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Abstract

A major factor dfecting the clarity of graphical displays that include text labels is the degree to which labels obscure dis-
play features (including other labels) as a result of spatial overlap. Point-feature label placement (PFLP) is the problem of
placing text labels adjacent to point features on a map or diagram so as to maximize Idditsljpyoblem occurs frequently
in the production of many types of informational graphics, though it arises most often in automated cartiogtiaipipaper
we present a comprehensive treatment of the PFLP problem, viewed as a type of combinatorial optimization problem. Com-
plexity analysis reveals that the basic PFLP problem and most interesting variants of it are NP-hard. These negative results
help inform a survey of previously reported algorithms for PFLP; not surpriselbsuch algorithms either have exponential
time complexity or are incompleteo Folve the PFLP problem in practice, then, we must rely on good heuristic metieods. W
propose two new methods, one based on a discrete form of gradient descent, the other on simulated annealing, and report on
series of empirical tests comparing these and the other known algorithms for the problem. Based on, tthis ftatljo be
conducted, we identify the best approaches as a function of available computation time.

CR Categories: H.5.2rfformation Interfaces and Presentatior]: User Interfaces-sereen design. 2.1 [Artificial Intelli-
gencé: Applications and Expert Systemssartography. 1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—geometric algorithms, languages, and systems.

General €rms: algorithms, experimentation.

Additional Key Words and Phrases: label placement, automated cartogsaptiyastic methods, simulated annealing, heuris-
tic search.

1 Introduction

Tagging graphical objects with text labels is a fundamental task in the design of many types of informational graphics.
This problem is seen in its most essential form in the field of cartograpieye text labels must be placed on maps while
avoiding overlaps with cartographic symbols and other labels, though it also arises frequently in the production of other graph-
ics (e.g., scatterplots). Although several techniques have been reported for automating various label-placement tasks, the posi:
tioning of labels is still performed manually in many applications, even though it can be very tddesnining an optimal
positioning of the labels is, consequendy important problem.

In cartographythree diferent label-placement tasks are usually identified: labeling of area features (such as oceans or
countries), line features (such as rivers or roads), and point features (such as cities or mountain peaks) (Imhof, 1962; 1975).
While it is true that determining the optimal placement of a label for an isolated point feature is afgsgtddisk from

Cook and Jones (1990) report that cartographers typically place labels at the rate of only 20 to 30 labelsvitarthaprlettering contributing up to
half of the time required for producing high-quality maps.



determining the optimal placement of a label for an isolated line or area feature, the three placement tasks share a common
combinatorial aspect when multiple features are present. The complexity arises because the placement of a label can have glo-
bal consequences due to label-label overlaps. This combinatorial aspect of the label-placement task is independent of the
nature of the features being labeled, and is the fundamental sourchcaftdiin automating label placement.eWtherefore
concentrate on point-feature label placement (PFLP) without loss of generality; in Section 5 of the paper we describe how our
results generalize to labeling tasks involving line and area features.

The PFLP problem can be thought of as a combinatorial optimization problem. Like all such problems, two aspects must
be defined: aearch space and arobjective function.

Sear ch space. An element of the search space can be thought of as a function from point features to label positions, which we
will call a labeling. The set of potential label positions for each point feature therefore characterizes the PFLP search space.
For most of the published algorithms, the potential label positions are taken, following cartographic standards, from an explic-
itly enumerated set. Figure 1 shows a typical set of eight possible label positions for a point feature. Each box corresponds to a
region in which the label may be placed. Alternativalgontinuous placement model may be used, for example by specifying
a circle around the point feature that the label must touch without intersecting.

In certain variants of the PFLP problem, we allow a labeling to omit certain points and their labels (presumably those that
are most problematic to label, or least significant to the labeling application). When this option is included, the PFLP problem
is said to includgoint selection.?

Figure 1: A set of potential label positions and their relative desiratitityer values indicate more desirable positions.

Objective function. The function to be optimized, the objective function, should assign to each element of the search space (a
potential labeling of the points) a value that corresponds to the relative quality of that labeling. The notion of labeling quality
has been studied by cartographers, most notably by Imhof (1962; 1975). Holwvéwadts analysis is descriptive, not pre-
scriptive; coming up with an appropriate definition of the objective function for a general label-placement problem (that is,
one that includes point, line, and area features) isfiaudiftask. Labeling quality can depend on many factors, including
detailed “world knowledge” and characteristics of human visual perception. Many of the label-placement algorithms reported
in the literature therefore incorporate sophisticated objective functions. A popular approach has been to use a rule-based para-
digm to encode the knowledge needed for the objective function (Ahn and Freeman, 1984; Freeman and Ahn, 1987; Jones,
1989; Cook and Jones, 1990; Doerschler and Freeman, 1992). For the PFLP problem, hawkaterely simple objective

function sufices. Our formulation of the objective function is due t@lv(1972)* In Yoeli's scheme, the quality of a labeling
depends on the following factors:

« The amount of overlap between text labels and graphical features (including other text labels);
« A priori preferences among a canonical set of potential label positions (a standard ranking is shown in Figure 1); and

« The number of point features left unlabeled. (This criterion is pertinent only when point selection is incorporated into
the PFLP problem.)

2In many types of production-quality maps, overplots are preferred to exercising point selection (Ebinger and Goulette, 1990).
3A recent study conducted bywnd Buttenfield (1991) addresses the issue of placement preference for point-feature labels in more detail.



Figure 2 illustrates these factors. By specifying how to compute a numerical score for each of the criteria above, an objective
function can be defined. Such a function assigns to each labeling a number that indicates its relativeualitgssume
that low scores correspond to better labelings, so that the goal of the search is to minimize the objective function.
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Figure 2: Good (a) and bad (b) labelings of the same map.

