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Abstract

We address the problem of improving the efficiency of natural language text input un-
der degraded conditions (for instance, on mobile computing devices or by disabled users),
by taking advantage of the informational redundancy in natural language. Previous ap-
proaches to this problem have been based on the idea of prediction of the text, but these
require the user to take overt action to verify or select the system’s predictions. We pro-
pose taking advantage of the duality between prediction and compression. We allow the
user to enter text in compressed form, in particular, using a simple stipulated abbreviation
method that reduces characters by about 30%, yet is simple enough that it can be learned
easily and generated relatively fluently. We decode the abbreviated text using a statistical
generative model of abbreviation, with a residual word error rate of about 4.5%. Because
the system’s operation is completely independent from the user’s, the overhead from cog-
nitive task switching and attending to the system’s actions online is eliminated, opening
up the possibility that the compression-based method can achieve text input efficiency
improvements where the prediction-based methods have not.

1 Introduction

The problem of text input with devices under degraded conditions is not new;

disabled users, for instance, have had to interact with computers using sometimes

severely degraded means, including mouth sticks, symbol-scanning systems, eye-

gaze tracking, and so forth. The problem has renewed currency, however, because

of the increased prevalence of small and embedded computing systems (handheld

computers, cell phones, digital video recorders, and the like) for which traditional

text input and verification modalities (keyboard and monitor) are impractical.

Natural language text is highly redundant; Shannon’s estimates (Shannon1951)

place the entropy of English text at below a bit and a half per character. Theo-

retically, this invites the possibility that the redundancies could be used to allow

more efficient text entry. The traditional approach to take advantage of this redun-

dancy relies on prediction of the user’s text. For instance, many cell phones have

the technology to predict the most likely word based on the initial letters typed by
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the user. The user is required to merely verify the prediction rather than typing

the remaining characters. Other methods dynamically predict the next character. A

paradigm example is the Reactive Keyboard of Darragh and Witten (1992) though

the approach arose as early as the early 1970’s.

Though intuitively plausible, prediction suffers in practice from severe problems:

Because users must take overt action to verify or select, they must be constantly

attending to the system’s predictions. Typing moves from a fluent, unconscious

task to one in which each keystroke requires a significant cognitive load. Previous

research (Goodenough-Trepagnier, Rosen, and Galdieri1986) has shown that the

overheads involved swamp any advantages in speed gained unless the keystroke

rate is extremely slow. For this reason, these predictive methods are only useful

and have only found acceptance among severely disabled users.1

Our approach is based on the duality of prediction and compression (Bell, Cleary,

and Witten1990). A good statistical model of language, one that can generate good

predictions, can inherently be used for compression as well. If we can have the

user enter compressed text, the compression of which is based on a good predictive

model, we can then use that model to decode the compressed text into the intended

full text. The advantage of the compression approach over the previous prediction

approach is clear: The generation of the (compressed) text is not an interactive task

that requires task switching, verification of system proposals, selection of options,

and so forth. The cognitive load increase is limited to that induced by the ability

to fluently generate compressed text.

Because a person must generate the compressed text fluently, we require a human-

centered compression method. As a reductio, imagine choosing a standard “computer-

centered” method, say, some Lempel-Ziv (LZ) variant, as used in the standard gzip

compression facility. We might expect to obtain a two to one reduction in keystrokes

or more, at the cost of requiring a user to compute the LZ compression of the orig-

inal text mentally, an obvious absurdity. The question arises, then, as to how to

devise a human-centered compression method to limit this cognitive load.

Conceptually, there are two possibilities.

Stipulated compression First, we can conform the user’s behavior to a partic-

ular model by stipulating a compression method, so long as the stipulated

method (unlike LZ) is simple and easily learnable. In practice, the learnabil-

ity requirement means that the compressed forms of words must be abbrevia-

tions of some sort. In fact, the literature has traditionally distinguished predic-

tion approaches from abbreviation approaches (Vanderheiden and Kelso1987),

which have been taken to be of this stipulated variety.

Natural compression Alternatively, we can try to conform the model to the

user’s natural behavior by allowing a natural compression method, one that

users would naturally turn to when compressing text.

