
Division of Engineering and Applied Sciences
Harvard University

Stuart M. Shieber

Transducers as a Substrate for
Natural!Language Processing

Division of Engineering and Applied Sciences
Harvard University2

These slides were developed for the course
Transducers

taught at the 15th European Summer School in
Logic Language and Information, in Vienna,
Austria, August 18!22, 2003.

Please do not cite, quote, copy or redistribute.

Copyright © 2003. Stuart M. Shieber.

Provenance

Division of Engineering and Applied Sciences
Harvard University3

Deckard: Enhance 224 to 176. Enhance,
stop. Move in, stop. Pull out,
track right, stop. Center in, pull
back. Stop. Track 45 right. Stop.
Center and stop. Enhance 34 to
36. Pan right and pull back. Stop.
Enhance 34 to 46. Pull back. Wait
a minute, go right, stop. Enhance
57 to 19. Track 45 left. Stop.
Enhance 15 to 23. Give me a hard
copy right there.

! Blade Runner, 1982

Motivation

Division of Engineering and Applied Sciences
Harvard University4

Motivation

Dragon Naturally Speaking
Command Browser

Division of Engineering and Applied Sciences
Harvard University5

Voice to Commands

Voice Command

Division of Engineering and Applied Sciences
Harvard University6

Voice to Commands

Voice CommandWords

Division of Engineering and Applied Sciences
Harvard University7

Voice to Commands

Voice CommandWords

Samples WordsPhones Triphones

Hidden Markov Models
phonotactic models

dictionaries
language models

Division of Engineering and Applied Sciences
Harvard University8

Voice to Commands

Voice CommandWords

Samples WordsPhones Triphones

Hidden Markov Models
phonotactic models

dictionaries
language models

Weighted Finite State Transducers

Division of Engineering and Applied Sciences
Harvard University9

Voice to Commands

WFSTString String Command

Division of Engineering and Applied Sciences
Harvard University10

Voice to Commands

WFSTString String TreeParser ??? Command

Division of Engineering and Applied Sciences
Harvard University11

The Universal NL Pipeline

WFSTString String TreeParser ??? Tree

Strings is to WFST as trees is to ???

Division of Engineering and Applied Sciences
Harvard University12

Command interpretation
• Database query construction

Semantic interpretation
• Semantic disambiguation

Machine translation transfer
Parsed corpus manipulation and normalization
Natural language generation

• Logical form canonicalization

Ubiquity of Tree
Transformation

Division of Engineering and Applied Sciences
Harvard University13

Finite!state automata and transducers
Weighted automata and transducers
Tree transducers "and their insufficiency$
Extensions via bimorphism generalization
Other extensions

Overview

Division of Engineering and Applied Sciences
Harvard University14

Review finite state automata
• regular languages
• automata
• Thompson’s construction
• degrees of freedom

• left/right reversal
• granularity
• epsilon!removal
• determinization
• minimization

Plan

Division of Engineering and Applied Sciences
Harvard University15

Review finite state automata
Finite!state transducers

• regular relations
• degrees of freedom

• composition
• inversion

• application

Plan

Division of Engineering and Applied Sciences
Harvard University

Regular Languages and
Finite!State Automata

Division of Engineering and Applied Sciences
Harvard University17

A language is a set of strings.
Regular languages is the smallest class of languages
including

• the empty language
• singleton languages
• closure under

• union
• concatenation
• iteration closure

Regular Languages

L1 ∪ L2

(L1 · L2)

(L1 ∪ L2)

(L∗)

Division of Engineering and Applied Sciences
Harvard University18

Notation for regular languages:
• Empty string:
• Singleton language: a
• Union:
• Concatenation:
• Iteration:

Example "alphabet = a...z$:

Regular Expressions

ε

x | y

x y

x∗

((be | it | let))∗ " let it be

Division of Engineering and Applied Sciences
Harvard University19

0 1 2

abba

e e

Finite!State Automata

initial state final state
transition

input

Division of Engineering and Applied Sciences
Harvard University20

0 1 2
εε

a bb a

Finite!State Automata

A derivation:
0 aaabba# → 0 aabba# → 0 abba# → 0 bba#
 → 1 bba# → 1 a# → 2 a# → 2 # → #
Definition of recognition:

• accept w if and only if 0 w# →* #

Division of Engineering and Applied Sciences
Harvard University21

FSAs from
Regular

Expressions

"Thompson’s
Construction$

e

a

e

e

e

e

e

e e

e

Division of Engineering and Applied Sciences
Harvard University22

Sample FSA

s

i t

l e t

z

i

((is | it | let))∗

Division of Engineering and Applied Sciences
Harvard University23

Lots of things make no difference:
• Granularity
• Epsilon removal
• Left!right reversal
• Determinization
• Minimization

Degrees of Freedom

Division of Engineering and Applied Sciences
Harvard University24

Granularity of Input

s

i t

l e t

z

i

((is | it | let))∗

Division of Engineering and Applied Sciences
Harvard University25

Granularity of Input

it

let

z

is

((is | it | let))∗

Division of Engineering and Applied Sciences
Harvard University26

Epsilon Removal

it

let

z

is

Division of Engineering and Applied Sciences
Harvard University27

is

Epsilon Removal

it

let

z

is

Division of Engineering and Applied Sciences
Harvard University28

is
z

is

it

let

z

is

Epsilon Removal

Division of Engineering and Applied Sciences
Harvard University29

it

let

is
z

z

z

it
let

is

it

let

z

is

Epsilon Removal

Division of Engineering and Applied Sciences
Harvard University30

Left!Right Reversal
s

i t

l e t

z

i

Division of Engineering and Applied Sciences
Harvard University31

s

i t

l e t

z

i

Left!Right Reversal

Division of Engineering and Applied Sciences
Harvard University32

Determinization

it

let

is
z

z

z

it
let

is

Division of Engineering and Applied Sciences
Harvard University33

it

let

is
z

z

z

it
let

is

Determinization

Division of Engineering and Applied Sciences
Harvard University34

s

i t

l e t

i

z

z

z

let

i

i
s

t

Determinization

Division of Engineering and Applied Sciences
Harvard University35

s

i t

l e t

i

z

z

z

let

i

i
s

t

Determinization

Division of Engineering and Applied Sciences
Harvard University36

s
i

t

l e t

z

z

z

let

i
s

t

Determinization

Division of Engineering and Applied Sciences
Harvard University37

s
i

t

l e t

z

z

z

let

i
s

t

Minimization

States correspond to equivalence classes of suffixes.
States corresponding to identical equivalence
classes can be merged.

Division of Engineering and Applied Sciences
Harvard University38

si
t

l e t

z

let

is
t

Minimization

States correspond to equivalence classes of suffixes.
States corresponding to identical equivalence
classes can be merged.

Division of Engineering and Applied Sciences
Harvard University39

si
t

l e t

z

let

i

Minimization

States correspond to equivalence classes of suffixes.
States corresponding to identical equivalence
classes can be merged.

Division of Engineering and Applied Sciences
Harvard University40

si
t

l e
t

z

le

i

Minimization

States correspond to equivalence classes of suffixes.
States corresponding to identical equivalence
classes can be merged.

Division of Engineering and Applied Sciences
Harvard University41

si
t

l e
t

z

l

i

Minimization

States correspond to equivalence classes of suffixes.
States corresponding to identical equivalence
classes can be merged.

Division of Engineering and Applied Sciences
Harvard University42

si
t

l e
tz

Minimization

States correspond to equivalence classes of suffixes.
States corresponding to identical equivalence
classes can be merged.

Division of Engineering and Applied Sciences
Harvard University

Finite!State Transducers

Division of Engineering and Applied Sciences
Harvard University44

Regular Relations
A string relation is a set of pairs of strings.

input : outpu"
Regular relations is the smallest class of relations
including:

• the empty language
• singleton languages, e.g.,
• closure under

• union
• concatenation
• iteration closure

{a : ε}, {ε : a}, . . .

Division of Engineering and Applied Sciences
Harvard University45

0 1 2
εε

a bb a

Sample FST

Division of Engineering and Applied Sciences
Harvard University46

0 1 2

a : ε bb : c

εε

a : ε

Sample FST

Division of Engineering and Applied Sciences
Harvard University47

0 1 2

a : ε bb : c

εε

a : ε

Sample FST

A derivation:
0 aaabba# → 0 aabba# → 0 abba# → 0 bba#
 → 1 bba# → c 1 a# → c 2 a# → c 2 # → c #
Definition of recognition:

• accept s:t if and only if 0 s # →* t #

Division of Engineering and Applied Sciences
Harvard University48

granularity of input and output
left!right reversal
epsilon removal *
pushing
determinization *
minimization *
inversio#
compositio#

Degrees of Freedom

* sometimes

Division of Engineering and Applied Sciences
Harvard University49

Granularity of Output

〈it〉 : it

〈is〉 : is

〈let〉 : let

A Speing Dictionary

Division of Engineering and Applied Sciences
Harvard University50

〈let〉 : l

〈it〉 : i

〈is〉 : i ε : s

ε : tε : e

ε : t

Granularity of Output

Division of Engineering and Applied Sciences
Harvard University51

〈let〉 : l

〈it〉 : i

〈is〉 : i ε : s

ε : tε : e

ε : t

Left!Right Reversal

...by treating FST as FSA over cross!product
vocabulary.

Division of Engineering and Applied Sciences
Harvard University52

〈let〉 : l

〈it〉 : i

〈is〉 : iε : s

ε : t ε : e

ε : t

Left!Right Reversal

...by treating FST as FSA over cross!product
vocabulary.