The PFLP problem is a combinatorial optimization problem defined by its search space and objective function; we wish to
identify a general algorithm that is able to find a relatively good element of the search space. A natural issue to raise, before
exploring possible search algorithms, is the intrinsic complexity of this search problem. In Section 2 we summarize some pre-
vious results that show that the problem and many of its interesting variants are NP-hard. Thus, any complete search algorithm
will be impractical, any practical algorithm incomplét&his characterization is borne out by previously published algo-
rithms, which fall into two classes: exhaustive search algorithms and local search algorighrasiéW these algorithms in
Section 3. As expected, the exhaustive algorithms are computationally profligate, and therefore impractical for realistically
sized labeling instances.

We also present two new algorithms for the PFLP problem in Section 3. The first is a local search technique based on a
discrete form of gradient descent. Although it is also incomplete, its performance on problems with high label density and its
efficiency make it attractive under certain circumstances. The second technique is a stochastic algorithm based on simulated
annealing. An extensive empirical comparison of all the algorithms, the first comparative study of label-placement heuristics,
is presented in Section’4t illustrates the advantages of the new methods and provides recommendations for selecting a label-
ing algorithm.

2 The Computational Complexity of PFLP

In this section, we review some recent results on the inherent complexity of PFLP that have implications for algorithm
design. © demonstrate the inherent complexity of the problem (and, subsequenttynpare various algorithms for the
task), we must decide upon a particular instance of search space and objective fuedtieginMith a relatively simple ver-
sion of the problem. Once this simplified problem is shown to be NP-hard, it is straightforward to demonstrate that more com-
plicated variants of the problem are also NP-hard.

Our initial statement of the PFLP problem assumes a discrete placement model comprising four equally favored candidate
positions, those numbered 1 through 4 in Figure 1. Point selection is not allowed and the objective function to be minimized is
the number of point features labeled with one or more overplots. This simplified PFLP problem statement is an optimization
problem. In order to apply the theory of NP-completeness to Ri# Formulate a corresponding decision problem. For any
given PFLP problem instance, we can ask the question: Is there an admissible labeling, a labeling with a score of zero, in

“This holds, of course, only if NP, as is commonly believed.
SBrief summaries of this work have appeared elsewhere (Christensen et al. 1993; 1994).



which no labels overlap and no point features are obscured? The NP-completeness of this admissible-labeling problem has
been established independently by at least thrésrelit teams of researchers (Kato and Imai, 1988; Marks and SHig@&y

Formann and \gner 1991). An algorithm for the PFLP optimization problem could always be used to solve the admissible-
labeling problem: find an optimal labeling and check to see whether the cost is 0. Thus the PFLP optimization problem is at
least as dffcult as the admissible-labeling problem; in other words, the admissible-labeling result implies that optimal PFLP is
NP-hard.

In spite of the apparent intractability of the basic problem, some simple restrictions can reduce the complexity dramati-
cally. For example, a placement model that allows only two potential positions for each label results in a problem that is solved
easily in polynomial time (Formann andigher 1991). Similarlythe restricted set of problem instances in which no potential
label position overlaps more than one other potential label position can also be dtiertigf However these polynomi-
ally solvable subcases notwithstanding, the previous complexity results imply that PFLP problems likely to be of practical
interest are NP-hard.

If label sizes are held steadycreasing the scale of a map makes more room for labels. This observation leads to the fol-
lowing question: how much must the scale be increased to permit an admissible labeling for a given PFLP problem instance?
Formann and \Agner have developed arfig&nt algorithm for this problem that is guaranteed to find an admissible labeling
with a map scale no more than twice optimal (Formann asghéf 1991).

The recent complexity results make it clear that practical variants of, RfeliRling all those discussed in this papee
almost certainly intractable. Thus the failure of previous researchers to find an exact, polynomial-time algorithm for PFLP is
not surprising—it is extremely unlikely that anyone will ever discover such an algorithm. Instead, redegschhefuld be
directed towards powerful heuristic methods that may not exhibit guaranteed performance bounds, but that may work accept-
ably in practice. Several such algorithms are described and compared in the next section.

3 Algorithmsfor PFLP

Previously proposed PFLP algorithms fall into two main classes: those that perform a potentially exhaustive global search
for an acceptable or optimal labeling, and those that perform search on a local basis only

3.1 Exhaustive search: naive or clever

Exhaustive search algorithms for constraint satisfaction are often categorized based on the manner in which backtracking
is performed. As an example, consider an algorithm that enumerates points in a prescribed order and places each label in
position that is currently unobstructed. If, as the algorithm proceeds, a point cannot be labeled (either because there are ng
positions without conflict, or because all available positions have been tried), the algorithm returns to the most recently labeled
point and considers the next available position. The algorithm continues in this way until an acceptable labeling is identified or
until the entire search space has been exhausted. A variety of modifications can be made to this algorithm in the hope of
improving its performance. Heuristics include variable ordering, value ordering, returning to the source of failure, and various
pruning techniques (Korf, 1988).

Exhaustive search algorithms like these have formed the basis for numerous reported algorithms for label placement (Ahn
and Freeman, 1984; Freeman and Ahn, 1987; Noma, 1987; Freeman, 1988; Jones, 1989; Cook and Jones, 1990; Ebinger an
Goulette, 1990; Doerschler and Freeman, 1992; Consorti et. al, 1993). While these algorithms perform acceptably for rela-
tively small problems, in practice the exponential nature of the search space quickly overcomes the heuristics for even moder-
ately sized problems, making the approach of exhaustive search impractical as a general solution to the PFLP problem,
regardless of the sophistication of the particular heuristic. Indeed, the widespread use of exhaustive search techniques for the
combinatorial aspects of the label-placement problem is something of a m¥staster (1991) notes that part of the problem
might be the inappropriate use of expert-system technology: whereas a rule-based approach is useful in general label place-
ment for determining potential label positions and for evaluating candidate labelings, it suggests, mislézatingly-based
techniqgues—exhaustive search is easy to implement in a rule-based system—are useful for all aspects of label placement.