1 The exception that proves this rule is the use of auto-completion for very specific tasks,
such as entering long URLs into web browsers, which can be seen as a kind of dilute
version of predictive typing. In this application the payoff in terms of keystrokes saved
may be so large that the overheads can be tolerated.
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As it turns out, there seems to be a more or less standard compression method,

a kind of ad hoc abbreviation form, well understood by average writers of

English, and best exemplified by the old advertising slogan “If u cn rd ths, u

cn gt a gd jb”.2

In this paper we report our experiments with a human-centered simple stipu-

lated word abbreviation method. A method relatively well matched to the natural

method, is simply to drop all vowels3 (we consider “y” a consonant always). Noting

that letters early in the word are most predictive of the remainder, we retain the

first letter even when it is a vowel. (This solves the problem of what to do with

words consisting of only a single vowel as well.) In addition, we drop consecutive

duplicate consonants. Thus, the word “association” would be abbreviated “asctn”

under this method, and the sentence

We have conducted a thorough evaluation of this disabbreviation method.

would be abbreviated as

W hv cndctd a thrgh evltn of ths dsbrvtn mthd.

with 24 fewer characters, 33.8% of the 71 in the original.

We describe the abbreviation method, its implementation, and several extensions

in Section 2. Evaluation results are given in Section 3, and a review of related

research is given in Section 4.

2 Method

To decode text that has been abbreviated using the stipulated method, we have cre-

ated a generative probabilistic model of the abbreviation process as a weighted finite

state transducer (Pereira and Riley1997). The model transduces word sequences,

weighted according to a language model, to the corresponding abbreviated charac-

ter sequences. Viterbi decoding, a standard algorithm for efficiently computing the

best path through an automaton, can then be used to reconstruct the maximum

likelihood word sequence that would generate a given abbreviated form.

Weighted finite-state transducers constitute a simple general technology for mod-

eling probabilistic string-to-string to transformations. Their nice closure properties,

especially closure under composition, make them ideal for the present application

in that the model can be composed as a cascade of simpler transducers in an elegant

fashion. These include:

2 This was a marketing slogan for a shorthand technique called “Speedwriting” that
incorporates, in part, a stipulated abbreviation model with a small set of rules that
include, among others, dropping silent letters, replacing letters with phonetic equivalents
(k for c in “cat” for instance), dropping short vowels unless at the beginning of the
word, using special symbols for frequent words, and so forth. Though more complex
and difficult to learn than the abbreviation methods we discuss below, the system bears
some similarities.

3 Something like this has been proposed by Tanaka-Ishii (2001) for Japanese.
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An n-gram language model (LM) The model was trained on text from the

Wall Street Journal (see below for details) , and implemented as a finite-

state-acceptor. Numbers and unknown words are replaced by special tokens.

A spelling model (SP) This transducer serves the purely technical purpose of

converting words into the sequence of characters that compose them. This

change in token resolution is required since the language model operates on

word tokens and the following transducers in the cascade operate on character

tokens.

A compression model (CMP) This transducer implements the stipulated ab-

breviation model, removing the vowels and doubled consonants.

An unknowns model (UNK) This transducer replaces the special tokens for

unknowns and numbers with sequences of characters or digits, respectively,

according to a simple generative model.

The composition of these four transducers forms the entire abbreviation model as

illustrated in Figure 1 (but see below for extensions). The composed transducer is

deterministic (with the exception of UNK) in the forward direction, i.e., a given

sequence of words has a single abbreviation. It is non-deterministic in the back-

ward direction; multiple word sequences may yield the same abbreviation. Viterbi

decoding chooses the most probable of these.

Fig. 1. Abbreviation model

For instance, the string of words “〈an〉 〈example〉 〈of 〉 〈num〉 〈words〉” would be

successively assigned a probability according to the language model (LM); converted

to the sequence of characters “an example of 〈num〉 words” (SP); abbreviated to

the sequence “an exmpl of 〈num〉 wrds” (CMP); and completed by instantiation

of the special token 〈num〉 to, e.g., “an exmpl of 5 wrds” (UNK). Through this

transduction, then, the model associates the word sequence “〈an〉 〈example〉 〈of 〉

〈num〉 〈words〉” as the underlying source for the abbreviation “an exmpl of 5 wrds”.

