
Representation in stochastic search for phylogenetic
tree reconstruction

Griffin Weber a,b,*, Lucila Ohno-Machado a, Stuart Shieber b

a Decision Systems Group, Brigham and Women!s Hospital, Division of Health Sciences and Technology, Harvard and MIT, USA
b Division of Engineering and Applied Sciences, Harvard University, USA

Received 28 May 2005

Abstract

Phylogenetic tree reconstruction is a process in which the ancestral relationships among a group of organisms are inferred from their
DNA sequences. For all but trivial sized data sets, finding the optimal tree is computationally intractable. Many heuristic algorithms
exist, but the branch-swapping algorithm used in the software package PAUP* is the most popular. This method performs a stochastic
search over the space of trees, using a branch-swapping operation to construct neighboring trees in the search space. This study intro-
duces a new stochastic search algorithm that operates over an alternative representation of trees, namely as permutations of taxa giving
the order in which they are processed during stepwise addition. Experiments on several data sets suggest that this algorithm for gener-
ating an initial tree, when followed by branch-swapping, can produce better trees for a given total amount of time.
! 2005 Elsevier Inc. All rights reserved.

Keywords: Phylogenetic tree reconstruction; Parsimony; Hill-climbing; Stepwise addition; Branch-swapping; Tree bisect reconnect; Three-way labels

1. Introduction

A phylogenetic tree is a graph representing the ancestral
relationships among a group of organisms. Phylogenetic
tree reconstruction is an approximation to the true phylo-
genetic tree for a set of organisms based on contemporane-
ous evidence such as corresponding DNA sequences. The
problem is thought of in computational terms as a combi-
natorial optimization problem. The combinatorial aspect
involves a search through the space of all possible such
trees; the optimization is defined by an objective function
that approximates a notion of the closeness of each poten-
tial tree to the correct tree. Although more realistic objec-
tive functions such as maximum likelihood have been
defined and explored, the maximum parsimony objective
function [1,2]—the summed Hamming distances between
edge-connected taxa—is widely used for its computational
simplicity. Phylogenetic reconstruction using maximum

parsimony involves finding the tree with the lowest score.
The advantage of maximum parsimony over maximum
likelihood is that it is often computationally simpler. Even
so, for n taxa, there are (2n ! 5)!! possible unrooted trees
[1]. Therefore, with any nontrivial number of taxa, the
problem of finding the optimal tree is far too complex to
solve exactly in a realistic amount of time.

A wide variety of methods for reconstructing phyloge-
netic trees have been proposed, from simple clustering
methods to algorithms that form complex probabilistic
models of evolution [1,3–6]. Chief among these is a series
of stochastic search procedures such as those implemented
in the widely used PAUP* system [7]. In general, a stochas-
tic search algorithm for solving a given problem requires
specifying a representation of candidate solutions and a
search regime. Previous stochastic search procedures have
differed primarily in the search regime used. In this paper,
by contrast, we show that by varying the representation of
the search space, rather than the search regime, we can
achieve improved performance over algorithms using the
standard tree representation. In so doing, we introduce a

1532-0464/$ - see front matter ! 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jbi.2005.11.001

* Corresponding author. Fax: +1 617 496 1066.
E-mail address: weber@fas.harvard.edu (G. Weber).

www.elsevier.com/locate/yjbin

Journal of Biomedical Informatics xxx (2006) xxx–xxx

ARTICLE IN PRESS

mailto:weber@fas.harvard.edu


new heuristic algorithm for maximum parsimony phyloge-
netic tree reconstruction that outperforms the standard
branch-swapping algorithms used by most software pro-
grams [7].

The paper begins with an overview of stochastic search
and its application to phylogenetic tree reconstruction in
Section 2, and describes the branch-swapping algorithm
in stochastic search terms and presents the new representa-
tion. Section 3 lists the data sets and experiments used to
compare the new algorithm to the current standards. Sec-
tion 4 illustrates the advantages of the new algorithm for
these data sets. The actual implementation of these algo-
rithms can have a dramatic effect on performance. Section
5 addresses this issue by describing the optimization tech-
niques that the software written for this study uses. Section
6 summarizes the results and suggests future directions for
this research.