%Developing an dicient algorithm for this artificial problem is left as an exercise for the interested.reader



3.2 Greedy algorithms

A more practical approach to search results from avoiding the unbounded backtracking strategy of the exhaustive methods
altogetherBy limiting the scope of the search, morécgdnt algorithms can be devised. Of course, these algorithms may not
find optimal solutions, but the hope is that a suitable traideetiveen labeling quality and computational cost can be found.

Instead of undoing previously computed label placements, as with exhaustive search and its variants, any point whose
label cannot be placed can be treated summarily: the point can be left out if point selection is allowed (Langran and Poiker
1986), or it can be labeled even though a label overlap or feature obscuration results. (A third option, that of appealing to a
human oracle for assistance, is noted bgliy(1972) as a practical alternative.) Such a “greedy algorithm” for PFLP vyields
behavior that is éfctive for a much more realistic space of problems, although the lack of backtracking certainly impairs the
quality of the solutions that are found. For a greedy algorithm to be at all successful in identifying reasonable labelings, it is
essential that heuristics for guiding the search, such as those mentioned in Section 3.1, be used. Even then, there is typically
much improvement that can be made to the resulting labelings, as will be shown subsequently

3.3 Discrete gradient descent

The quality of labelings produced by a greedy algorithm can be improved dramatically if the labelings are repaired subse-
qguently by local alteration. This is the motivation for the gradient-descent algorithms presentedAbgtadient-descent
method is defined relative to a set of operations that specify ways in which one or more labels can be repositioned simulta-
neously The basic idea of gradient descent is to choose from among the set of available operations the one that yields the most
immediate improvement. By repeatedly applying the operation that most improves the labgiggiyatentlythe operation
that causes the most movement in the direction of the objective-function gradient), a new labeling can be computed that is sig-
nificantly superior to the original. Again we present a straw man to exemplify the idea. Let the set of operations comprise those
that move a single label arbitrarily from one potential position to andthasutline of the resulting algorithm, which we call
discrete gradient descent is given below:

1.For each feature, place its label randomly in any of the available candidate positions.
2. Repeat until no further improvement is possible:
(a) For each feature, consider moving the label to each of the alternative positions.

(b) For each such repositioning, calculate the change in the objective function that would result if the label were
moved.

(c) Implement the single label repositioning that results in the most improvemiestaf€ resolved randonjly

In practice the algorithm precomputes a table of costs associated with each possible repositioning. After each label posi-
tioning, only elements of the table that touch the old or new label positions are recomputed.

Local minima

The major weakness of the discrete gradient-descent algorithm is its inability to escape from local minima of the objective
function. Figure 3 shows a typical example of a local minimum. (The examples of local minima in this section, and those dis-
cussed for the Hirsch and Zoraster algorithms, though artificially constructed, are idealized versions of local minima that arose
during experimentation with actual maps.) In this case, the conflict can be resolved by moving the lowey ffaslte’its
bottom-left position and the upper featsrébel to its upperight position. UnfortunateJymaking any single move has no
effect on the value of the objective function, and, because the algorithm only accepts changes that show an immediate
improvement, the algorithm is unaware of the possibility of accepting a neutral move in order to make an improvement.
Adjusting the algorithm to allow it to make moves that do nfeicathe objective function might remedy this particular exam-
ple, but is not stitient in general. In the example of Figure 4, the current value of the objective function could be improved
from four obstructed labels (Figure 4a) to three (Figure 4b) by moving the four middle labels to their left-most positions. How-
ever any one of these moves will initially result in an uphill step and an intermediate score bifrti. the incidence of such
local minima, more sophisticated gradient-descent heuristics have been devised. Nevertheless, as we will see, even the sim
plest discrete gradient-descent method performs surprisingly well.



Figure 3: A local minimum of the discrete gradient-descent algorithm. The candidate label positions are marked with boxes, and the
selected label positions are shaded.
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Figure 4: Another local minimum of the discrete gradient-descent algorithm (a) and an optimal configuration (b). The candidate label
positions are marked with boxes, and selected label positions are shaded. Obstructed label positions are shaded dark.

3.4 Approximating the gradient with overlap vectors

Hirsch (1982) presents a more sophisticated gradient-descent method fd Pfilseh’s algorithm uses a continuous
placement model in which each point feature has an infinite set of potential label positions. The potential positions for a point
touch, but do not intersect, a circle centered about the point; labels are allowed to slide continuously around a circle (see Fig-
ure 5a). When the label touches at the highest, lowest, left-most, or right-most points of the circle, it is considered to be in a
special zone and is allowed to slide back and forth along the point of tangency (see Figure 5b).

Initially each label is placed in the special zone to the right of its point. Each label is then tested for overlaps with other
labels and intersections with the circular boundaries of other points. For each conflict an overlap vector is computed based on
thex andy extents of the overlap or intersected area. Each overlap vector is split between the two conflicting features and rep-
resents the movement required to eliminate a particular conflict. The sum of overlap vectors associated with each label is then
calculated to give an aggregate vector that represents (in an intuitive sense) a good direction in which to move the label so as
to eliminate the overlaps and intersections. In Figure 5c the overlap vectors are drawn in ljgrtdytg aggregate vectors
in black. (For labels involved in only one conflict the single overlap vector and the aggregate vector are the same.)