Of course, other word sequences may be transduced to the same character sequence,

for instance, “〈an〉 〈example〉 〈off 〉 〈num〉 〈wards〉”. The transducer, through the

probabilities manifest in the submodels, most importantly LM, assigns different

probabilities to the various sources of the abbreviated string. Viterbi decoding ef-

ficiently selects the maximum likelihood source.

Once the proposed source for the string is computed by this method, the final
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decoded string is generated by a simple post-processing step that replaces the spe-

cial tokens 〈num〉 and 〈unk〉 with the corresponding tokens from the abbreviated

form.

2.1 Implementation

The system is implemented using the AT&T FSM and GRM libraries (Mohri,

Pereira, and Riley2000; Mohri2001). The FSM library provides a collection of tools

for constructing weighted finite-state transducers, including their specification, com-

pilation, composition, and Viterbi decoding. The GRM library provides tools for

constructing finite-state language models. Additional code for gluing together the

library processes for transducer construction, decoding and evaluation was imple-

mented as a series of Perl scripts.

We trained the language model on a training set of Wall Street Journal articles,

after performing several preprocessing steps, including

• stripping any markup information (such as headers, article identifiers, para-

graph separation markers, etc.);

• splitting the text into sentences using the Alembic workbench (Aberdeen et

al.1995);

• replacing numbers with the special token 〈num〉.

We experimented with training set sizes ranging from 1.8 to 3.68 million words. We

limit the vocabulary of the model to the N most frequent words, experimenting

with N ranging from about 42000 words to about 97000 words. Words are counted

using the CMU-Cambridge Statistical Language Modeling Toolkit (Clarkson and

Rosenfeld1997). All other words in the model are considered unknown and automat-

ically replaced by the 〈unk〉 token. Increasing vocabulary size improves decoding

accuracy but increases the language model size and consequently decoding time.

After preprocessing, we train an n-gram model (up to trigrams) using the AT&T

GRM library. We use Katz backoff (Mohri2001) for smoothing.4 The other models

(SP, CMP, UNK) are all straightforwardly implemented using the AT&T FSM

package.

2.2 Extensions

The remarkable simplicity and modularity of the finite-state architecture enable

modifications and extensions to the basic model described above to be easily per-

formed. We have experimented with the following changes.

“Forgiving” abbreviation model Informal user experimentation has shown that

whereas the stipulated model is fairly simple to learn, users will sometimes for-

get to drop all of the vowels or repeated consonants. Unfortunately, this leads

4 We have also experimented with other smoothing methods such as Kneser-Ney with
only negligible variation in accuracy.
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to a failure to decode as the basic model assumes strict adherence to deter-

ministic letter dropping rules. A minimal change to the original compression

model makes it non-deterministic in the forward direction by allowing a small

probability of not dropping the required vowels and repeated consonants.

Keypad Hashing As an additional compression method, we allow users to re-

place letters by the standard digit equivalent on a 12-key telephone keypad

(that is, the letters ’a’, ’b’, and ’c’ with the digit ‘2’, the letters ‘e’, ‘f’, and ‘g’

with ‘3’, etc.) to support cell-phone text input. Since this mapping is many-

to-one, most methods for cell phone text entry require multiple keystrokes

per character. By contrast, we allow hashed input using a single keystroke

per character. Dehashing is performed using the same method, relying on the

language model to disambiguate. Keypad hashing is straightforwardly imple-

mented as a transducer, KEY. We allow hashing to be used either in isolation

(by replacing CMP with KEY) or on top of abbreviation (by composing KEY

and CMP).

Letter model for out-of-vocabulary words A major source of errors in the ba-

sic system is the occurrence of unknown words in the text to be abbreviated.