Division of Engineering and Applied Sciences
Harvard University53

Inversion

〈let〉 : l

〈it〉 : i

〈is〉 : i ε : s

ε : tε : e

ε : t

Division of Engineering and Applied Sciences
Harvard University54

s : ε

t : ε

t : εe : εl : 〈let〉

i : 〈it〉

i : 〈is〉

Inversion

Division of Engineering and Applied Sciences
Harvard University55

Movement of output symbols along a path.

s : ε

t : ε

t : εe : εl : 〈let〉

i : 〈it〉

i : 〈is〉

Pushing

Division of Engineering and Applied Sciences
Harvard University56

e : 〈let〉

s : ε

t : ε

t : ε

i : 〈it〉

i : 〈is〉

l : ε

Pushing

Division of Engineering and Applied Sciences
Harvard University57

t : 〈let〉

t : 〈it〉

s : 〈is〉

e : εl : ε

i : ε

i : ε

Pushing

Division of Engineering and Applied Sciences
Harvard University58

e : εl : ε

s : ε

t : ε

t : ε

i : ε

i : ε

ε : 〈is〉
ε : 〈it〉

ε : 〈let〉

Pushing

Division of Engineering and Applied Sciences
Harvard University59

s : ε

t : ε

t : εe : εl : 〈let〉

i : 〈it〉

i : 〈is〉

Determinization

Division of Engineering and Applied Sciences
Harvard University60

No more determinization possible...

s : ε

t : ε

t : εe : εl : 〈let〉

i : 〈it〉
i : 〈is〉

Determinization

Division of Engineering and Applied Sciences
Harvard University61

No determinization possible "without pushing$...

t : 〈let〉

t : 〈it〉

s : 〈is〉

e : εl : ε

i : ε

i : ε

Determinization

Division of Engineering and Applied Sciences
Harvard University62

"The transducer determinization algorithm
performs forward pushing implicitly.$

t : 〈let〉

t : 〈it〉

s : 〈is〉

e : εl : ε

i : ε

Determinization

Division of Engineering and Applied Sciences
Harvard University63

Forward pushing: When all in!edges end in x,
• remove x from end of all in!edges
• add x to start of all out!edges.

Pushing

: w1x

: w2x

: w3x

: y1

: y2

: y3

Division of Engineering and Applied Sciences
Harvard University64

: xy3

: xy1

: xy2

: w1

: w2

: w3

Forward pushing: When all in!edges end in x,
• remove x from end of all in!edges
• add x to start of all out!edges.

Pushing

Division of Engineering and Applied Sciences
Harvard University65

Forward pushing: When all in!edges end in x,
• remove x from end of all in!edges
• add x to start of all out!edges.

Pushing

: w1x

: w2x

: w3x

: y1

: y2

Division of Engineering and Applied Sciences
Harvard University66

Forward pushing: When all in!edges end in x,
• remove x from end of all in!edges
• add x to start of all out!edges.

: xw3

: xy1

: xy2

: w1

: w2

Pushing

Division of Engineering and Applied Sciences
Harvard University67

Phrasal verb marking:
1. John caed the teacher up.
2. John caed the dogs off.

Idealized transduction problem:
• call x* up → call1 x* up
• call x* off → call2 x* off

"based on Roche and Schabes "1996$$

Limitations on
Determinization

Division of Engineering and Applied Sciences
Harvard University68

Idealized transduction problem:
• call x* up → call1 x* up
• call x* off → call2 x* off

Limitations on
Determinization

call:call1 off:off

up:upcall:call2

x:x

x:x

Division of Engineering and Applied Sciences
Harvard University69

Idealized transduction problem:
• call x x up → call1 x x up
• call x x off → call2 x x off

call:call1

call:call2

x:x
off:off

up:up

x:x

x:x x:x

Limitations on
Determinization

Division of Engineering and Applied Sciences
Harvard University70

x:e
call:e

call:e

x:e
off:call1 x x off

up:call2 x x upx:ex:e

Idealized transduction problem:
• call x x up → call1 x x up
• call x x off → call2 x x off

Limitations on
Determinization

Division of Engineering and Applied Sciences
Harvard University71

Idealized transduction problem:
• call x x up → call1 x x up
• call x x off → call2 x x off

Limitations on
Determinization

x:ecall:e x:e
off:call1 x x off

up:call2 x x up

Division of Engineering and Applied Sciences
Harvard University72

Limitations on
Epsilon Removal

a : a

b : ε

a : a

b removal
"deterministic$

ε : b

a : a a : a

b insertion
"undeterminizable$

No state q and string w != ε such that q →∗ w q

Division of Engineering and Applied Sciences
Harvard University73

Given epsilon-free letter transducers

T1 = 〈Q, Σ, Σ′, ∆, q0, F 〉
T2 = 〈Q′, Σ′, Σ′′, ∆′, q′0, F

′〉
the composition

R(T1 ◦ T2) = {(s, t) | (s, u) ∈ R(T1), (u, t) ∈ R(T2)}
The composition is constructed as

T1 ◦ T2 = 〈Q × Q′, Σ, Σ′′, ∆′′, 〈q0, q
′
0〉〉, F × F ′〉

where

δ′′ = {〈qs, q′s〉, a, b, 〈qd, q′d〉 |
∃c ∈ Σ′, 〈qs, a, c, qd〉, 〈q′s, c, b, q′d〉}

The construction is easily extended to arbitrary letter
transducers and arbitrary transducers.

1

Composition

Division of Engineering and Applied Sciences
Harvard University74

Application: Morphological Parser

Overview

%% Language model: nouns with optional plural marker
%% separated by word boundaries
macro(lm, [nouns, option('<+s>'), '<wb>']*).

%% Nouns
macro(nouns, id({'<boy>',

 '<child>',
 '<sky>',
 '<box>'
 })).

Division of Engineering and Applied Sciences
Harvard University75

Application: Morphological Parser

Overview
%% Replace irregular inflected forms with their spelling
macro(spellirreg,
 replace(['<child>', '<+s>'] x word(children), [], [])).

%% Replace regular forms with their spelling
macro(spellreg, {'<boy>':word('boy'),

 '<child>':word('child'),
 '<sky>':word('sky'),
 '<box>':word('box'),
 '<+s>':word('+s'),
 '<wb>':' ',
 id(a..z)
}*).

Division of Engineering and Applied Sciences
Harvard University76

Application: Morphological Parser

Overview

%% Consonants
macro(consonant, {b, c, d, f, g, h, j, k, l, m, n,

 p, q, r, s, t, v, w, x, y, z}).

%% Orthographic rules for pluralization
macro(ortho,
 replace(word('y+'):word('ie'), consonant, s)
 o replace('+':e, {s, z, x, word(ch), word(sh)}, s)
 o replace('+':[], [], s)
).

%% Morphological parser that inverts orthography
macro(parse, invert(lm o spellirreg o spellreg o ortho)).

Division of Engineering and Applied Sciences
Harvard University77

Application: Morphological Parser

Demo

Division of Engineering and Applied Sciences
Harvard University

Weighting

Division of Engineering and Applied Sciences
Harvard University79

FSAs have multiple paths
How to adjudicate?

• Notion of best path

Other applications:
• Numeric functions over strings

• perfect hashing

Why Weights?

Division of Engineering and Applied Sciences
Harvard University80

Semirings
A set K along with operations of sum and product
obeying the following algebraic laws:

Associativity of +: (x + y) + z = x + (y + z)
Commutativity of +: x + y = y + x
Associativity of ×: (x× y)× z = x× (y × z)
Identity for +: x + 0 = 0 + x = x
Identity for ×: x× 1 = 1× x = x
Zero idempotence: x× 0 = 0× x = 0

1

Division of Engineering and Applied Sciences
Harvard University81

Product "⊗$: along paths

Semiring Operations on
Automata

a : ya

a : xa
b : xb

b : yb

xf

yf

1⊗ xa ⊗ xb ⊗ xf

1⊗ ya ⊗ yb ⊗ yf

1⊗ xa ⊗ xb ⊗ xf

⊕
1⊗ ya ⊗ yb ⊗ yf

Sum "⊕$: among paths

Division of Engineering and Applied Sciences
Harvard University82

String sets form a semiring with:
• Sum: union
• Product: concatenation
• 0: & ' "the empty language$
• 1: & e ' "the language containing the empty

string$

Transducers can generate their output in any
semiring.

Example Semiring: Strings

Division of Engineering and Applied Sciences
Harvard University83

a : c

a : dd

b : d

b : ε

c

cc

ε · c · d · c = cdc

ε · dd · ε · cc = ddcc

cdc ∪ ddcc = {cdc, ddcc}

Product "×$: along paths

String Semiring = FST

Sum "∪$: among paths

Division of Engineering and Applied Sciences
Harvard University84

Probabilities (0...1) form a semiring with
• Sum: +
• Product: ×
• 0: 0
• 1: 1

Weights place relative values on transitions, hence
paths "as product of transitions$, hence inputs "as
sum over paths$.