A more elaborate version of this approach is described in U.S. Patent #5,355,314 (Feigenbaum, 1994). The algorithm describéststevein dif
Hirsch’s method in the following ways: in addition to repulsive forces from other labels and features, labels experience attractive forces from the cartographic
features that they tag; labels initially start out very small and are grown to their full size over the course of the physical simulatifiniethts co¢fie var-
ious force formulae are set so that conflicts lead to adimalty stable” system in which conflicted labels can be subjected to strong forfagersitb escape
some local minima; moving labels encounter frictional forces that help to dampen oscillations; and the Imhof standards for point-feature label preferences are
incorporated through various algorithm-specific heuristics. This algorithm is currently in commercial use. Due to its recent publication, we were unable to
include the algorithm in our comparative study

SMower (1986; 1993) describes an approach that shares characteristics of botls Higaeithm (relaxation and constraint-propagation) and depth-first
search (features are treated serially instead of in parallel as Hirsch does).
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Figure 5: Some example potential label positions for Hissalgorithm (a), along with the special zones (b), and an example of overlap
vectors (c).
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Once an aggregate overlap vector has been calculated for each label, the algorithm seeks to move each label in the gener:
direction of this vector in an fefrt to reduce the number of overlaps. The heuristic technique employed involves two styles of
movement, amncremental movement around the circle and apsolute movement, which shifts the label directly to the point
on the circle indicated by the overlap vecldrus there are only two basic operations available for altering a labeling, but each
operation is applied to all point features on a given round of application so that many labels may change positions simulta-
neously The absolute movement repositions the label directly to the position indicated by the aggregategaatess of
the labels current position. The incremental movement, on the other hand, involves a series of heuristic rules that move the
label in the direction of the aggregate overlap vettosch suggests alternating between the two movement styles, with more
frequent application of the incremental movement.

The intuition behind the algorithm is best explained by an analogy with a physical system. The individual overlap vectors
represent a “force” of repulsion between overlapping objects, the sum an aggregate force. Thus, through gradual movements,
the system settles into a local minimum of the “gpéof the system. The overlap vectors approximate the gradient in the
enegy space. @ allow some ability to exit from local minima, the absolute movements are designed to allow a jump from one
enegy state to anothghopefully lower one.

There are two sources of problems for Hirscilgorithm. First, since the overlap vectors provide only an approximation
of the gradient, they are subject to er@econd, like the discrete gradient-descent algorithm, Hirsdfporithm is susceptible
to getting stuck in local minima.

Gradient approximation errors

A typical dilemma is due to the summation of overlap vectors. When multiple labels overplot a single label, the magni-
tude of the calculated aggregate vector will often be unnecessagiy laading to problems of overshooting during incre-
mental movements.

Note also that Hirsch’overlap vectors each exhibit two degrees of freedom, whereas the labels are constrained to lie tan-
gent to their associated circles. The result is that even in those cases where the accumulated overlap vector represents a favo
able direction of movement, the particular manner in which a label is repositioned is often quite fragilgeltcartgvonent
of the overlap vector points radially outward, for example, the location of the repositioned label is somewhat arbitrary

Local minima

Hirsch’s algorithm, like the discrete gradient-descent algorithm, can also get stuck in local minima. The nature of these
minima is closely related to the specific heuristics the algorithm employs in response to various overlap situations. Figure 6
shows a problematic configuration. During applications of the incremental movement, the label is adjusted slightly up and
down until it is centered between, but still conflicting with, the two labels above and Brldng applications of the abso-
lute-style movement, the horizontal component of the overlap vector dominates, and the label cycles between the left and right
placements, missing the acceptable positions above and below the feature.

Compensating for the placement model

In order to compare the performance of Hirscilgorithm against other PFLP algorithms, several issues relating to the
placement model need to be addressed. The presence of a circidasbubunding each point feature handicaps the algo-
rithm, disallowing free space that other algorithms are able to exploit, and forcing labels outward, thus increasifeg-their ef
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Figure 6: A local minimum of Hirsch'algorithm. The algorithm oscillates between configurations (a) and (b), unable to discover the
preferred configuration (c).

tive dimensions. W considered two methods to compensate for this. First, we experimented with adjusting the label sizes for
Hirsch's algorithm. V& decreased the dimensions of each label such that the combined area of the placement circle and
reduced label was equivalent to the area of the unmodified label. Second, we simply set the radius of the placement circle to
zero. & found the latter method to perform slightly better on average, and included this variant of the algorithm in our com-
parisons. A related issue involves the continuous nature of the placement model. Since this allgesanththerefore less-
constrained search space, this probably gives Hgsdforithm an advantage. Although this discrepancy is harder to resolve,

a fairer comparison could be obtained by running the discrete algorithms with a 16- or 20-position placement model, as
opposed to the foyposition model used in the experiments. Howether results described in Section 4 render this point irrel-

evant.

3.5 Mathematical programming for PFLP
Next, we turn to an algorithm introduced by Zoraster (1986; 1990) that addresses the optimization nature of PFLP
directly by applying mathematical programming techniques to its soiftidoraster begins by formulating PFLP as a 0-1
integer programming (ZOLP) probleth:
* GivenK labels and\, possible positions for each label, each potential label position is represented by a variable
X, 1<i<N,,andl<k<K. (Point selection is achieved by specifying a special label “position” that indicates a
deselected point.)

» EachX , has value 0 or 1, indicating the absence or presence, respedivelgbel in that position.

Nk
« One set of constraints expresses the requirement that each point be labeled exacyxnce: 1 for 1<k<K.
i=1

®This is perhaps not surprising given the algorithpredilection for label placements within special zones. Incremental movements tend to relocate
labels into special zones, whereas only the absolute-style movements are able to move a label out of a special zone. Since the algorithm finishes with a series
of 15 incremental movements, in practice nearly all labels finish in special zones.

0This algorithm is in commercial use in the oil industry to label drilling maps (Zora9©o).