2. Stochastic search for phylogenetic tree reconstruction

A stochastic search procedure is a method for solving a
combinatorial optimization problem that proceeds by tak-
ing a random walk in a space of representations of solutions
to the problem. The possible steps in the walk are defined
by one or more operators by which an existing candidate
solution is perturbed to form a new solution; the possible
steps form a neighborhood structure over the representa-
tion space, and hence over the solution space.

A search procedure uses a particular regime for carrying
out this random walk. Hill climbing, for instance, works as
follows: an initial candidate solution is generated, the cur-
rent solution. Then iteratively, the current solution is per-
turbed by application of an operator to form a new
solution. If the score of the new solution is lower than that
of the current solution, the new solution becomes the can-
didate solution. We take lower scores to be better consis-
tent with the maximum parsimony objective function.
After all iterations are completed, the current solution is
returned.

The simulated annealing search regime also keeps the
perturbed candidate if it has a lower score; however, if it
has a higher score, it keeps the perturbed candidate with
a monotonically decreasing probability determined by an
‘‘annealing schedule’’ [8–10]. Parallel descent maintains a
set of candidate solutions, selecting one to perturb propor-
tionately to its score and keeping it if its score is higher
than the current worst candidate, replacing it in the candi-
date set. And so forth. A wide variety of such search pro-
cedures can be defined. Importantly, all operate uniformly
over a given space of represented solutions and perturba-
tion operators.

To carry out a stochastic search for a combinatorial
optimization problem, then, we require both a representa-
tion of the problem (including the solution space and oper-
ators) and a search regime. To date, much of the
experimentation with alternative stochastic search methods
for phylogenetic tree reconstruction has addressed the issue

of search regime, with relatively little attention paid to rep-
resentation. In particular, previous work has used a direct
representation of phylogenetic trees as the representation
method. In this work, we show that search over an alterna-
tive representation based on a greedy decoder, when used
together with the traditional representation, can outper-
form search using either of the two representations taken
singly. Before presenting the experimental results, however,
we describe the two representations and their use in various
search regimes.

2.1. The direct representation

We take the paradigm of stochastic search for phyloge-
netic tree reconstruction to be the software package
PAUP*. For the purpose of defining perturbation opera-
tors, PAUP* uses a representation of trees based directly
on their tree structure, which we call the direct representa-
tion. A tree is represented directly by its topology, the
nodes and edges connecting them. (The representation is
so obvious that it may be surprising that alternatives exist,
but one will be described shortly.)

Generation of an initial tree representation can be done
simply by stepwise addition. An algorithm to do so begins
with three taxa joined in a trivial tree with three leaves rep-
resenting the taxa and one internal node representing the
common ancestor. Each additional taxon is then added
to the tree by (1) removing an edge, (2) reconnecting that
edge!s vertices to a new internal node, and (3) connecting
the new taxon to the internal node [7]. The RANDOM var-
iant of stepwise addition selects the initial three taxa, the
edge to remove, and the new taxon to add at each step ran-
domly. Because no information about the sequences is used
to construct the tree, its parsimony score is usually very
poor. Alternatively, the taxa can be added in a greedy fash-
ion. The GREEDY variant works on a given permutation
of the taxa by forming a tree from the first three taxa, add-
ing each successive taxon at that edge that optimizes the
score of the tree built so far. The resulting tree depends
deterministically on the order in which the sequences are
added to the tree, i.e., on a permutation of the taxa.

Perturbation of a tree represented under the direct rep-
resentation can be accomplished in various ways. If the
perturbed version of the tree is constructed as a separate
random tree independent of the tree being perturbed, the
hill-climbing search regime degenerates to a particularly
simple (and poor) stochastic search method of randomly
generating trees and selecting the lowest scoring one; this
regime is traditionally referred to as random generate and
test (RGT). This method is unlikely to find the optimal tree
since the search space is very large. Nonetheless, it can
serve as a simple benchmark method.

A perturbation method ought ideally to attend to and
preserve much of the structure of the tree being perturbed.
The standard perturbation method for the direct represen-
tation, used by PAUP*, is Tree Bisection and Reconnec-
tion (TBR) [7,11]. Given a tree T, TBR involves first

2 G. Weber et al. / Journal of Biomedical Informatics xxx (2006) xxx–xxx

ARTICLE IN PRESS



removing an edge to form two subtrees, then creating a
new edge that connects the two subtrees in a different
arrangement.