Example Semiring:
Probabilities

Division of Engineering and Applied Sciences
Harvard University85

1× .7× 1× 1 = .7

1× .3× 1× 1 = .3

a : .7

a : .3

b : 1

b : 1

.7 + .3 = 1

1

1

Product "×$: along paths

Probability Semiring = WFSA

Sum "+$: among paths

Division of Engineering and Applied Sciences
Harvard University86

Defines probability distribution over strings:
• a
• bb
• ab
• 1.0

Weighted Finite!State
Automaton

b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Division of Engineering and Applied Sciences
Harvard University87

Defines probability distribution over strings:
• a .02
• bb
• ab
• 1.0

b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Weighted Finite!State
Automaton

Division of Engineering and Applied Sciences
Harvard University88

Defines probability distribution over strings:
• a .02
• bb .5
• ab
• 1.0

b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Weighted Finite!State
Automaton

Division of Engineering and Applied Sciences
Harvard University89

Defines probability distribution over strings:
• a .02
• bb .5
• ab .48
• 1.0

b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Weighted Finite!State
Automaton

Division of Engineering and Applied Sciences
Harvard University90

Best path through a weighted automaton
• Viterbi decoding
• Dijkstra’s algorithm
• dynamic programming

• computes score of best path from start state
to each state

• for a given input, just intersect

Best Path

δq(0) =

{
1 if q = q0

0 otherwise

δq(t + 1) = max〈q′,a:p,q〉∈∆ δq′(t) · p

Division of Engineering and Applied Sciences
Harvard University91

Best Path Computation
Example

1

b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Division of Engineering and Applied Sciences
Harvard University92

1

.1

.5
b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Best Path Computation
Example

Division of Engineering and Applied Sciences
Harvard University93

1

.1

.5 .5
b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Best Path Computation
Example

Division of Engineering and Applied Sciences
Harvard University94

1

.1

.5 .5
b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

.02

.5

Best Path Computation
Example

Division of Engineering and Applied Sciences
Harvard University95

1

.1

.5 .5
b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

.02

.5

Best Path Computation
Example

Division of Engineering and Applied Sciences
Harvard University

Weights Over Cycles

a : 1

b : .2

c : .2
a : .8 1

.8

Division of Engineering and Applied Sciences
Harvard University

a : 1

b : .2

c : .2
a : .8 1

.8

Weights Over Cycles

P (a(bc)∗) =
∞∑

n=0

(.2 · .2)n.8 = .8
1

1− .04
= .83

Division of Engineering and Applied Sciences
Harvard University

a : 1

b : .2

c : .2
a : .8 1

.8

Weights Over Cycles

P (a(bc)∗) =
∞∑

n=0

(.2 · .2)n.8 = .8
1

1− .04
= .83

P (a(bc)∗ba) =
∞∑

n=0

(.2 · .2)n · .2 · .8 = .16
1

1− .04
= .16

Division of Engineering and Applied Sciences
Harvard University99

Goal: describe probability of strings of a language
based on a sample "training corpus$

Approximate under a Markovian assumption that
words depend only on the previous N+1

Application:

Language Modeling

P (w1 · · · wc) =
k∏

i=1

P (wi | w1 · · · wi−1)

P (w1 · · · wc) =
k∏

i=1

P (wi | wi−N+1 · · · wi−1)

Division of Engineering and Applied Sciences
Harvard University100

N!gram approximation:

Maximum likelihood estimates of component N!
gram probabilities:

To start:

Application: Language Modeling

Training

P (w1 · · · wc) =
k∏

i=1

P (wi | wi−N+1 · · · wi−1)

P (wi | wi−N+1 · · · wi−1) ≈ c(wi−N+1 · · · wi)

c(wi−N+1 · · · wi−1)

P (w1 | w−N · · · w0) = P (w1 |
N − 1 times︷ ︸︸ ︷" · · · ")

Division of Engineering and Applied Sciences
Harvard University

Let it be when it is mine to be sure
let it be when it is mine when it is
mine let it be to be sure when it is
mine to be sure let it be let it be let
it be to be sure let it be to be sure
when it is mine to be sure let it to
be sure when it is mine let it be to
be sure let it be to be sure to be
sure let it be to be sure let it be to
be sure to be sure let it be to be
sure let it be to be sure let it be to
be sure let it be mine to be sure let
it be to be sure to be mine to be
sure to be mine to be sure to be
mine let it be to be mine let it be
to be sure to be mine to be sure let
it be to be mine let it be to be sure
let it be to be sure to be sure let it
to be sure mine to be sure let it be
mine to let it be to be sure to let it
be mine when to be sure when to
be sure to let it to be sure to be
mine.

 , Gertrude Stein,
An Acquaintance With Description, 1929

Application: Language
Modeling

Example
Word Count 1-gram MLE

be 62 .276
to 41 .182
it 33 .147
sure 31 .138
let 27 .120
mine 17 .076
when 8 .036
is 6 .027

total 225

Division of Engineering and Applied Sciences
Harvard University

Let it be when it is mine to be sure
let it be when it is mine when it is
mine let it be to be sure when it is
mine to be sure let it be let it be let
it be to be sure let it be to be sure
when it is mine to be sure let it to
be sure when it is mine let it be to
be sure let it be to be sure to be
sure let it be to be sure let it be to
be sure to be sure let it be to be
sure let it be to be sure let it be to
be sure let it be mine to be sure let
it be to be sure to be mine to be
sure to be mine to be sure to be
mine let it be to be mine let it be
to be sure to be mine to be sure let
it be to be mine let it be to be sure
let it be to be sure to be sure let it
to be sure mine to be sure let it be
mine to let it be to be sure to let it
be mine when to be sure when to
be sure to let it to be sure to be
mine.

 , Gertrude Stein,
An Acquaintance With Description, 1929

Application: Language
Modeling

Example
Trigram MLE Prob

it be be 0
it be is 0
it be it 0
it be let 0.083
it be mine 0.125
it be sure 0
it be to 0.708
it be when 0.083

Division of Engineering and Applied Sciences
Harvard University103

Application: Language Modeling

WFSA for N!gram Models

b : P (b)

a : P (a)

!

b : P (b |!)

a : P (a |!) a : P (a | a)

a : P (a | b)b : P (b | a)

b : P (b | b)

a

b

Unigra& Bigra&

One state per "N+1!gram$ conditioning context
Transitions among states to change context
Start state is 〈"N−1〉

104
Division of Engineering and Applied Sciences

Harvard University

Application: Language Modeling

WFSA for N!gram Models

!!

! a

! b

aa

ab

ba

bb

a : P (a |!!)

a : P (a |! b) b : P (b | ab)

a : P (a | aa)

b : P (b |! a)

b : P (b | bb)b : P (b |! b)

b : P (b |!!)

a : P (a | ba)

a : P (a |! a)

Trigra&

105
Division of Engineering and Applied Sciences

Harvard University

!!

! a

! b

aa

ab

ba

bb

a : P (a |!!)

a : P (a |! b) b : P (b | ab)

a : P (a | aa)

b : P (b |! a)

b : P (b | bb)b : P (b |! b)

b : P (b |!!)

a : P (a | ba)

a : P (a |! a)

Application: Language Modeling

WFSA for N!gram Models

P (abbb) = P (a |!!) · P (b |! a) · P (b | ab) · P (b | bb)

Division of Engineering and Applied Sciences
Harvard University106

!!

! a

! b

aa

ab

ba

bb

a : P (a |!!)

a : P (a |! b)

b : P (b |! a)

b : P (b |!!)

a : P (a | ba)

Application: Language Modeling

Smoothing
Training corpus:

• abaab
• babb

Test corpus:
• aab

Division of Engineering and Applied Sciences
Harvard University

Let it be when it is mine to be sure let it be when it is mine when it is mine let it be
to be sure when it is mine to be sure let it be let it be let it be to be sure let it be to
be sure when it is mine to be sure let it to be sure when it is mine let it be to be sure
let it be to be sure to be sure let it be to be sure let it be to be sure to be sure let it be
to be sure let it be to be sure let it be to be sure let it be mine to be sure let it be to
be sure to be mine to be sure to be mine to be sure to be mine let it be to be mine let
it be to be sure to be mine to be sure let it be to be mine let it be to be sure let it be
to be sure to be sure let it to be sure mine to be sure let it be mine to let it be to be
sure to let it be mine when to be sure when to be sure to let it to be sure to be mine.

 , Gertrude Stein,
An Acquaintance With Description, 1929

Application: Language Modeling

Why Smoothing?
Possible Attested Sparsity

trigrams 584 39 6.7%
bigrams 72 22 30.5%
unigrams 8 8 100%

Division of Engineering and Applied Sciences
Harvard University108

Smoothing involves redistributing probability from
high probability events to low probability ones.

First, reserve some probability mass
• Add!delta smoothing

Then, redistribute held!out mass to unseen events
• Katz back!off

Application: Language Modeling

Smoothing

Division of Engineering and Applied Sciences
Harvard University109

Application: Language Modeling

Effect of Smoothing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

it
be

 be
it

be
 is

it
be

 it
it

be
 le

t
it

be
 m

in
e

it
be

 su
re

it
be

 to
it

be
 w

he
n

unsmoothed smoothed

Trigram Unsmoothed Smoothed

it be be 0 0.0066
it be is 0 0.0006
it be it 0 0.0035
it be let 0.083 0.0938
it be mine 0.125 0.1250
it be sure 0 0.1143
it be to 0.708 0.5625
it be when 0.083 0.0938

Division of Engineering and Applied Sciences
Harvard University110

Add!delta smoothing
• add a fictitious “count” of d to each N!gram

Application: Language Modeling

Reserving Probability

P (wN | w1 · · · wN−1) ≈ c(w1 · · · wN)

c(w1 · · · wN−1)

Division of Engineering and Applied Sciences
Harvard University111

P̃ (wN | w1 · · · wN−1) =
c(w1 · · · wN) + δ

c(w1 · · · wN−1) + δV

Add!delta smoothing
• add a fictitious “count” of d to each N!gram

Application: Language Modeling

Reserving Probability

Division of Engineering and Applied Sciences
Harvard University112

P̃ (wN | w1 · · · wN−1) =
c(w1 · · · wN) + δ

c(w1 · · · wN−1) + δV

Add!delta smoothing
• add a fictitious “count” of d to each N!gram

• total held!out probability

Application: Language Modeling

Reserving Probability

P̃held(w1 · · · wN−1) = 1−
∑

wN :c(w1···wN)>0

P̃ (wN | w1 · · · wN−1)

Division of Engineering and Applied Sciences
Harvard University113

Application: Language Modeling

Reserving Probability
trigram count unsmoothed P̃ 3 P̂2̂P2

renorm
smoothed

it be sure 0 0.0000 0.45710.45710.91380.1142
it be when 2 0.0833 0.0938 0.04290.0938
it be is 0 0.0000 0.00260.00260.00510.0006
it be it 0 0.0000 0.01410.01410.02820.0035
it be let 2 0.0833 0.0938 0.04290.0938
it be mine 3 0.1250 0.1250 0.15710.1250
it be to 17 0.7083 0.5625 0.25710.5625
it be be 0 0.0000 0.02650.02650.05290.0066
P̃ held 0.1250
P̃ back 0.5002
total 24 1.0000 1.0000 1.00021.00001.0000