HCromley (1986) has experimented independently with a slighfigrdiit ZOLP formulation of the label-placement problem.



» Given Q pairwise overlaps between possible label positions, a second set of constraints expresses the requirement
that no two labels overlagX; s + X s <1 for each potential overlag,<q<Q.

K Ny
* The objective functionisy 5 w, , X, , whereW,  is a weighting that represents placement preferences.
k=1 i=1
Because ZOLP is itself NP-hard (Sahni, 1974), a compldieieet algorithm for the PFLP problem recast in this way is
still not possible, but heuristic techniques for ZOLP can now be applied to the PFLP problem. Zoraster combines Lagrangian
relaxation, subgradient optimization, and several problem-specific heuristics in his solution. The primary insight ofsZoraster
algorithm is to relax the overplot constraints and include them as additional penalty terms in the objective function. This gives:

K Ny Q
* Minimize >y W, Xt > (Xeys, + Xeys,— 1) d,

k=1i=1 q=1

Nk
* Still subject oy X, = 1 forl<ks<K

i=1

In this modified objective function, thi > 0 are Lagrangian multipliers, one for each pairwise overplot constraint. Note
that for a given set of Lagrangian multipliers, the minimum value of the objective function is easily identified by choosing the
label-position variable with the smallest objective-function facieht for each point feature. Although Lagrangian methods
for ZOLP can be arbitrarily sophisticated, Zora'stdrasic algorithm is a straightforward implementation of standard tech-
niques (Fisher1981):

1.Compute and store the objective-function fioet for each potential label position.

2.Generate a current labeling (CL) by picking the label position with the lowest objective-functificieatfior
each point feature.

3.Initialize the active constraint set (ACS) to the empty set.
4.Repeat for 40 iterations or until a solution with no label conflicts is found:

(a) Identify all pairwise constraints that CL violates and add any new ones to ACS. (The Lagrangian multiplier of
each newly introduced constraint is zero initiadly adding a new constraint to ACS does recathe objec-
tive-function coeficients.)

(b) Make a local copyCL', of CL.

(c) Repeat fox iterations, whera is the lower of 400 or the number of iterations required to find a feasible solu-
tion with respect to the current ACS, plus an additional 100 iterations if a feasible solution is found in the first
400 iterations?

i. Update CL' by picking the label position with the lowest objective-functiorficmeift for each point fea-
ture.

ii. Copy CL'to CL if itis better

iii. If a constraint in ACS is overconstrained (i.e., both conflicting label positions are occupied), the corre-
sponding Lagrangian multiplier is increased, thus increasing the objective-functibicieoisf for the two
label positions involved.

iv. If a constraint in ACS is underconstrained (i.e., both conflicting label positions are not occupied), the corre-
sponding Lagrangian multiplier is decreased, thus decreasing the objective-functicreatefor the two
label positions involved.

5. Return CL.

2This inner loop constitutes the Lagrangian heuristic, with steps (iii) and (iv) constituting the subgradient optimization. Note that the Lagrangian heuris-
tic will be solving relatively simplified versions of the full problem initiathgcause very few constraints will be included in ACS at first.



Local minima

If the algorithm were implemented exactly as described above, it would perform quite pberbigorithm exhibits two
weaknesses: a pronounced sensitivity to local minima, and a tendency to fall into useless cyclic behavior

To address the worst of these deficiencies, Zoraster recommends a series of modifications to the basic algorithm. The first
modification he suggests is rescaling the size of the multiplier increments used in 4(c)iii andf4pecified number of
iterations have passed without improving the best solution seen, the algorithm is assumed to be in a region surrounding a loca
minimum of the objective function. By reducing the multiplier increments periodithdyalgorithm is often able to identify
improved minima.

Even with this modification, the algorithm tends to cycle about local minima, continuously re-evaluating a particular
sequence of labelings. If two features have overlapping label positions, for example, and both are currently occupied, then the
associated objective-function ctieients of both positions will be increased. This will make them less attractive over time and
it is likely that both labels will be simultaneously moved to alternate positions. On subsequent iterations, both positions will
still overlap but are now unoccupied so their associatedicieats will decrease. This will make both positions relatively
more attractive to their respective features and it often occurs that they will be simultaneously reoccupied. This situation is
illustrated in Figure 7. In order to avoid this particular type of cyclic behaX@aster discriminates in the overconstrained
case, applying the multiplier to only one of the objective-functionfictmits; the choice between chefnts is made by
examining whether the algorithm is currently in an odd- or even-numbered iteration. This second modification proves to be
crucial to the success of the algorithm though it has no motivation or analogue in the mathematical formulation.
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Figure 7: Stable and unstable configurations for Zoraségproach. The conflict in configuration (a) causes the filled regions of the
upper and left points to be disfavored, and the slack in the potential conflict between the lower and left points causes the unfilled
regions for those two points to be favored. This leads eventually to modifying the configuration as in (b). This configuration, similarly
eventually leads back to the configuration in (a). The stable configuration (c) is never found.

A more insidious form of cycling can be caused by the intersection of more than two potential label positions. Overplots
will gradually be discouraged, yet resolved overplots will result in underconstrained pairwise constraints, which in turn
encourage surrounding labels to repopulate the contentious region. This situation is illustrated in Figure 8. Since the center
candidate position overplot represents an underconstrained constraint, the left and right labels will be encouraged to move intc
the conflicted area, despite the fact that this will always introduce a conflict with the top label. As the number of label positions
that overlap increases beyond three, the problem is exacerbated since label positionings are encouraged in regions that ai
often already dense with overplots. Zoraster attempts to address this deficiency by a third modification: arbitrarily pinning
variables (i.e., fixing their values permanently) that are subject to four or more pairwise overplot constraints. If no feasible
solution has been identified after 400 iterations of the Lagrangian heuristic, variables that are subject to more than three over-
plot constraints are pinned to zero. If after 600 iterations a feasible solution has still not been identified, the current (infeasible)
solution is returned to the top level of the algorithm. This is equivalent to arbitrarily eliminating label positions in crowded
areas of the map.