TBR under a hill-climbing regime is the basic stochastic
search method used by PAUP*. A disadvantage of the hill-
climbing regime is that it finds local, rather than global,
optima. The success of random descent algorithms often
depends on the shape of the ‘‘terrain.’’ If there is a smooth
path leading to the global optimum, then a good solution is
much easier to find than if there are many local optima that
form a bumpy surface for the algorithm. The branch-swap-
ping algorithm that PAUP* uses is known to find local
minima (i.e., getting ‘‘stuck’’ on ‘‘islands’’ of poor solu-
tions) [12]. However, the best known trees for some data
sets have been formed using PAUP* and branch-swapping
[13].

PAUP* allows other search regime variants to be used,
still with the direct representation and TBR as the pertur-
bation operator [7]. Rather than keeping just the single best
tree after each iteration, PAUP* can keep multiple trees. It
attempts to improve the score of each tree relying on the
fact that if some of the trees fall into poor local minima,
then there will be other trees that can continue with better
scores. There are different ways of choosing the trees to
keep. One method is to start with a certain number of ran-
dom trees, and improve each tree in parallel. Another
method is to delete the worst trees after each full iteration
and replace them with duplicates of the trees that are per-
forming best. Note that because the algorithm swaps
branches randomly, duplicates of the same tree will likely
diverge after a few iterations. The total number of trees
retained after each step can be a fixed number, or it can
grow or shrink according to pre-defined criteria. Each of
these variant search regimes displays slightly different per-
formance on particular problem instances. All share reli-
ance on the direct representation of phylogenetic trees
and TBR as the perturbation operator.

PAUP* can also select the permutation used to generate
the initial tree in one of four user-specified ways. The as-is
method uses the order in which the sequences are listed in
the input data file. The simple method starts with a refer-
ence sequence, then at each step chooses the sequence with
the smallest Hamming distance to the reference sequence.
The closest method tries each available sequence, calculates
the score for the tree, and chooses the sequence that pro-
duces the lowest score. Because it tries every sequence in
every possible position, this is by far the most computa-
tionally demanding method. It also is completely determin-
istic given only the sequences, unlike the as-is method that
depends on the order of the taxa in the input file or the sim-
ple method that depends on the reference sequence. The
final method, PAUP*!s default and the one used here, is
random, which adds the sequences to the growing tree in
a randomly selected order. An alternative representation
of phylogenetic trees is described below, and provides the
basis for a systematic method for determining a good
permutation for constructing the initial tree for TBR, one

providing substantial improvement even taking into con-
sideration the time costs.

2.2. The greedy decoder representation

Research related to stochastic search algorithms has
shown that changing the problem representation can dra-
matically affect the terrain of the problem and hence the
quality of solutions found [14]. This observation can be
applied to the phylogenetic tree reconstruction problem
by designing alternative representations and correspond-
ing perturbation operators. In this paper, we explore a
representation based on a greedy decoder, a parameteri-
zation of the GREEDY variant of stepwise addition
described above. Since any permutation of the taxa
determines a tree, by execution of GREEDY, the permu-
tation itself can be taken to be a representation of that
tree. The score of a permutation is calculated by greedily
decoding it into the corresponding tree and calculating
the score of that tree. A natural perturbation operator
for this representation is the swapping of two (or more)
taxa in the permutation.

The potential for advantage of the greedy decoder
representation for phylogenetic trees can be easily shown.
To get a sense for the difference between the representa-
tions, we can select trees randomly under the two repre-
sentations. The RANDOM variant of stepwise addition
constructs random trees under the direct representation.
Random trees under the greedy decoder representation
can be generated by decoding randomly selected permu-
tations of the taxa. Fig. 1 shows histograms of the scores
of trees selected under the two representations, RAN-
DOM and GREEDY, for the rbcL500 data set described
below. The mean of the direct trees are so many stan-
dard deviations worse than the mean greedy decoder tree
that it would be nearly impossible for a search regime
over the direct trees to find a better tree in a reasonable
amount of time.

1000 rbcL500 Trees Using RANDOM and GREEDY

0
50
100
150
200
250
300
350
400
450

0 10000 20000 30000 40000 50000
Tree Score

Fr
eq

ue
nc

y RANDOM

GREEDY

Fig. 1. A histogram showing the frequency of different scores when
applying the RANDOM and GREEDY algorithms to the rbcL500 data
set 1000 times. Notice the widths of the curves compared to the distance
between their means.