Division of Engineering and Applied Sciences
Harvard University114

Application: Language Modeling
Distributing Probability

Katz backoff
• probability of unseen N!gram is proportional

to the probability for its suffix N+1!gram

P̂ (wN | w1 · · · wN−1) =


P̃ (wN | w1 · · · wN−1)

if c(w1 · · · wN) "= 0

α(w1 · · · wN−1)P̂ (wN | w2 · · · wN−1)
otherwise

Division of Engineering and Applied Sciences
Harvard University115

Application: Language Modeling
Distributing Probability

P̂ (wN | w1 · · · wN−1) =


P̃ (wN | w1 · · · wN−1)

if c(w1 · · · wN) "= 0

α(w1 · · · wN−1)P̂ (wN | w2 · · · wN−1)
otherwise

P̃back(w1 · · · wN−1) = 1−
∑

wN :c(w1···wN)>0

P̃ (wN | w2 · · · wN−1)

α(w1 · · · wN−1) =
P̃held(w1 · · · wN−1)

P̃back(w1 · · · wN−1)

P̃held(w1 · · · wN−1) = 1−
∑

wN :c(w1···wN)>0

P̃ (wN | w1 · · · wN−1)

Division of Engineering and Applied Sciences
Harvard University116

it be

be be

be is

be it

be
let

be
mine

be to

be
when

be
sure

le
t :

P̃ 3(
le
t | it

be
)trigram probs

trigram states

Application:
Language Modeling

Backoff WFSA

Unsmoothed WFSA

Division of Engineering and Applied Sciences
Harvard University117

it be

be be

be is

be it

be
let

be
mine

be to

be
when

be
sure

!it"
be

le
t :

P̃ 3(
le
t | it

be
)

be
: P̂2(b

e | be)

let : P̂2(let | be)

ε : P̃
held (it be)

trigram probs

bigram probs

Application:
Language Modeling

Backoff WFSA

Adding backoff

Division of Engineering and Applied Sciences
Harvard University118

it be

be be

be is

be it

be
let

be
mine

be to

be
when

be
sure

!it"
be

le
t :

P̃ 3(
le
t | it

be
)

be
: P̂2(b

e | be)

let : P̂2(let | be)

ε : P̃
held (it be)

trigram probs

bigram probs

Application:
Language Modeling

Backoff WFSA

Redundant paths

Division of Engineering and Applied Sciences
Harvard University119

it be

be be

be is

be it

be
let

be
mine

be to

be
when

be
sure

!it"
be

le
t :

P̃ 3(
le
t | it

be
)

be
: P̂2(b

e | be)

ε : P̃
held (it be)

trigram probs

some bigram probs

Application:
Language Modeling

Backoff WFSA

Eliminating redundancies

Division of Engineering and Applied Sciences
Harvard University120

it be

be be

be is

be it

be
let

be
mine

be to

be
when

be
sure

!it"
be

le
t :

P̃ 3(
le
t | it

be
)

ε : P̃
held (it be)

trigram probs

renormalized
bigram probs

be
:
P̂2(b

e | be)

P̃ bac
k(
it

be)

Application:
Language Modeling

Backoff WFSA
P̃back(w1 · · · wN−1) =

1−∑
wN :c(w1···wN)>0 P̃ (wN | w2 · · · wN−1)

Renormalizing backoff

Division of Engineering and Applied Sciences
Harvard University121

it be

be be

be is

be it

be
let

be
mine

be to

be
when

be
sure

!it"
be

le
t :

P̃ 3(
le
t | it

be
)

ε : P̃
held (it be)

trigram probs

renormalized
bigram probs

be
:
P̂2(b

e | be)

P̃ bac
k(i

t be)

is

it

trigram states

bigram states

Application:
Language Modeling

Backoff WFSA

Incorporating bigram model

Division of Engineering and Applied Sciences
Harvard University122

be
:
P̃ he

ld
(it

be)

P̃ bac
k(
it

be)
P̂2(b

e | be)
it be

be be

be is

be it

be
let

be
mine

be to

be
when

be
sure

!it"
be

le
t :

P̃ 3(
le
t | it

be
)trigram probs

fully renormalized
bigram probs

is

it

ε : 1

Application:
Language Modeling

Backoff WFSA

Pushing forward

Division of Engineering and Applied Sciences
Harvard University123

be
:
P̃ he

ld
(it

be)

P̃ bac
k(
it

be)
P̂2(b

e | be)
it be

be be

be is

be it

be
let

be
mine

be to

be
when

be
sure

le
t :

P̃ 3(
le
t | it

be
)trigram probs

fully renormalized
bigram probs

is

it

Application:
Language Modeling

Backoff WFSA

Epsilon removal

Division of Engineering and Applied Sciences
Harvard University124

Application: Language Modeling
Distributing Probability

P̂ (wN | w1 · · · wN−1) =


P̃ (wN | w1 · · · wN−1)

if c(w1 · · · wN) "= 0

α(w1 · · · wN−1)P̂ (wN | w2 · · · wN−1)
otherwise

P̃back(w1 · · · wN−1) = 1−
∑

wN :c(w1···wN)>0

P̃ (wN | w2 · · · wN−1)

α(w1 · · · wN−1) =
P̃held(w1 · · · wN−1)

P̃back(w1 · · · wN−1)

P̃held(w1 · · · wN−1) = 1−
∑

wN :c(w1···wN)>0

P̃ (wN | w1 · · · wN−1)

Division of Engineering and Applied Sciences
Harvard University125

Application: Language Modeling

Sample Smoothing
trigram count unsmoothed P̃ 3 P̂2 P̂2 renorm smoothed
it be sure 0 0.0000 0.4571 0.4571 0.9138 0.1142
it be when 2 0.0833 0.0938 0.0429 0.0938
it be is 0 0.0000 0.0026 0.0026 0.0051 0.0006
it be it 0 0.0000 0.0141 0.0141 0.0282 0.0035
it be let 2 0.0833 0.0938 0.0429 0.0938
it be mine 3 0.1250 0.1250 0.1571 0.1250
it be to 17 0.7083 0.5625 0.2571 0.5625
it be be 0 0.0000 0.0265 0.0265 0.0529 0.0066
P̃ held 0.1250
P̃ back 0.5002
total 24 1.0000 1.0000 1.0002 1.0000 1.0000

Division of Engineering and Applied Sciences
Harvard University126

Combining output and weighting
Examples:

• typing models

Weighted Transducers

Division of Engineering and Applied Sciences
Harvard University127

Combining output and weighting
Examples:

• typing models

Weighted Transducers

i

b e

s

t

a : 2
b : 2
c : 2
d : 3
e : 3

...
y : 9
z : 9

2 : 2 : .8
2 : {1, 3, 4, 5, 6} : .03
2 : {7, 8, 9} : .016
3 : 3 : .8
3 : {2, 5, 6} : .05
3 : {1, 4, 7, 8, 9} : .01

...

keypaddictionary typing

Division of Engineering and Applied Sciences
Harvard University128

f u cn rd ths, u cn gt a gd jbif y cn rd ths, y cn gt a gd jb

Combining output and weighting
Examples:

• typing models
• abbreviation models

Weighted Transducers

SfiS

Vfie

Cifi Ci
Cifi e

Cjfi Cj
Cjfi e

Vfie

Cifi Ci Cjfi Cj

Vfie

Drop all vowels after the first character
Drop all but one repeated consonants

Division of Engineering and Applied Sciences
Harvard University129

Abbreviation Decoding

‹an› ‹example› ‹of› ‹NUM› ‹words›

‹an› ‹example› ‹of› ‹NUM› ‹words›

an_example_of_‹NUM›_words

an_exmpl_of_‹NUM›_wrds

an_exmpl_of_5_wrds

Language Model

Spelling Model

Compression Model

Unknowns Model

Division of Engineering and Applied Sciences
Harvard University130

Demos

Division of Engineering and Applied Sciences
Harvard University131

Weighted finite!state transducers
• provide an elegant, uniform, formalism
• cover a vast range of low!level natural!language

processing tasks
• characterizable as string to string

transformations
Generality based on properties such as

• composability "closure under composition$
• efficiency "determinizability and

minimizability, enabled by pushing$
• weighting "for choice$

Summary

Division of Engineering and Applied Sciences
Harvard University

Tree Automata

Division of Engineering and Applied Sciences
Harvard University133

S

NP VP

V NPKim

saw Pat

Trees as Terms

S(NP (Kim),
V P (V (saw), NP (Pat)))

Trees can be thought of as
terms over a ranked
alphabet F , notated
T (F).

F = { S2, NP1, V P2, V1,
Pat0, Kim0, saw0}

1

Division of Engineering and Applied Sciences
Harvard University134

S(x, V P (V (saw), y))

S

x VP

V y

saw

Trees can be thought of as
terms over a ranked
alphabet F , notated
T (F).

F = { S2, NP1, V P2, V1,
Pat0, Kim0, saw0}

To express incomplete
trees (with “holes”) we
allow variables X at the
leaves, notated T (F ,X).

1

Incomplete Trees

Division of Engineering and Applied Sciences
Harvard University135

Ground trees:

T (F) = T (F , ∅)
Alphabet implicit:

T (X)

T
n numerically
ordered variables:

Xn = {x1, . . . , xn}

1

Tree Definitions
The set of trees over a ranked
alphabet F and variables X ,
notated T (F ,X), is the smallest
set such that

Nullary symbols at leaves:
f ∈ T (F ,X) for all f ∈ F such
that arity(f) = 0;

Variables at leaves:
x ∈ T (F ,X) for all x ∈ X ;

Internal nodes:
f (t1, . . . , tp) ∈ T (F ,X) for all
p ≥ 1 and t1, . . . , tp ∈ T (F ,X).