A fourth modification that attempts to control the algorithisusceptibility to this weakness is the choice of multiplier
increments. Zoraster recommends an initial overconstrained stepsjzarmd an underconstrained stepsize:nfThe rela-
tive magnitudes of the stepsizes loosely represent the ability of a violated constraint to discourage subsequent reoccupation o
a conflicted label position. Although Zorastefeo$ these values as empirical constants based on his experiments with a vari-
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Figure 8: An unstable configuration for Zoraselgorithm.

ety of different maps, optimal values are probably dependent on the density of the particular labeling problem. Indeed, we
obtained better performance by using slightly modified parameter values and by making other subtle changes to the algorithm,
as discussed elsewhere (Christensen et al., 1992).

3.6 Stochastic search

As we have seen, each of the local search methods can be trapped in local minima of the search space; the inherent intrac
tability of the problem makes this inevitable for any practical algorithm. Nonetheless, we may still hope to improve upon the
level of performance exhibited by these algorithms by examining more carefully the frailties that they exhibit.

The problems with the local search methods fall into two classes. First, there are systematic patterns on which the various
algorithms get into trouble by getting trapped in local minima. As the number and density of points increases, the odds of see-
ing these patterns increase correspondjrayhyl performance may degrade. Second, the particular operations that the algo-
rithms incorporate do not allow for jumping out of a local minimum once one is found. These two behayisiesnaficity
andmonatonicity are symptomatic of problems for which stochastic methods tend to work well. Stochastic methods, such as
simulated annealing (Kirkpatrick, Gelatt,Jand \écchi, 1983; @rny, 1985) and genetic algorithms (Holland, 1975), attempt
to resolve the problems of systematicity and monotonicity by incorporating a probabilistic or stochastic element into the
search. Since the stochastic course of behavior is unpredictable, systematic artifacts of the algorithm can be eliminated, and
allowance can be made for a suitably limited, nonmonotonic ability to jump out of local minima. It seems natural then to apply
a stochastic method to the PFLP problem.

Simulated annealing for PFLP

Simulated annealing (Kirkpatrick, Gelatt,Jand \écchi, 1983; @rny, 1985) is essentially a stochastic gradient-descent
method that allows movement in directions other than that of the gradient. In fact, the solution is sometimes allowed to get
worse rather than bettedf course, such anarchic behavior is not tolerated unifoiRather the ability of the algorithm to
degrade the solution is controlled by a paramEtealled the temperature, that decreases over time according to an annealing
schedule. At zero temperature, such negative steps are disallowed comptethigt the algorithm reduces to a descent
method (though not necessarily along the gradient). At higher temperatures, haveiger range of the space can be
explored, so that regions surrounding better local minima (and perhaps even the global minimum) may be visited. The follow-
ing outline describes the essential characteristics of a simulated-annealing algorithm for PFLP:

1.For each point feature, place its label randomly in any of the available potential positions.
2.Repeat until the rate of improvement falls below a given threshold:
(a) Decrease the temperatufie, according to the annealing schedule.
(b) Pick a label and move it to a new position.
(c) ComputeAE, the change in the objective function caused by repositioning the label.
(d) If the new labeling is worse, undo the label repositioning with probalpility 1.0 —e2&'T,

The implementation of a standard simulated-annealing algorithm involves four components: choice of an initial configu-
ration, an appropriate objective function, a method for generating configuration changes, and an annealing schedule.
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Initial configuration. As an alternative to starting with randomly placed labels, one could consider a “piggyback” method
where simulated annealing is applied as a post-process to the results of another algorithm. In our experimentshisowever
did not lead to either a significantly better solution or faster cgevee.

Objective function. The choice of objective functionfatts the aesthetics of the layout, the quality of the solution, #ind ef

ciency of the search. Because simulated annealing is a statistical method that relieg@muani@er of evaluations for its
success, the best objective functions are those for whkiiclcan be computed quicklffhe objective functions we chose
counted the number of obstructed labels (if point selection was disallowed) or the number of deleted labels plus the number of
obstructed labels. If point selection is allowed, we also considered an objective function that counts the number of pairwise
overplots plus the number of deleted labels. This change in objective function does not noticeably change the performance of
the annealing algorithm, but has the advantage of being significantly faster to compute.

Configuration changesWe have experimented with two strategies for choosing which label to reposition: the label can be
chosen randomly from the set of all labels, or it can be chosen randomly from the set of labels that are currently experiencing
a conflict. The second method isolates changes to those parts of the map that have conflicts, causing the algoritlya to conver
faster When cartographic preferences that distinguish label positions are included in the problem, this simplification is no
longer acceptable because the movement of unconflicted labels feayttaé current value of the objective function. In the
experiments reported here, the more time-consuming method of choosing from all available features was used.

Annealing scheduleThe initial value ofT was selected so th& = § whenAE = 1. At each temperature a maximum of

20n labels are repositioned, whemeis the number of point features. The temperature is then decreased by 10 pexcent. W
employ a Metropolis-style algorithm, always accepting a suggested configuration change if it leads to a lower cost. If more
than 5n successful configuration changes are made at any temperature, the temperature is immediately decreased. This pro-
cess is repeated for at most 50 temperature stages. HoWéveralgorithm stays at a particular temperature for the2firl

steps without accepting a single label repositioning, then it stops with the current labeling as the final sa@dtand\he

particular choice of annealing schedule to have a relatively mifemt @in the performance of the algorithm as discussed in
Section 4. This particular schedule was chosen to provide a reasonable ftiagisve€n dfciency and solution quality;

longer annealing schedules result in slightly improved solutions.