G. Weber et al. / Journal of Biomedical Informatics xxx (2006) xxx–xxx 3

ARTICLE IN PRESS



3. Performance evaluation methodology

To test empirically the performance of stochastic search
over the two representations, experiments were performed
using four different stochastic search algorithms to con-
struct phylogenetic trees over a variety of data sets.

3.1. Algorithms

The four algorithms tested varied both in search regime
(RGT and hill climbing) and in representation (direct and
greedy decoder), resulting in four algorithms.

The RANDOM algorithm performed random-generate-
and-test search over the direct tree representation, that is,
random trees were generated and the best one saved. The
GREEDY algorithm used random-generate-and-test over
the greedy decoder representation, that is, random permu-
tations were generated and the one whose decoding was
best was saved. These two algorithms served as controls.
They are known to produce poor trees; however, they are
the two most common starting points for more complex
algorithms. The third technique, TBR, was the tree bisec-
tion-reconnection hill-climbing algorithm used in PAUP*,
with the initial tree formed using a tree generated by the
greedy variant of the stepwise addition algorithm.

The final technique, greedy hill climbing (GHC), used
random descent over the greedy decoder representation.
GHC defines a neighbor in the following way: two distinct
taxa are chosen and their order is swapped. Then, another
two distinct taxa are swapped, so that the order of up to
four taxa can change with one iteration of the algorithm.
Although we do not present them here, experiments on
the effects of swapping different numbers of pairs of taxa
were tested, and swapping two pairs appeared to be a sat-
isfactory choice. Swapping only one pair at a time pro-
duced similar quality trees, but required more iterations.
Swapping too many pairs effectively eliminated any neigh-
borhood structure, producing results similar to the
GREEDY algorithm.

In addition to the four basic algorithms, hybrid methods
were also tested, where GHC was run for a certain fraction
of the total allotted time, and then TBR was run for the
remaining time to further improve the tree. This paper will
refer to these hybrid methods as GX:TY, where X and Y
represent the relative amounts of time given to each algo-
rithm. For example, G3:T5 runs GHC for the first 3/8 of
the total time, and TBR for the remaining 5/8.

Note that the hybrid algorithms must run GHC
before TBR. This is because GHC only considers trees
that can be formed using stepwise addition. For n taxa,
there are n! possible orderings, and therefore at most n!
different stepwise addition trees. In contrast, TBR can
produce any of the (2n ! 5)!! possible unrooted trees.
As a result, the majority of trees found using TBR can-
not be represented as an ordering of sequences, and
therefore the output of TBR is not necessarily a valid
input to the GHC algorithm.

Although various software packages like PAUP*
include the RANDOM, GREEDY, and TBR algorithms,
there are no existing versions of GHC or the hybrid meth-
ods. Therefore, this study used new software that can apply
all of these algorithms to a data set. Having one program
that includes all tree reconstruction methods also ensures
that time-controlled experiments are not biased by imple-
mentation tricks or code optimizations present in one pro-
gram but not another.

3.2. Data sets

It is well known that there are ‘‘good’’ data sets,
where the globally optimal tree can easily be found,
and ‘‘bad’’ data sets, with many poor local minima [7].
Unfortunately, with a new algorithm, it is difficult to
determine beforehand how a particular data set will per-
form. Therefore, this study uses a range of sizes and
sources for the selected data sets. The first is a 500 taxa
database of seed–plant sequences named rbcL500, which
is frequently used in phylogenetic tree research [2,5]. The
second has 218 taxa (approximately half the size of
rbcL500) and consists of sequences obtained from small
subunit ribosomal RNA from various prokaryotes. The
third is a small 12 taxa primate data set that comes as
a sample file with PAUP* and has a known global min-
imum score. A fourth data set, like rbcL500, has 500
taxa but consists of sequences that were artificially gener-
ated by randomly modifying an initial ancestor sequence
to simulate the process of evolution (Simulated data set).
Speed performance experiments also used several smaller
randomly generated synthetic data sets. The three real
data sets were modified slightly so that each sequence
within a given data set contained the same number of
bases, and constant or uninformative bases were
removed. Table 1 lists the four primary data sets, the
number of taxa, and the actual length of the sequences.

