spartan Books.

NLP: Grammar formalisms

Stuart M. Shieber