4 Comparison Experiments

In order to compare thefettiveness of this wide variety of algorithms for PFwe implemented six algorithms chosen
from the set of non-exhaustive methods for PRCRIr experiments have shown that exhaustive methods are impractical for
maps with as few as 50 point features.) The algorithms evaluated included a straw-man random-placement algorithm, in which
label positions are assigned in a completely random fashion. This algorithm servesfestian Efwer bound on algorithm
performance. A greedy algorithm that serves as ficiegft variant of the exhaustive methods described in Section 3.1 was
also tested. The discrete gradient-descent algorithm was implemented, in addition to the algorithms of Hirsch and Zoraster
Finally, a stochastic algorithm utilizing simulated annealing was implemented. Each of the algorithms (except f&) Hirsch’
was allowed four candidate placement positions for labels. All candidate positions were taken to be equally desirable, i.e.,
preferences among tBfent potential label positions were not considered (except where otherwise noted). A complete discus-
sion of the implementation details for all of the algorithms is provided elsewhere (Christensen et al., 1992).

We began our comparison by testing the performance of each of the algorithms on randomly generated data, with and
without point selection, to establish an overall rankirggd&termine whether the relative performance of the algorithms was
affected by the particular distribution, we then conducted similar tests on naturally occurring point-feature data. Next we ran a
series of experiments on two gradient-descent variants in an attempt to improve on the best-seen solutions. Finally we investi-
gated the décts of varying the annealing schedule of the simulated-annealing algorithm, and noted that the presence of carto-
graphic preferences for candidate positions plays an important role in the usefulness of varying the annealing schedule. For
this we conducted four additional trials, comparing the performance of thfeeedifannealing schedules while varying the
use of point selection as well as the inclusion of cartographic preferences.
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Figure 9: Results of empirical testing of six PFLP algorithms on randomly generated map data with point selection prohibited and
allowed. The vertical axis shows the fraction of labels plotted without obstruction.

In the first group of tests, point features with fixed-size labels (30 x 7 units) were randomly placed on a region of size
792 by 612. (These dimensions were selected subjectively ifoantefidentify a typical map scale for ah by 8.5 inch page
size.) Bsts were run fon = 50, 100, 150, ..., 1500. For each problem size tested, 25 layouts were generated, a score was cal-
culated equal to the fraction of labels placed without overplots, and the results were averaged to give a composite result for the
algorithm at that problem size. No penalty was assessed for label positions that extended beyond the boundary of the region.
These tests were then repeated with point selection allowed. For most of the algorithms doaelestyt descent, Zoraster
and simulated annealing) this was a natural extension. For the Hirsch algorithm, hdatveneemwas no straightforward
method of allowing points to be deleted. In order to include Hissaligorithm in the point-selection comparisons, we devel-
oped a post-pass deletion heuristic, which seeks to clear the map of overplots with the fewest number of label deletions possi-
ble. This heuristic deletes the feature whose label has the greatest number of conflicts with other (non-deleted) labels. This
process is repeated until the map is free from overplots. Although this algorithm is clearly non-optimal (it is straightforward to
show that optimal PFLP is reducible to the problem of optimal label deletion, which is therefore NP-hard), we found it to be an
acceptable heuristic in practice. The score was again the fraction of labels placed without conflict. Figure 9 shows the results
of these experiments. As these graphs sksiwulated annealing performs significantly better across the full range of prob-
lems consideredDther perspectives on these results are shown in Figures 10 and 11. Figure 10 shows a particular random map
of 750 point features labeled by the six basic algorithms. Figure 11 illustrates the variance across 25 different problem
instances, for maps involving 750 and 1500 point features.

Next, cartographic data for Massachusetts were used to test the algorithms on naturally occurring point-feature distribu-
tions obtained from the GNIS state file for Massachusetts (United States Geological Survey 1990). The algorithms were again
scored based on the number of unconflicted labels, both with and without point selection. At each problem size, 25 layouts
were generated by choosing randomly from the data file. For example 350, each problem instance was generated by
choosing 350 point features randomly from the GNIS dastsTwere run fon = 50, 100, 150, ..., 500. Figure 12 shows the
results of these tests. Because the ratio of average label size to available map area is signifjeaflytted Massachusetts
examples, and also due to clustering of the point features, the performance of the algorithms deteriorates faster in the experi-
ments involving Massachusetts data (Figure 12) as compared with the randomly generated data (Figure 9). Nonetheless, the
overall rankings are preserved.

Though the simulated-annealing algorithm easily dominated the competing algorithms, we noted that the discrete gradi-
ent-descent algorithm performed surprisingly well given its simpliegpecially at high densities, where it outperforms all
methods but simulated annealing.ifivestigate this approach in more detail, we implemented two related algorithms, “2-opt”
and “3-opt” discrete gradient-descent algorithms, which consider the best sequence of two and three repositionings at each
iteration® A practical implementation of these algorithms is moderately complicated and requires a careful strategy for selec-
tive rescoring of repositionings at each iteration, supporting data structureficfene$earch of a table of repositionings, and
some clever record-keeping measures. Figure 13 shows the results of these new variants compared with the original discrete
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gradient-descent algorithm, the simulated-annealing algorithm and the random-placement algorithm. Although the “2-opt”
and “3-opt” algorithms each improve on the performance of their predecegsdegree of improvement grows less in each
case, hinting towards an asymptote around the performance of the simulated-annealing algorithmeventhéth a very
careful implementation, the computational requirements of the 2-opt and 3-opt algorithms quickly become unreasonable as the
number of candidate positions increases.