1

Division of Engineering and Applied Sciences
Harvard University136

Example:

Propositional Formulae
Propositional formulae: T (Fprop)

Fprop = {∧2,∨2,¬1,true0, false0}
(Arities are given in the subscripts.)

1

∧
∨
¬

true

false

false

true ∧ (false ∨ ¬false)

Division of Engineering and Applied Sciences
Harvard University137

Tree Definitions
Substitution

For a context C ∈ T (F ,Xn) and a sequence of n
trees t1, . . . , tn ∈ T (F), the substitution of
t1, . . . , tn into C, notated C[t1, . . . , tn], is defined
as follows:

(fm(u1, . . . , um))[t1, . . . , tn] =
fm(u1[t1, . . . , tn], . . . , um[t1, . . . , tn])

xi[t1, . . . , tn] = ti

1

Division of Engineering and Applied Sciences
Harvard University138

Ranked alphabet
• Vocabulary as unary symbols
• End marker "#$ as sole nullary symbol
•

aaabbaa

Strings as Trees a

a

a

a

b

b

#
a(a(a(b(b(a(#)))))) =

Division of Engineering and Applied Sciences
Harvard University139

0 aaabba! → 0 aabba!
→ 0 abba!
→ 0 bba!
→ 1 bba!
→ c 1 a!
→ c 2 a!
→ c 2 !
→ c !

0 1 2

a : ε bb : c

εε

a : ε

Finite!State Derivations
A derivation:

Definition of recognition:
accept s : t if and only if

0 s! →∗ t!

0 a · · · → 0 · · ·
0 · · · → 1 · · ·

1 bb · · · → c 1 · · ·
1 · · · → 2 · · ·

2 a · · · → 2 · · ·
2 ! → !

Division of Engineering and Applied Sciences
Harvard University140

A derivation:

Definition of recognition:

0(a(a(a(b(b(a(!))))))) → 0(a(a(b(b(a(!))))))
→ 0(a(b(b(a(!)))))
→ 0(b(b(a(!))))
→ 1((b(b(a(!)))))
→ c(1(a(!)))
→ c(2(a(!)))
→ c(2(!))
→ c(!)

1

0(a(x)) → 0(x)
0(x) → 1(x)

1(b(b(x))) → c(1(x))
1(x) → 2(x)

2(a(x)) → 2(x)
2(!) → !

1

0 1 2

a : ε bb : c

εε

a : ε

Strings as Trees

accept s : t if and only if

0(s) →∗ t

1

Division of Engineering and Applied Sciences
Harvard University141

States as Unary Symbols
The set of upper trees over a ranked alphabet F , states
Q, and variables X , notated T Q(F ,X), is the set of trees
q(t) where q ∈ Q and t ∈ T (F ,X).
The set of lower trees over a ranked alphabet F , states Q,
and variables X , notated TQ(F ,X), is the smallest set of
trees such that

Nullary symbols at leaves: f ∈ TQ(F ,X) for all
f ∈ F such that arity(f) = 0;

States over variables at leaves: q(x) ∈ TQ(F ,X)
for all x ∈ X and q ∈ Q;

Internal nodes: f (t1, . . . , tp) ∈ TQ(F ,X) for all
p ≥ 1 and t1, . . . , tp ∈ TQ(F ,X).

1

Division of Engineering and Applied Sciences
Harvard University142

Examples

Ffg = {f2, g2, a0, b0, c0}
Q = {q0, q1}

T Q(Ffg,X3) ⊃ { q0(x3)
q1(f (g(x1, x2), x3))
q0(a) }

TQ(Ffg,X3) ⊃ { q0(x3)
f (g(q0(x1), q0(x2)), q1(x3))
a }

1

Division of Engineering and Applied Sciences
Harvard University143

Tree Linearity and Height

A tree t ∈ T (X) is linear if and only if no variable in X occurs more
than once in t.
The height of a tree t, notated height(t), is defined as follows:

height(x) = 0 for all x ∈ X
height(f) = 1 for all f ∈ F where arity(f) = 0

height(f (t1, . . . , tn)) = 1 + maxn
i=1 height(ti)

for all f ∈ F where arity(f) = n ≥ 1
If the trees include states in Q, then we further define that
height(q(t)) = height(t) for all q ∈ Q and all trees t.

1

Division of Engineering and Applied Sciences
Harvard University144

The consecutively numbered linear upper trees of height 1

TQ

are of the form
q(fn(x1, . . . , xn))

The consecutively numbered linear lower trees of height 1

TQ

are of the form

fn(q(x1), . . . , q(xn))

Used as patterns matching a parent and its immediate chil-
dren in the most general way.

1

Simple Subclasses of Trees

0(a(x)) → 0(x)
0(x) → 1(x)

1(b(b(x))) → c(1(x))
1(x) → 2(x)

2(a(x)) → 2(x)
2(!) → !

Division of Engineering and Applied Sciences
Harvard University145

Tree Automata
A nondeterministic top-down tree automaton (NTTA) is
a tuple 〈Q,F , ∆, q0〉 where
•Q is a finite set of states;
• F is a ranked alphabet;
•∆ ∈ TQ(F ,Xn) × TQ(F ,Xn) is a set of transitions;
• q0 ∈ Q is a distinguished initial state.

1

We notate transitions

q(fn(x1, . . . , xn))→ fn(q1(x1), . . . , qn(xn))

1

Division of Engineering and Applied Sciences
Harvard University146

Tree Automaton Derivation
Given an NTTA 〈Q,F , ∆, q0〉 and two trees t, t′ ∈ T (F),
tree t derives t′ in one step, notated t → t′ if and only if
there is a transition u → u′ ∈ ∆ with u, u′ ∈ T (F ,Xn)
and trees C ∈ T (F ,X1) and u1, . . . un ∈ T (F), such that

t = C[u[u1, . . . , un]]

and
t′ = C[u′[u1, . . . , um]] .

A tree t ∈ T (F) is accepted by an NTTA just in case

q0(t) →∗ t .

The tree language of an NTTA is the set of trees accepted
by the NTTA.

1

Division of Engineering and Applied Sciences
Harvard University147

Tree Automaton Derivation
q(fn(x1, . . . , xn))→ fn(q1(x1), . . . , qn(xn))

q

fn q1 qn

fn

Division of Engineering and Applied Sciences
Harvard University148

Example NTTA
q0(f (x1, x2))→ f (q0(x1), q0(x2))
q0(a)→ a
q0(b)→ b

q0

f

a

b

f

a

f

a

b

f

a

Division of Engineering and Applied Sciences
Harvard University149

q0

f

a

b

f

a

q0

Example NTTA
q0(f (x1, x2))→ f (q0(x1), q0(x2))
q0(a)→ a
q0(b)→ b

f

a

b

f

a

Division of Engineering and Applied Sciences
Harvard University150

f

a

b

f

a

q0q0

Example NTTA
q0(f (x1, x2))→ f (q0(x1), q0(x2))
q0(a)→ a
q0(b)→ b

f

a

b

f

a

Division of Engineering and Applied Sciences
Harvard University151

f

a

b

f

a

Example NTTA
q0(f (x1, x2))→ f (q0(x1), q0(x2))
q0(a)→ a
q0(b)→ b

f

a

b

f

a

Division of Engineering and Applied Sciences
Harvard University152

Example:

Recognizing True Formulae
qt(true) → true
qf(false) → false

qt(¬x1) → qf(x1)
qf(¬x1) → qt(x1)

qt(x1 ∧ x2) → qt(x1) ∧ qt(x2)

qf(x1 ∧ x2)→ qt(x1) ∧ qf(x2)
qf(x1 ∧ x2)→ qf(x1) ∧ qt(x2)
qf(x1 ∧ x2)→ qf(x1) ∧ qf(x2)

qt(x1 ∨ x2) → qt(x1) ∨ qt(x2)
qt(x1 ∨ x2) → qt(x1) ∨ qf(x2)
qt(x1 ∨ x2) → qf(x1) ∨ qt(x2)

qf(x1 ∨ x2)→ qf(x1) ∨ qf(x2)

qt(false ∨ ¬false)
→ qf(false) ∨ qt(¬false)
→ false ∨ qt(¬false)
→ false ∨ ¬qf(false)
→ false ∨ ¬false

Division of Engineering and Applied Sciences
Harvard University153

A nondeterministic top-down tree automaton (NTTA) is
a tuple 〈Q,F , ∆, q0〉 where
•Q is a finite set of states;
• F is a ranked alphabet;
•∆ ∈ TQ(F ,Xn)× TQ(F ,Xn) is a set of transitions;
• q0 ∈ Q is a distinguished initial state.

A tree t ∈ T (F) is accepted by an NTTA just in case

q0(t) →∗ t .

The tree language of an NTTA is the set of trees accepted
by the NTTA.

1

Top!Down Tree Automata

Division of Engineering and Applied Sciences
Harvard University154

Bottom!Up Tree Automata
A nondeterministic bottom-up tree automaton (NBTA) is
a tuple 〈Q,F , ∆, Qf〉 where
•Q is a finite set of states;
• F is a ranked alphabet;
•∆ ∈ TQ(F ,Xn)× TQ(F ,Xn) is a set of transitions;
•Qf ⊆ Q is a distinguished set of final states.

A tree t ∈ T (F) is accepted by an NBTA just in case

t →∗ q(t)

for some q ∈ Qf .

The tree language of an NBTA is the set of trees accepted
by the NBTA.