4. Results of experiments

4.1. Controls

Tables 2 and 3 show the results for the RANDOM and
GREEDY algorithms after 1000 iterations. For the pri-
mate data set, both algorithms found the globally optimal
score, which was verified using PAUP*!s branch-and-
bound exact search method. However, as noted above,

Table 1
The four data sets used in this study

Data set Taxa Length

rbcL500 500 759
Prokaryote 218 1623
Primate 12 898
Simulated 500 25

Shown are the number of taxa in each data set and the length of the
sequences.

4 G. Weber et al. / Journal of Biomedical Informatics xxx (2006) xxx–xxx

ARTICLE IN PRESS



GREEDY trees well outperformed RANDOM trees for
the larger data sets.

It is important to note, however, that the GREEDY
algorithm only tests a very small subset of all possible trees.
With n taxa, there are n! possible orderings for stepwise-ad-
dition. This is in contrast to the (2n ! 5)!! distinct unrooted
trees that are actually possible with n taxa. This small sub-
set of trees clearly contains trees with some of the best
scores. However, there is no guarantee that the optimal tree
is within this subset. Therefore, given enough time, the
RANDOM algorithm will find the optimal tree, while the
GREEDY algorithm might not. Similarly, GHC, because
it simply walks through the set of greedy-decoder repre-
sentable trees, might not find the globally optimal tree.
TBR can consider a larger set of trees than GHC, but it
is not guaranteed to see all possible trees when greedy step-
wise addition is used for the initial trees. Branch-swapping
starting from random trees, however, would be more likely
to search all trees.

4.2. GHC, TBR, and hybrid algorithms

Because one iteration of TBR involves simply rearrang-
ing an existing tree, while one iteration of GHC constructs
an entire tree from scratch, many more TBR steps can be
performed in a given amount of time. Therefore, control-
ling the total run time rather than the number of iterations
is a more accurate way of comparing TBR and GHC. This
is also a reasonable way to measure the algorithms because,
in practice, the amount of time the user is willing to wait
will determine the limit on how good a tree these algo-
rithms will produce.

The next set of experiments allowed the rbcL500, Pro-
karyote, Primate, and Simulated data sets to run for a total
of 1800, 3600, 8, and 64 s, respectively. These values were
based on the number of taxa and the sequence lengths in each
data set. Hybrid experiments divide the total time into a
GHC component and a TBR component. The experiments
compared nine variations: GHC only, G7:T1, G6:T2,

G5:T3, G4:T4, G3:T5, G2:T6, G1:T7, and TBR only. For
each variation, time versus best-tree-score curves was gener-
ated, and the overall best tree after t seconds was recorded.

The actual experiments began with 100 iterations of
GREEDY to obtain a starting tree T0. (The GREEDY
algorithm is fast enough that this step requires a negligible
amount of time, and it is not included in the total run time.)
Then GHC was run for t seconds. The best tree after t/8 s
was T1, the best after 2t/8 s T2, and so forth until the final
tree after t seconds, T8. Next, TBR was run for t seconds
starting with T0, for 7t/8 s starting with T1, 6t/8 s starting
with T2, and so on, running for only t/8 s starting with
T7. In the end, nine trees were obtained, with each one
being generated using a different fraction of GHC and
TBR over a total of t seconds.

The rbcL500 and Prokaryote experiments were repeated
four times using four different starting trees T0. The Pri-
mate and Simulated experiments were repeated a total of
16 times. Fig. 2 illustrates the average tree score for each
of the nine algorithms when applied to the rbcL500 data
set. The results for the GHC-only algorithm are represent-
ed in blue, the TBR-only algorithm in red, and the best
hybrid algorithm, which in this case was G5:T3, in green.
The results for other hybrid algorithms are represented in
gray. Fig. 3 depicts the curves with error bars representing
95% confidence intervals. Between TBR and GHC, there is
no clear winner. Which one produces a better tree depends
on how much time is allocated. However, Fig. 4 shows that
every hybrid algorithm produces better final trees than
either TBR or GHC alone.

The results were similar for the Prokaryote and Simulat-
ed data sets. All of the hybrid algorithms produce better
trees than either TBR or GHC alone. For the Prokaryote
data set, the best hybrid was G7:T1, and for the Simulated
data set the best hybrid was G5:T3. The Primate data set is
so small that most GREEDY trees find the globally opti-
mal solution. Since a GREEDY tree is used as the initial

Results: rbcL500 Data Set

17550

17600

17650

17700

17750

17800

0 225 450 675 900 1125 1350 1575 1800
Time (Seconds)

Tr
ee

 S
co

re

TBR
G1:T7
G2:T6
G3:T5
G4:T4
G5:T3
G6:T2
G7:T1
GHC

Fig. 2. The scores of the best trees obtained, for the rbcL500 data set,
after a given number of seconds for each of nine combinations of tree
bisection-resection (TBR) and greedy hill-climbing on stepwise-addition
(GHC). The green curve is the hybrid algorithm that produced the lowest-
scoring final tree.