The next set of experiments investigated tiectbf the annealing schedule on the performance of the simulated-anneal-
ing algorithm. V& found that for very simple objective functions, e.g., the originalgosition model without placement
preferences, most potential label repositionings havefect@in the value of the objective function. For such spaces, a simple
random descent (the equivalent of zero-temperature simulated annealing) performs nearly as well as simulated annealing a
medium and even long schedules. This is seen in Figure 14. As the terrain of the search space becomasdaugblees
a greater number of local minima, the utility of the annealing schedule is increased. Figure 15 shows that in experiments
involving a fourposition model with placement preferences, the performance of zero-temperature annealing drops roughly to
that of the discrete gradient-descent algorithm.

Computational resources required for the various algorithms vary dramaticdllyot unexpectedlys a rough indica-
tion of algorithm performance, Figure 16 depicts a scatterplot of running times for each of the algorithms running on a DEC
3000/400 AXP workstation.drthe extent that these running times are representative of the intrinsic computational require-
ments of each algorithm, certain subsumption relationships can be derived. For example, Zalgsti#éhm lies to the lower
right of the 3-opt discrete gradient-descent algorithm, indicating that it is both slower and exhibits inferior solutions. The 3-opt
algorithm, in turn, is dominated by the simulated-annealing algorithm. Eliminating algorithms that are subsumed by other
algorithms leaves a “staircase” of algorithms that, depending on requirements of time versus solutionvquhlitye pre-
ferred for a given task. At both densities shown, this staircase includes, in order of increased computation time and solution
quality: random placement, the greedy algorithm, the original gradient-descent algorithm sHilgatithm at low densities,
the 2-opt gradient-descent algorithm, and the simulated-annealing algorithm.

5 Conclusions

The point-feature label-placement problem is a graphics-design problem of practical importance andficoled dif
Analysis of the computational complexity of the problem bears out its inheréotlthf the search for good heuristic solu-
tions thus becomes important. In this papex have proposed two new algorithms for PFLP—variants of discrete gradient
descent and simulated annealing—and compared them with previously proposed algorithms. This empirical testing, which
constitutes the first such comparative stymtgvides the basis for a graphic comparison of the time-quality tfaddabel-
placement algorithms, demonstrating that certain algorithms—3-opt gradient descent, 'Zpeasiadirscls algorithm, for
instance—are subsumed by others in both speed and giiaktyexperiments alsogare for the use of simulated annealing
over the alternatives when solution quality is critical. For time-critical applications, the annealing schedule can often be short-
ened or eliminated altogether while still providing reasonable solutions. This result stands in contrast to previous empirical
investigations of simulated annealing, which have shown that for a few NP-hard problems simulated annealing is competitive
with customized heuristic techniques, but typically only when allowed to run for very long periods of time (Johnson et al.,
1989; 1991). Simulated annealing has the additional advantage of being one of the easiest algorithms to inghéarent. T
gives the number of lines of code for each of the algorithms under our implementation, as an admittedly rough indication of
implementation complexity?

e use these terms because of the similarity of these methodsktoghmethods proposed for the NP-completavEling Salesman Problem (TSP).
Variants of this method comprise the current best algorithms for the TSP (Johnson, 1990).

“Note that the performance of the gradient-descent algorithm appears to have increased relative to the original experiments. Because the original objec-
tive function yields a search space with many flat plateaus, the algorithm is often unable to find the edge of a plateau and terminates; the modified objective
function yields virtually no plateaus and the algorithm is able to continue further before reaching a local minimum. A second reason for the improvement is
the inclusion of preferences in the score metric. Since the score considges dyaamic range, the scale of the graph along the vertical axis is more com-
pressed, resulting in a closer grouping of the algorithms. (Notice the relatively higher performance of random placement as compared with the previous trials.)

50ur implementation makes extensive use of function pointers to provide dynamic reconfiguration of the basic aspects of each algorithm. As a resuilt,
however these numbers are undoubtedly higher than those that would occur in more straightforward implementations.
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Algorithm Lines of C code
Random Placement 20
Greedy 79
Gradient Descent (1-opt) 210
Simulated Annealing 239
Zoraster 346
Hirsch 381
Gradient Descent (2-opt) 1807
Gradient Descent (3-opt) 2284

Table 1: Lines of source code for |abel-placement algorithms

Unlike much of the previous work on label placement, the approach we have suggested cleanly separates the combinato-
rial-optimization aspect of the problem from the candidate-position modeling aspect. This way of stating the problem allows
for the search algorithms discussed here to be used with more advanced cartographic positioning models. Modifying the algo-
rithm to generate new sets of potential label positions, which is necessary to permit the labeling of line and area features, is
accomplished easily, provided adequate models of line-feature (Ebinger and Goulette, 1990) and area-feature labeling
(Carstensen, 1987; van Roessel, 1989) are available. Figure 17 shows a sample map involving all three feature types, as
labeled by the simulated-annealing algorithm (Edmondson et al., 1995). Changing the objective function to allow for a priori
placement preferences, sophisticated point selection, and complex interactions between labels and map symbology is also pos-
sible.
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Figure 17: A map involving line, area, and point features labeled by the simulated-annealing algorithm. A random labeling is shown in
(a). An intermediate configuration of the algorithm is shown in (b). The final labeling is shown in (c). The simulated-annealing
algorithm conveges from a random labeling to a final labeling in less than a second on a DEC 3000/400 AXP workstation.
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Figure 17: A map involving line, area, and point features labeled by the simulated-annealing algorithm. A random labeling is shown in
(a). An intermediate configuration of the algorithm is shown in (b). The final labeling is shown in (c). The simulated-annealing
algorithm conveges from a random labeling to a final labeling in less than a second on a DEC 3000/400 AXP workstation.
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