1

Division of Engineering and Applied Sciences
Harvard University155

Characterize context!free trees
Closure under

• "left!right reversal$
• top!down+bottom!up reversal
• union
• substitution
• iterative substitution
• granularity
• epsilon removal:
• determinization: bottom!up only

Properties of Tree Automata

q(x) → q′(x)

Division of Engineering and Applied Sciences
Harvard University156

Determinization
• an automaton is deterministic if no two

transitions share left!hand side
• bottom!up automata are determinizable
• top!down automata are not

Properties of Tree Automata

q(f (x, x))→ f (qa(x), qa(x))
q(f (x, x))→ f (qb(x), qb(x))
qa(a)→ a
qb(b)→ b

{f (a, a), f(b, b)}

Division of Engineering and Applied Sciences
Harvard University

Tree Transducers

Division of Engineering and Applied Sciences
Harvard University158

Regarding tree transformations,
results do not flow so easily. Several
definitions are candidate for the label
‘tree transductions’, with (unrelated)
properties. People will keep in mind
how gracefully behaved rational
"word$ transductions (are).

, Raoult, 1992

Tree Transducers

Division of Engineering and Applied Sciences
Harvard University159

A nondeterministic top-down tree automaton (NTTA) is
a tuple 〈Q,F , ∆, q0〉 where
•Q is a finite set of states;
• F is a ranked alphabet;
•∆ ∈ TQ(F ,Xn)× TQ(F ,Xn) is a set of transitions;
• q0 ∈ Q is a distinguished initial state.

A tree t ∈ T (F) is accepted by an NTTA just in case

q0(t) →∗ t .

The tree language of an NTTA is the set of trees accepted
by the NTTA.

1

Top!Down Tree Automata

Division of Engineering and Applied Sciences
Harvard University160

A nondeterministic top-down tree transducer (NTTT) is
a tuple 〈Q,F , ∆, q0〉 where
•Q is a finite set of states;
• F is a ranked alphabet;
•∆ ∈ TQ(F ,Xn)× TQ(F ,Xn) is a set of transitions;
• q0 ∈ Q is a distinguished initial state.

The tree relation defined by an NTTT 〈Q,F , ∆, q0〉 is
the set of all tree pairs 〈s, t〉 such that

q0(s) →∗ t .

1

Top!Down Tree Transducers

Division of Engineering and Applied Sciences
Harvard University161

A derivation:

Definition of recognition:

0(a(a(a(b(b(a(!))))))) → 0(a(a(b(b(a(!))))))
→ 0(a(b(b(a(!)))))
→ 0(b(b(a(!))))
→ 1((b(b(a(!)))))
→ c(1(a(!)))
→ c(2(a(!)))
→ c(2(!))
→ c(!)

1

0(a(x)) → 0(x)
0(x) → 1(x)

1(b(b(x))) → c(1(x))
1(x) → 2(x)

2(a(x)) → 2(x)
2(!) → !

1

0 1 2

a : ε bb : c

εε

a : ε

Example NTTT "FST$

accept s : t if and only if

0(s) →∗ t

1

Division of Engineering and Applied Sciences
Harvard University162

Example:

Concrete Syntax of Formulae
q0(¬x) →un(¬, q∧∨(x))
q0(x ∧ y) → bin(q∧∨(x),∧, q∨(y))
q0(x ∨ y) → bin(q∨(x),∨, q0(y))
q0(true) → true
q0(false) → false
q∧∨(¬x) →un(¬, q∧∨(x))
q∧∨(x ∧ y)→ par([, bin(q∧∨(x),∧, q∨(y)),])
q∧∨(x ∨ y)→ par([, bin(q∨(x),∨, q0(y)),])
q∧∨(true) → true
q∧∨(false) → false
q∨(¬x) →un(¬, q∧∨(x))
q∨(x ∧ y) → bin(q∧∨(x),∧, q∨(y))
q∨(x ∨ y) → par([, bin(q∨(x),∨, q0(y)),])
q∨(true) → true
q∨(false) → false

∧
¬

true false

un

par

bin[]

∧

¬

truefalse

Division of Engineering and Applied Sciences
Harvard University163

Example:

Concrete Syntax of Formulae
q0(¬x) →un(¬, q∧∨(x))
q0(x ∧ y) → bin(q∧∨(x),∧, q∨(y))
q0(x ∨ y) → bin(q∨(x),∨, q0(y))
q0(true) → true
q0(false) → false
q∧∨(¬x) →un(¬, q∧∨(x))
q∧∨(x ∧ y)→ par([, bin(q∧∨(x),∧, q∨(y)),])
q∧∨(x ∨ y)→ par([, bin(q∨(x),∨, q0(y)),])
q∧∨(true) → true
q∧∨(false) → false
q∨(¬x) →un(¬, q∧∨(x))
q∨(x ∧ y) → bin(q∧∨(x),∧, q∨(y))
q∨(x ∨ y) → par([, bin(q∨(x),∨, q0(y)),])
q∨(true) → true
q∨(false) → false

∧
¬

true false

un

par

bin[]

∧

¬

truefalse

fringe(T (¬(∧(true, false))))
= !¬[true ∧ false]"

Division of Engineering and Applied Sciences
Harvard University164

Example:

Evaluation of Formulae
true → qT (true)
false → qF (false)
¬qT (x1) → qF (false)
¬qF (x1) → qT (true)
qT (x1) ∧ qT (x2)→ qT (true)
qT (x1) ∧ qF (x2)→ qF (false)
qF (x1) ∧ qT (x2)→ qF (false)
qF (x1) ∧ qF (x2)→ qF (false)
qT (x1) ∨ qT (x2)→ qT (true)
qT (x1) ∨ qF (x2)→ qT (true)
qF (x1) ∨ qT (x2)→ qT (true)
qF (x1) ∨ qF (x2)→ qF (false)

Division of Engineering and Applied Sciences
Harvard University165

Linear
• no repeated variables on right!hand side
• nonlinearity generates exponential transformations

Fine-grained
• rotations, e.g.
• structure elimination requires nonlinearity "or pushing$

Deterministic
• not possible in general

Non-Erasing
• all variables appear on right!hand side

Invertibl!
• requires linearity

Properties and Complexities
of Tree Transducers

Division of Engineering and Applied Sciences
Harvard University166

Generating perfect binary trees:

Nonlinearity Generates
Exponential Transductions

q(f (x))→ g(q(x), q(x))
q(a) → a

q(f (a)) → g(q(a), q(a)) →∗ g(a, a)

q(f (f (a))) → g(q(f (a)), q(f (a))) →∗ g(g(a, a), g(a, a))

q(f (f (f (a)))) →∗ g(g(g(a, a), g(a, a)), g(g(a, a), g(a, a)))

|q(fn(a))| = 2n − 1

Exponential growth implies no composition
closure

Division of Engineering and Applied Sciences
Harvard University167

Consider
• I like Mary.
• Marie gefällt mir.

Why Rotations?

like Mary

S

NP VP

V NPI

S

NP VP

V NPMarie

gefällt mir

Division of Engineering and Applied Sciences
Harvard University168

Expressing Rotations
f

g

x y

z

f

gx

y z

q(f (xgxy, z))→ f (q1(xgxy), g(q2(xgxy), q(z)))
q1(g(x, y)) →x
q2(g(x, y)) → y

q(f (g(x, y), z))→ f (q(x), g(q(y), q(z)))

requires
nonlinearity

Division of Engineering and Applied Sciences
Harvard University169

VP

VP

VP

give

the patient

the pillNP

NP

V

Consider
• Dann wird der Doktor dem patienten die Pille geben
• Then the doctor will give the patient the pill

Why Global Rotations?

geben

dem Patienten

die Pille

VP

VP

VPNP

NP

V

Division of Engineering and Applied Sciences
Harvard University170

No Global Rotations
f

f

f

f

w

x

y

z

#

f

f

f

fx

y

z

w

#

cf. macro tree transducers

Division of Engineering and Applied Sciences
Harvard University171

Determinization of transducers fails even if
underlying automata are deterministic.

Determinization

The goal:
f (x, y)⇒ g(a, x)
f (x, y)⇒ f (x, y) for x "= aa⇒ a

A nondeterministic solution:
q(f (x, y)) → g(qa(x), q(y))
q(f (x, y)) → f (q¬a(x), q(y))
q(a) → a
qa(a) → a
q¬a(f (x, y))→ g(qa(x), q(y))

1

can’t push this forward

Division of Engineering and Applied Sciences
Harvard University172

Linearity would be helpful
• closure under composition
• no exponential growth
• invertibility

But linearity is insufficient...
• no local rotation

and even nonlinear transducers are insufficient
• global rotations
• fringe

Summary

Division of Engineering and Applied Sciences
Harvard University

Extended Transducers:
Bimorphisms

Division of Engineering and Applied Sciences
Harvard University174

String Homomorphisms
Given alphabets Σ and Γ and a finite function
h0 : Σ → Γ∗, the homomorphism h : Σ∗ → Γ∗ is defined
as the unique function extending h0 such that for all
strings s, t ∈ Σ∗, h(s t) = h(s) h(t).

A string homomorphism is ε-free if h(s) = ε only when
s = ε.

A string bimorphism is a triple 〈hin, L, hout〉 where L is a
regular language and hin and hout are homomorphisms.

1

Division of Engineering and Applied Sciences
Harvard University175

Finite!state transducers and string bimorphisms are
equivalent.

String Bimorphisms

Proof sketch for one direction: Given a FST 〈Q, Σ, Γ, ∆, q0〉,
construct FSA AL = 〈Q, Σ∗ × Γ∗, ∆′, q0〉 where ∆′ contains
transitions of the form

q 〈s, t〉 → q′

for each transition in ∆ of the form

q s → t q′ .

Construct homomorphism hin : Σ∗ × Γ∗ → Σ extending

hin(〈s, t〉) = s

and hout : Σ∗ × Γ∗ → Γ extending

hin(〈s, t〉) = t .

The required bimorphism is 〈hin, L(AL), hout〉.

1

Division of Engineering and Applied Sciences
Harvard University176

Finite!state transducers and string bimorphisms are
equivalent.