Table 2
The mean, standard deviation, minimum, and maximum scoring trees for
each of the data sets using the RANDOM algorithm

Data set Mean SD Min Max

rbcL500 39615.13 163.95 39067 40035
Prokaryote 55193.44 289.98 54219 56162
Primate 1566.16 65.53 1327 1688
Simulated 3834.32 22.33 3754 3904

Table 3
The mean, standard deviation, minimum, and maximum scoring trees for
each of the data sets using the GREEDY algorithm

Data set Mean SD Min Max

rbcL500 17881.04 39.32 17769 18039
Prokaryote 35062.80 55.22 34882 35273
Primate 1154.11 0.87 1154 1162
Simulated 951.94 10.63 923 991

G. Weber et al. / Journal of Biomedical Informatics xxx (2006) xxx–xxx 5

ARTICLE IN PRESS



tree for the nine variations of GHC and TBR, they also
find the globally optimal tree even before the first iteration.

4.3. Uniform time experiments

The experiments in the previous section gave each data
set a different amount of time. This was to adjust for the
rates in which the algorithms run on the different data sets.
The next set of experiments compare the algorithms using
30-min runs for all four data sets. Table 4 lists the number
of trees that the TBR and GHC algorithms examined. In
each case, TBR considers far more trees; however, the pre-

vious results showed that using more trees does not neces-
sarily result in better trees.

Table 5 shows the scores of TBR and GHC after 30 min.
With both the rbcL500 and the Prokaryote data sets, TBR
was ahead of GHC after 30 min. GHC produced better
trees with the Simulated data set. The Simulated data set al-
so allowed 10 times as many iterations of GHC as those
allowed in the rbcL500 and Prokaryote data sets for the
same amount of time. The best hybrid algorithm for each
data set was better than either TBR or GHC alone. How-
ever, the optimal ratio of GHC to TBR does not have to be
known to produce good trees. Simply splitting the time in
half (the G4:T4 algorithm) produced better trees than
TBR or GHC alone.

Although the best hybrid algorithm ran in 30 min, it
took several times longer to determine which G:T ratio
was the best. That same amount of time could have been
used to extend any one of the hybrid algorithms to many
more iterations, and likely produce an even better tree. It
would therefore be desirable to be able to predict the best
ratio without having to try all possible algorithms. Notice
that in Fig. 3 the scores of GHC gradually drop for the
entire duration of the experiment. In contrast, the scores
from TBR appear to drop rapidly then abruptly level off.
Furthermore, the slope of the TBR component of the best
hybrid algorithm mirrors the slope of the TBR only algo-
rithm. In all data sets tested, the best hybrid algorithms
are the ones where GHC is run for as long as possible,
while leaving enough time at the end for TBR to reach
its leveling off stage. One hypothesis is that the optimal
hybrid strategy can be determined by first running TBR
alone for a short amount of time and observing its rate
of descent. This should provide an indication of how much
time is needed for TBR at the end of a hybrid algorithm.
The experiment would then be restarted using a hybrid
algorithm that takes this into account. Although some time
would be lost with the initial TBR, having a good predic-
tion for the best hybrid algorithm might help in the end.
Evidently, further analysis with additional data sets would
have to be performed to test this hypothesis.

5. Implementation considerations

All algorithms described in this paper require comparing
the scores of a large number of trees. Because the perfor-
mance of GHC and TBR depend on the number of itera-
tions possible in a given amount of time, an efficient tree
scoring method is essential. Given the sequences at each

GHC:TBR Balance for rbcL500

17560

17570

17580

17590

17600

17610

17620

17630

17640

17650

TBR 1/8 2/8 3/8 4/8 5/8 6/8 7/8 GHC
Fraction of Time Used for GHC

Tr
ee

 S
co

re
 (1

80
0 

Se
co

nd
s)

Fig. 4. The scores of the best trees obtained, for the rbcL500 data set,
after 1800 s using nine different algorithms. The best algorithm, G5:T3 is
highlighted.