Clearly, if a word is not included in the language model, the system will not

be able to correctly disabbreviate it. Increasing the vocabulary helps mitigate

the problem, but cannot solve it completely. We have therefore added a letter

model as an alternative generative model of the abbreviated sequences. The

letter model is constructed very similarly to the basic cascade above. The

n-gram word model is replaced by an n-gram character model. In addition,

the need for SP is obviated. We train the character model on (character se-

quences that form) words in the vocabulary extracted from the same Wall

Street Journal training texts. After running an abbreviated text through the

Viterbi decoder on the main transducer, any remaining unknown words (de-

coded as 〈unk〉) are run through the letter model.

Our usage of the letter model is restricted to out-of-vocabulary words, and so

we only consider character sequences corresponding to words. Alternatively,

we could use a letter model in isolation, replacing the word model altogether.

This would require training the letter model not only on single words, but

on character sequences transcending word boundaries. Using n-grams of high

enough order, a letter model can cover on average the same span as a bigram

or trigram word model. Taking word tokens into account, however, leads to

more parsimonious models and improved accuracy.

3 Evaluation

We now turn to the the evaluation of basic system and its extensions.

3.1 Proof of principle

As a proof of principle (Shieber and Baker2003), we ran a first batch of tests on

a small held-out corpus of some 28,045 characters (5099 words) taken from the
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Table 1. Performance of various disabbreviation methods

Model Keystroke reduction Error rate
percent percent

Stipulated abbreviation 26.5% 2.8%
Drop all vowels 28.9% 4.2%
Lempel-Ziv 77 60.4% 0%

Table 2. Performance of the disabbreviation method using a variety of language

models

Model Words incorrectly decoded Error rate
(out of 5099) percent

uniform 2586 50.7%
unigram 310 6.1%
bigram 177 3.5%
trigram 155 3.0%

Wall Street Journal. Training was done on a training set of 1.8 million words Wall

Street Journal text, and the vocabulary size was limited to around 42000 words.

Evaluation was performed by running the abbreviation model forward on the full

text, to generate a deterministically abbreviated version of it. We then ran the

disabbreviation procedure and compared the resulting decoding to the original text.

We report two main dimensions of evaluation: keystroke reduction and error rate

in Table 3.1. The stipulated abbreviation model achieves 26% reduction at 3.0%

error rate; that is only 155 of the 5,099 words were decoded incorrectly. The simpler

model of merely dropping all the vowels achieves a slightly better compression rate

at the cost of a 40% increase in error rate. As a reference upper bound, Lempel-Ziv

77 compression on this corpus provides a 60.4% reduction and is lossless. Tradi-

tional predictive methods, such as antic, anticipator, pal, and, predict, have

reported maximal keystroke savings of 20 to 50%. See the discussion by Soede and

Foulds (1986) and references cited therein.)

The benefits of language modeling can be clearly seen by comparing performance

against cascades using simpler language models. Table 3.1 provides the performance

of the prototype system under increasingly complex language models, from uniform

to unigram, bigram, and trigram. Of particular importance is the improvement

of the bi- and trigram models over the unigram model, demonstrating that this

approach is likely to have application to any abbreviation method that ignores

context, as prior methods do.

3.2 Extensions

We now turn to the evaluation of the extensions discussed in Section 2.2. The

addition of the keypad model on top of the abbreviation model yields an error rate

of some 12%. The impact of enlarging the vocabulary and the training set, and



8 S. M. Shieber and R. Nelken

Table 3. Adding a letter model

Model Words incorrectly decoded Error rate
(out of 5099) percent

7-gram stand-alone letter model 295 5.8%
trigram word + 7-gram letter 132 2.6%
trigram word + 10-gram letter;
increased vocabulary and training 115 2.25%

Table 4. Accuracy on a larger testing set

Test set Model Error rate

Test set 1 Trigram 4.4%
89571 words Trigram word + 10-gram letter 3.0%

Test set 2 Trigram 4.7%
81779 words Trigram word + 10-gram letter 3.6%

adding an n-gram letter model is summarized in Table 3.2. A standalone 7-gram

letter model performs somewhat worse than a unigram word model. When combined

with the trigram word model as described above, it yields improved performance:

2.6% error. Increasing the vocabulary size (97000 words) and the training set size

(3.68 million words) increases performance. We achieved a best error rate of 2.25%

using these increased vocabulary and training set with a combined trigram word

model and 10-gram letter model. Note that despite appearances, a reduction of

error from 3.0% to 2.25% is relatively large (25% reduction in error).