String Bimorphisms

0 1 2

a : ε bb : c

εε

a : ε

0 1 2

A B C

D E

hin(A) = a
hin(B) = bb
hin(C) = a
hin(D) = ε
hin(E) = ε

hout(A) = ε
hout(B) = c
hout(C) = ε
hout(D) = ε
hout(E) = ε〈hin, A

∗DB∗EC∗, hout〉

Division of Engineering and Applied Sciences
Harvard University177

Let hF : F → T (F ′,X) be a function mapping each
f ∈ F of arity n to a tree hF(f) : T (F ′, Xn). The tree
homomorphism extending hF is the function
h : T (F) → T (F ′) such that for all n and all f of arity n

h(f (t1, . . . , tn)) = hF(f)[h(t1), . . . , h(tn)]

Equivalent to one-state tree transducers

1

Tree Homomorphisms

Division of Engineering and Applied Sciences
Harvard University178

Example:
Perfect Binary Trees

f

a

g

x x

a

!→

!→

f

f

f

a

g

g

g

a a

g

a a

g

a a

g

a a

g

Division of Engineering and Applied Sciences
Harvard University179

Tree Bimorphisms
A tree bimorphism over input alphabet Σ and output
alphabet Γ is a triple 〈hi, L, ho〉 where L is a rational tree
language over an alphabet ∆ and hi : T (∆) → T (Σ) and
ho : T (∆) → T (Γ) are tree homomorphisms.

A tree bimorphism generates a tree relation R from T (Σ)
to T (Γ) as follows: R(s, t) holds just in case there is a
tree d ∈ L such that hi(d) = s and ho(d) = t.
Equivalently,

R = h−1
i ◦ L ◦ ho .

1

Division of Engineering and Applied Sciences
Harvard University180

Restricting Bimorphisms

h−1
perf ◦ T ◦ hid

f

f

f

a

g

g

g

a a

g

a a

g

a a

g

a a

g

Division of Engineering and Applied Sciences
Harvard University181

Linear
• no repeated variables

Complete
• no dropped variables

Epsilon!free
• some structure on output

Symbol!to!symbol
• output of height 1
• "implies epsilon!free$

Delabeling
• = linear complete symbol!to!symbol

Restricting Homomorphisms

Division of Engineering and Applied Sciences
Harvard University182

Intuition for Restriction

TQ(F ,Xn)× TQ(F ,Xn)

T (F ,Xn)

ho

(≈ F)T(F ,Xn)

hi

arbitrary morphism "M$delabeling "LCS$

B(LCS,M)

Division of Engineering and Applied Sciences
Harvard University183

Bimorphism
Characterization

The class of bottom!up tree transductions is
equivalent to the relations defined by tree
bimorphisms where the first homomorphism is a
delabeling.

If the homomorphisms are linear "epsilon!free,
complete$, the bimorphism characterizes a linear
"resp., epsilon!free, complete$ transduction.

This asymmetry explains, e.g., lack of invertibility.

Division of Engineering and Applied Sciences
Harvard University184

B"x, y$ bimorphisms with homomorphisms of
type x and y

• M any homomorphism
• L linear
• C complete
• F epsilon!free
• D delabeling

B"D, M$ equivalent to tree transducers

Types of Bimorphisms

Division of Engineering and Applied Sciences
Harvard University185

B"M, M$
• very powerful; composition is Turing!

equivalent
B"L, L$

• expands input power; contracts output power
• not closed under composition
•

B"LC, LC$
• = synchronous tree substitution grammars

B"LCF, LCF$
•

Regaining Symmetry

B(L, L) ⊂ B(L, L)2 ⊂ B(L, L)3 ⊂ B(L, L)4 = B(L, L)5

B(LCF,LCF) ⊂ B(LCF,LCF)2 = B(LCF,LCF)3

Division of Engineering and Applied Sciences
Harvard University186

Context!free grammars as tree substitution

Synchronous Grammars

S

NP VPKim Vlikes Sandy

NP VPV NP

NP

Kim

NP

S

NP VP

Kim

S

NP VP

V

VP

NP

S

NP

Kim V

VP

NP

Division of Engineering and Applied Sciences
Harvard University187

Synchronous
Context!Free Grammars

V

eat

cake

VP

V

NP

NP V

esse

Kuchen

VP

V

NP

NP
V

VP

NP V

VP

NP

eat

V

esse

V

cake

NP

Kuchen

NP

Division of Engineering and Applied Sciences
Harvard University188

Synchronous
Context!Free Grammars

V

eat

cake

VP

V

NP

NP V

esse

Kuchen

VP

V

NP

NP
V

VP

NP V

VP

NP

eat essecake Kuchen

Division of Engineering and Applied Sciences
Harvard University189

Domain of locality is too small

Problems With SCFG

like Mary

S

NP VP

V NPI

S

NP VP

V NPMarie

gefällt mir

Division of Engineering and Applied Sciences
Harvard University190

S

NP

V

VP

NP

isst

Kim

NP

NP

Kuchen

Kim

NP NP

Kuchen

S

NP

V

VP

NP

isst

Expands domain of locality to elementary tree.

Tree Substitution Grammars

Division of Engineering and Applied Sciences
Harvard University191

Kim

NP NP

Kuchen

S

NP

V

VP

NP

isst

Expands domain of locality to elementary tree.

Tree Substitution Grammars

No additional expressive power over CFG.

S

NP

V

VP

NP

isst

Kim

Kuchen

Division of Engineering and Applied Sciences
Harvard University192

Synchronous Tree!
Substitution Grammars

Kim

NPNP

Kuchen

S

NP

V

VP

NP

isst

Kim

NPNP

cake

S

NP

V

VP

NP

eats

Kim

NP

NP

Kuchen

S

NP

V

VP

NP

isst
Kim

NP

NP

cake

S

NP

V

VP

NP

eats

Division of Engineering and Applied Sciences
Harvard University193

Synchronous Tree!
Substitution Grammars

Kim

NPNP

Kuchen

S

NP

V

VP

NP

isst

Kim

NPNP

cake

S

NP

V

VP

NP

eats

Kim

Kuchen

S

NP

V

VP

NP

isst

Kim

cake

S

NP

V

VP

NP

eats

Division of Engineering and Applied Sciences
Harvard University194

The STSG Payoff
S

NP

V

VP

NP

isst

S

NP

V

VP

NP

eats
S

NP

V

VP

NP

gefällt

S

NP

V

VP

NP

likes

Division of Engineering and Applied Sciences
Harvard University195

STSG as Bimorphism

Kim

NPNP

Kuchen

S

NP

V

VP

NP

isst

Kim

NPNP

cake

S

NP

V

VP

NP

eats

hi(α1) = S(x, V P (V (eats), y)
ho(α1) = S(x, V P (V (isst), y)
hi(α2) = NP (cake)
ho(α2) = NP (Kuchen)
hi(α3) = NP (Kim)
ho(α3) = NP (Kim)

hi(α4) = S(x, V P (V (likes), y)
ho(α4) = S(y, V P (V (gefällt), x)
hi(α5) = NP (I)
ho(α5) = NP (mir)

NB: linear, complet!

Division of Engineering and Applied Sciences
Harvard University196

Substitution and Adjunction

X

X

X X

X

X

X

X

substitutio# adjunctio#

Division of Engineering and Applied Sciences
Harvard University197

Elementary trees extend domain of locality
Combination by substitution and adjunction
Trans!context!free power

• CFG:
• TAG:

Examples of adjunction:
• Kim likes cake → Kim really likes cak'
• the cake → the chocolate cake

→ the chocolate cake that I baked

Tree Adjoining Grammars

anbn

anbncndn

Division of Engineering and Applied Sciences
Harvard University198

Proposed for transductions to characterize
• semantics
• natural!language generation
• machine translation

Synchronous Tree!Adjoining
Grammars

Division of Engineering and Applied Sciences
Harvard University

Extended Transducers:
Macro Tree Transducers and

Deterministic Tree
Rewriting

Division of Engineering and Applied Sciences
Harvard University

20
0

More Powerful Tree
Transducers

f

f

f

f

w

x

y

z

#

f

f

f

fx

y

z

w

#

Division of Engineering and Applied Sciences
Harvard University201

Identifying Complements and Adjuncts in the Penn Treeban(

We add the “!C” suffix to all non!terminals in training data that satisfy the following
conditions:

1. The non!terminal must be: "1$ an NP, SBAR, or S whose parent is an S; "2$ an NP,
SBAR, S, or VP whose parent is a VP; or "3$ an S whose parent is an SBAR.

2. The non!terminal must not have one of the following semantic tags: ADV, VOC,
BNF, DIR, EXT, LOC, MNR, TMP, CLR or PRP. ...

In addition, the first child following the head of a prepositional phrase is marked as a
complement.

...

Punctuatio#

This section describes our treatment of “punctuation” in the model, where “punctuation”
is used to refer to words tagged as a comma or colon. ...

Our first step, for consistency, is to raise punctuation as high in the parse trees as possible.
Punctuation at the beginning or end of sentences is removed from the training/test data
altogether...

, Collins, Head)Driven Statistical Models for Natural)Language Parsing, 1999

Corpus Normalization

Division of Engineering and Applied Sciences
Harvard University202

Table 3: Transformations from N!ary to binary branching structures

, Goodman, Efficient algorithms for parsing the DOP model, 1996

"Note the implicit need for global rotations.$

More Corpus Normalization

Division of Engineering and Applied Sciences
Harvard University203

rotate(x) = rotate(x, !)
rotate(!, x) = x
rotate(f (x, y), z) = rotate(x, f (y, z))

Programming Rotation

rotate(f (f (f (!, a), b), c))
= rotate(f (f (f (!, a), b), c), !)
= rotate(f (f (!, a), b), f(c, !))
= rotate(f (!, a), f(b, f (c, !)))
= rotate(!, f (a, f(b, f (c, !))))
= f (a, f(b, f (c, !)))