Results: rbcL500 Data Set

17550

17600

17650

17700

17750

17800

0 225 450 675 900 1125 1350 1575 1800
Time (Seconds)

Tr
ee

 S
co

re

TBR
G5:T3
GHC

Fig. 3. The scores of the best trees obtained, for the rbcL500 data set,
using TBR, GHC, and the best hybrid algorithm, G5:T3. The error bars
represent 95% confidence intervals of four runs.

Table 4
The number of trees examined in 30 min by the TBR and GHC algorithms
for each of the four data sets

Data set TBR GHC

rbcL500 1.1 · 109 5438
Prokaryote 4.1 · 108 6211
Primate 8.4 · 107 787725
Simulated 1.1 · 1010 64120

Table 5
The mean tree score after 30 min using TBR, GHC, G4:T4, or the best
hybrid algorithm for each of the four data sets

Data set TBR GHC G4:T4 Best

rbcL500 17613 17621 17574.5 17573.75
Prokaryote 34686 34742 34658.25 34655
Primate 1154 1154 1154 1154
Simulated 900.5 892.25 892 892

6 G. Weber et al. / Journal of Biomedical Informatics xxx (2006) xxx–xxx

ARTICLE IN PRESS



node in a tree, the score of the tree can be calculated by fol-
lowing each edge and counting the number of positions
(bases) in which adjacent sequences differ. For n taxa and
sequences containing m bases, this is O (nm). However,
only the leaves of the tree are actually known. The leaves
represent existing, or observed species. All n ! 2 internal
nodes represent ancestral species whose sequences are
unknown. However, for maximum parsimony, the internal
sequences are assumed to be those that minimize the over-
all score of the tree. Luckily, there is a dynamic program-
ming algorithm that can determine the optimal internal
sequences and score the tree in O (rnm), where r is the size
of the alphabet used in the sequences. For DNA, which
consists of the bases {A, C, G, T}, r is 4. Therefore, the
time needed to score a tree, even when the internal sequenc-
es are unknown, is still simply O (nm).

Consider the complexity of one iteration of the
GREEDY algorithm. To perform stepwise-addition, n
sequences must be added, one at a time, to a growing
tree. Each sequence is placed in O (n) positions and test-
ed before its final position is chosen. Therefore, the
scores of O (n2) trees must be calculated. Thus, the total
complexity is O (n3m). For large data sets, such as the
n = 500 taxa in rbcL500, this algorithm is far too costly.
Ganapathy recently described a new technique for scor-
ing a tree, called Three-Way Labels, which works in
O (m) time [11]. It takes advantage of the fact that when
adding the ith sequence in stepwise-addition, the score
of the tree with i ! 1 taxa has already been calculated.
This reduces the overall complexity of GREEDY to
O (n2m). The Three-Way Labels method can also be
applied to TBR, reducing its complexity from O (nm)
to O (m). The software written for this study used the
Three-Way Labels method as well as other techniques
for improving the performance of TBR [15,16]. In addi-
tion, it took advantage of the algorithms for rapidly
calculating upper and lower bounds and the exact val-
ues of the Hamming distances between sequences, yield-
ing a several-fold improvement in performance [17]. As
a result, the overall speed of the software was compara-
ble to PAUP*.

6. Conclusions

The experiments described here demonstrate that vary-
ing representation of the search space, independently of
search regime, can qualitatively affect the performance of
stochastic search procedures for phylogenetic tree recon-
struction. In particular, hill-climbing with the TBR opera-
tor over the direct tree representation runs like a sprinter,
with large improvements to the tree score with a few itera-
tions, then rapidly slows down. In contrast, GHC hill-
climbing over the greedy decoder representation performs
like a long-distance runner, gradually improving the tree
score even after a long period of time. The differing advan-
tages of both can be combined by using GHC initially and
feeding its result to TBR; these hybrid algorithms perform

by far the best. The most effective combination partitions
an allocated run time so that the majority is spent in
GHC, with a fast burst of TBR at the end. The best of
the algorithms reported here significantly outperform
PAUP*, the most popular software program for phyloge-
netic tree reconstruction.