Scaling up to larger held out testing sets of Wall Street Journal text increases the

absolute error rates, but the trend that more sophisticated models yield improved

performance remains (Table 3.2). We compare the performance of the original tri-

gram model with the combined trigram word model 10-gram letter model on two

data sets.

4 Review of Related Research

As noted above, text input methods based on predicting what the user is typing

have been widely investigated; see the work by Darragh and Witten (Darragh and

Witten1992) and references cited therein. Such systems can be found in a variety of

tools for the disabled, and some commercial software, most notably the T9 system

from Tegic. Methods based on static lookup in a fixed dictionary of codes for words

or phrases include Vanderheiden’s Speedkey (Vanderheiden and Kelso1987), along

with a wide range of commercial keyboard macro tools that require user customiza-

tion. All rely on the user’s memorization of the codes, which must be extensive to

provide much compression advantage. Systematic stipulated compression models

can be found hidden in stenographic methods such as Speedwriting, though there

is no provision for automated decompression.
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A recent dynamic prediction approach is used by Dasher (Ward and MacKay2002),

a system in which the predicted characters stream onto the screen towards the con-

structed sentence, in shaded boxes of sizes proportional to their likelihood, and

the user has to choose the next character using a mouse or an eye-tracking device.

Dasher’s predictions are based on a text compression algorithm called Prediction

by Partial Match (PPM) (Cleary and Witten1984; Moffat1990).

Some human factors research on the design of command abbreviations for small

vocabularies has been performed. John et al. (1985), for instance, show that vowel-

dropping leads to more easily recalled abbreviations but slower throughput than

abbreviations based on escaped special characters. Extrapolation of such results to

abbreviation of arbitrary text is problematic, but the results are not inconsistent

with the possibility of throughput benefits under reasonable conditions.

Study of the structure of natural abbreviation behavior has been limited: Rowe

and Laitinen (1995) describe a system for semiautomatic disabbreviation of variable

names (such as “tempvar” for “temporary variable”) in computer programs, based

on their analysis of attested rules for constructing such abbreviations. Stum and

Demasco (Stum and Demasco1992) investigate a variety of rules that people seem

to use in generating abbreviations, but do not place the rules in a system that

allows the kind of automated disabbreviation we are able to perform.

Abbreviation methods at the sentence level include the “compansion” method of

Demasco, McCoy, and colleagues (Demasco and McCoy1992; McCoy et al.1994) and

the template approach of Copestake (1997). These techniques, though bearing their

own limitations, are fully complementary to the character-based disabbreviation

techniques proposed here, and the user interface techniques for error correction

developed for our application may be applicable there as well.

In order to learn a more natural abbreviation model, it would be necessary to

collect a corpus of abbreviation patters in actual use. A first step in this direc-

tion was carried out by How (2004), who has collected some 10,000 SMS messages

exchanged by students at the University of Singapore. The corpus contains many

abbreviations, but unfortunately not their decodings.

5 Conclusion

Our approach to reducing the effort for natural-language text input by using abbre-

viation as a human-centered compression method, rather than prediction, provides

a simple method to attain both reasonable keystroke (or equivalent) reduction and

reduced task-switching cognitive load. Whether the method provides significant in-

creased throughput (in contrast to most prediction-based methods) awaits further

user studies.

This work can be extended in various ways. First, the naturalness of abbreviation

might be improved by allowing the user to enter any sort of abbreviation and using a

language model trained on a corpus of such naturally abbreviated text for decoding.

Second, more sophisticated stipulated abbreviation methods can be tested, which

might provide better compression ratios at the cost of learnability and fluency of

generation.
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The approach to text input described in this paper is an instance of the more

general paradigm of collaborative user interfaces (Shieber1996). According to this

view, interfaces should be designed as means for human users and computers to col-

laborate towards solving a mutual problem, in this case efficient text entry. Unlike

predictive methods, which require a high cognitive load on the user, our approach

strives towards an optimized split in responsibilities between the user and the com-

puter.
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