Division of Engineering and Applied Sciences
Harvard University204

Macro Tree Transducers
A macro tree transducer (MTT) is a tuple 〈Q,F , ∆, q0〉
where
•Q is a ranked alphabet of states;
• F is a ranked alphabet;
•∆ ∈ ⋃

r≥1,q(r)∈Q,k≥0,f (k)∈F Tmlhs(q(r), f (k),Xk,Yr) ×
Tmrhs(Q,F ,Xk,Yr) is a set of transitions;

• t0 ∈ Tmrhs(Q,F ,X1, ∅) is a distinguished initial tree.

1

Division of Engineering and Applied Sciences
Harvard University205

The set of macro tree transducer left-hand sides over r-ary state q,
k-ary symbol f , variables Xk, and parameters Yr, notated
Tmlhs(q(r), f (k),Xk,Yr), is the singleton set comprising the tree of the
form

q(f (x1, . . . , xk), y1, . . . , yr)

The set of macro tree transducer right-hand sides over states Q,
alphabet F , variables Xk, and parameters Yr, notated
Tmrhs(Q,F ,Xk,Yr), is the smallest set of trees in T (Q ∪ F,Xk ∪ Yr)
such that
(1) Yr ⊆ Tmrhs(Q,F ,Xk,Yr)
(2) for all k ≥ 0 and f ∈ F (k) and t1, . . . , tk ∈ Tmrhs(Q,F ,Xk,Yr),

f (t1, . . . , tk) ∈ Tmrhs(Q,F ,Xk,Yr)
(3) for all r ≥ 1 and q ∈ Q(r) and xi ∈ Xk and

t1, . . . , tr−1 ∈ Tmrhs(Q,F ,Xk,Yr),
q(xi, t1, . . . , tr−1) ∈ Tmrhs(Q,F ,Xk,Yr)

1

Macro Tree Transducers

Division of Engineering and Applied Sciences
Harvard University206

MTT Examples:

Global Rotation

q0(x1)→ qr(x1, !)
qr(!, y1)→ y1

qr(f (x1, x2), y1) = qr(x1, f(x2, y1))

rotate(x) = rotate(x, !)
rotate(!, x) = x
rotate(f (x, y), z) = rotate(x, f (y, z))

Division of Engineering and Applied Sciences
Harvard University207

MTT Examples:

Local Rotation
q(f (x1, x2)) → q′(x1, x2)
q′(f (x1, x2), y1) → f (q(x1), f(q(x2), q(y1)))
q(a) → a
q(b) → b

q(f (f (a, f(f (b, a), a)), b))
→ q′(f (a, f(f (b, a), a)), b)
→ f (q(a), f(q(f (f (b, a), a)), q(b)))
→3 f (a, f(q′(f (b, a), a), b))
→ f (a, f(f (q(b), f(q(a), q(a))), b))
→3 f (a, f(f (b, f (a, a)), b))

Division of Engineering and Applied Sciences
Harvard University208

MTT Examples:

Reversal
q0(x1)→ q(x1, !)
q(f (x1, x2), y)→ q(x2, f(x1, y))
q(!, y)→ y

q0(f (a, f(b, f (c, !))))
→ q(f (a, f(b, f (c, !))), !)
→ q(f (b, f (c, !)), f(a, !))
→ q(f (c, !), f(b, f (a, !)))
→ q(!, f (c, f (b, f (a, !))))
→ f (c, f (b, f (a, !)))

Division of Engineering and Applied Sciences
Harvard University209

MTT Examples:

Reversal
q0(x1)→ q(x1, !)
q(f (x1, x2), y)→ q(x1, q(x2, y))
q(a, y)→ f (a, y)
q(b, y)→ f (b, y)

q0(f (f (a, b), f(b, a)))
→ q(f (f (a, b), f(b, a)), !)
→ q(f (a, b), q(f (b, a), !))
→ q(f (a, b), q(b, q(a, !)))
→ q(a, q(b, q(b, q(a, !))))
→4 f (a, f(b, f (b, f (a, !))))

Division of Engineering and Applied Sciences
Harvard University210

MTT Examples:

Frontier
q0(x1)→ q(x1, !)
q(f (x1, x2), y)→ q(x1, q(x2, y))
q(a, y)→ f (a, y)
q(b, y)→ f (b, y)

q0(f (f (a, b), f(b, a)))
→ q(f (f (a, b), f(b, a)), !)
→ q(f (a, b), q(f (b, a), !))
→ q(f (a, b), q(b, q(a, !)))
→ q(a, q(b, q(b, q(a, !))))
→4 f (a, f(b, f (b, f (a, !))))

Division of Engineering and Applied Sciences
Harvard University211

Formalism designed for specifying speech
command!and!control systems for Kurzweil
"Lernout and Hauspie "Scansoft$$
Basis for natural!language!like voice commands in

• Kurzweil VoiceXpress
• Lernout and Hauspie VoiceXpress
• Scansoft Dragon NaturallySpeaking

Deterministic Tree Rewriting

Division of Engineering and Applied Sciences
Harvard University212

Cascade of bimorphisms: B"L, M$
Where is ambiguous, it is determinized by
explicit ordering.
Extended to unranked alphabet through sequence
variables
Succinct notation for rewrite rules

Overview

h−1
in

Division of Engineering and Applied Sciences
Harvard University213

‹pattern› ==> ‹result›
Rewrite Rules

• Variables/nonterminals uppercase "or _ $
• Terminals lowercase
• Recursive rewriting implicit
• Nonterminals play dual role:

• variables
• node labels

q(np(xdet, xn))→ det(q(xn))

NP(Det, N) ==> Det(N)

Division of Engineering and Applied Sciences
Harvard University214

Rewrite Rules

q(np(xdet, xn))→ det(q(xn))

NP(Det, N) ==> Det(N)

Units(lines) ==> line
q(units(lines))→ line

q(units(xunit))→ q(xunit)
Units(_unit) ==> _unit

Command(move, down, Number, Units)
 ==> Move(down, Number, Units)
q(command(move, down, xnumber, xunits))
→ move(down, q(xnumber), q(xunits))

‹pattern› ==> ‹result›

Division of Engineering and Applied Sciences
Harvard University215

Command(move, down, Number, Units)
 ==> Move(down, Number, Units)

Number(_n) = _n

Units(lines) ==> line

Units(_unit) ==> _unit

Example

Command(move, down,
 Number(3), Units(lines))
==>* Move(down, 3, line)
=/=>* Move(down, 3, lines)

Division of Engineering and Applied Sciences
Harvard University216

// Front end grammar

/* Starting nonterminal is NatNum
 NatNum covers natural numbers 0 through 10^12 - 1
 NatNumX covers natural numbers 1 through 10^X - 1
 NatDigit covers natural digits 1 through 9
 NatLeadDig similarly
 NatTeen covers 10 through 19
 NatTy covers the multiples of 10, 20 through 90
*/

NatNum --> zero | NatNum12
NatNum12 --> NatNum3 | NatNum3 billion NatNum9
NatNum9 --> NatNum3 | NatNum3 million NatNum6
NatNum6 --> NatNum3 | NatNum3 thousand NatNum3
NatNum3 --> NatNum2 | NatLeadingDigit hundred {and} NatNum2
NatNum2 --> NatDigit | NatTeen | NatTy NatDigit
NatDigit --> one | two | three | four | five
 | six | seven | eight | nine
NatLeadDig --> a | NatDigit
NatTeen --> ten | eleven | twelve | thirteen | fourteen
 | fifteen | sixteen | seventeen | eighteen | nineteen
NatTy --> twenty | thirty | forty | fifty
 | sixty | seventy | eighty | ninety

Extended Example

Number Name Normalization

Division of Engineering and Applied Sciences
Harvard University217

//...
Pass "compute expression"

// Rewrites natural numbers into an arithmetic expression
// tree that computes the corresponding numeric value.

NatNum3(NatNum2) ==> NatNum2
NatNum3(NatLeadingDigit, hundred, _, NatNum2)
 ==> Plus(NatNum2, Times(NatLeadDig,
 Exp(10, 2)))

NatNum2(NatDigit) ==> NatDigit
NatNum2(NatTy, NatDigit) ==> Plus(NatTy, NatDigit)
NatNum2(NatTeen) ==> NatTeen

Extended Example

Number Name Normalization

Division of Engineering and Applied Sciences
Harvard University218

NatDigit(one) ==> 1
NatDigit(two) ==> 2
NatDigit(three) ==> 3
...
NatDigit(nine) ==> 9

NatLeadDig(NatDigit) ==> NatDigit
NatLeadDig(a) ==> 1

NatTeen(ten) ==> 10
NatTeen(eleven) ==> 11
NatTeen(twelve) ==> 12
...
NatTeen(nineteen) ==> 19

NatTy(twenty) ==> 20
NatTy(thirty) ==> 30
NatTy(forty) ==> 40
...
NatTy(ninety) ==> 90

Extended Example

Number Name Normalization

Division of Engineering and Applied Sciences
Harvard University219

//...
Pass "generate code"

// Converts arithmetic Expression trees into
// corresponding VB string

Plus(X, Y) ==> "(" . X . " + " . Y . ")"
Times(X, Y) ==> "(" . X . " * " . Y . ")"
Exp(X, Y) ==> "(" . X . " ^ " . Y . ")"
_ ==> _

Extended Example

Number Name Normalization

Division of Engineering and Applied Sciences
Harvard University220

string:
• seven hundred and thirty five

parse:
• NatNum3(NatLD(NatDigit(seven)),
 hundred, and,
 NatNum2(NatTy(thirty),
 NatDigit(five)))

pass “compute expression”:
• Plus(Plus(30, 5),
 Times(7, Exp(10, 2)))

pass “generate code”:
• “((30+5)+(7*(10^2)))”

evaluation:
• 735

Extended Example

Number Name Normalization