The stochastic algorithms that this study describes use a
simple hill-climbing method of searching through a solu-
tion space. Other techniques such as parallel hill-climbing,
simulated annealing, and genetic algorithms have shown
improved performance for other types of problems [14].
The greedy decoder representation is just one example of
an alternative to the direct representation for phylogenetic
trees. Other possibilities, perhaps based on those proposed
for the combinatorial optimization problems of number
partitioning [14] or graph bisection [18], may yield further
benefit, as they have for those problems.

Finally, there have been several recently developed
algorithms that build on TBR and have showed marked
improvement in performance [19]. Some, for example,
take a divide-and-conquer approach, where the taxa
are partitioned into smaller stochastic optimization
problems, then combined into a larger tree [20]. The
Ratchet technique randomly adds weights to a subset
of characters in the sequences before branch swapping
is performed [21]. In this study, we have shown that
hybrid algorithms that begin with GHC can perform
better than TBR alone. Thus, the performance of any
of these new TBR-based algorithms could potentially
be improved by combining them with GHC selection
of an initial tree.

Acknowledgment

This work was funded in part by Grant T32-HG02295
from the NIH.

References

[1] Durbin R, Eddy S, Krogh A, Mitchison G. Biological sequence
analysis. Cambridge, UK: Cambridge University Press; 1998.

[2] Rice K., Warnow T. Parsimony is hard to beat. In: Proceedings of
COCOON, 1997.

[3] Felsenstein J. Evolutionary trees from DNA sequences: a maximum
likelihood approach. J Mol Evol 1981;17(2):368–76.

[4] Mount D. Bioinformatics: sequence and genome analysis. Cold
Spring Harbor, New York: Cold Spring Harbor Laboratory Press;
2001.

[5] Kim J., Warnow T. Tutorial on phylogenetic tree estimation,
1999.

[6] Salter L. Algorithms for phylogenetic tree reconstruction. In
Proceedings of the International Conference on Mathematics and
Engineering Techniques in Medicine and Biological Sciences, 2002,
pp. 459–465.

[7] Swofford D. PAUP*, phylogenetic analysis using parsimony (and
other methods), 2003.

[8] Lundy M. Applications of the annealing algorithm to combinatorial
problems in statistics. Biometrika 1985;72(1):191–8.

[9] Lundy M, Mees A. Convergence of an annealing algorithm. Math
Program 1986;34:111–24.

G. Weber et al. / Journal of Biomedical Informatics xxx (2006) xxx–xxx 7

ARTICLE IN PRESS



[10] Dress A, Kruger M. Parsimonious phylogenetic trees in metric spaces
and simulated annealing. Adv Appl Math 1987;8:8–37.

[11] Ganapathy G., et al. Better hill-climbing searches for parsimony. In:
3rd Workshop on Algorithms in Bioinformatics, 2003.

[12] Maddison D. The discovery and importance of multiple islands of
most-parsimonious trees. Syst Zool 1991;40(3):315–28.

[13] Rice K et al. Analyzing large data sets: rbcL500 revisited. Syst Biol
1997;46(3):554–63.

[14] Ruml W, Ngo J, Marks J, Shieber S. Easily searched encodings for
number partitioning. J Optimiz Theory Appl 1996;89(2):251–91.

[15] Goloboff P. Methods for Faster Parsimony Analysis. Cladistics
1996;12:199–220.

[16] Ronquist F. Fast fitch-parsimony algorithms for large data sets.
Cladistics 1998;14:387–400.

[17] Weber G. Data Representation and Algorithms for Biomedical
Informatics Applications. PhD thesis, Harvard University, Cam-
bridge, MA, 2005.

[18] Marks J, RumlW, Shieber S, Ngo J. A seed-growth heuristic for graph
bisection. In: Battiti R, Bertossi AA, editors. Proceedings of Algo-
rithms and Experiments (ALEX98). Italy: Trento; 1998. p. 76–87.

[19] Goloboff P. Analyzing large data sets in reasonable times: solutions
for composite optima. Cladistics 1999;15(4):415–28.

[20] Huson D, Nettles S, Parida L, Warnow T, Yooseph S. The disk-
covering method for tree reconstruction. In: Battiti R, Bertossi AA,
editors. Proceedings of Algorithms and Experiments (ALEX98). Ita-
ly: Trento; 1998. p. 62–75.

[21] Nixon K. The parsimony Ratchet, a new method for rapid parsimony
analysis. Cladistics 1999;15(4):407–14.

8 G. Weber et al. / Journal of Biomedical Informatics xxx (2006) xxx–xxx

ARTICLE IN PRESS


