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Abstract Some apparently powerful algorithms for au-
tomatic label placement on maps use heuristics that cap-
ture considerable cartographic expertise but are
hampered by provably inefficient methods of search and
optimization. On the other hand, no approach to label
placement that is based on an efficient optimization tech-
nique has been applied to the production of general car-
tographic maps—those with labelled point, line, and
area features—and shown to generate labellings of ac-
ceptable quality. We present an algorithm for label place-
ment that achieves the twin goals of practical efficiency
and high labelling quality by combining simple carto-
graphic heuristics with effective stochastic optimization
techniques.

Introduction
ANY apparently compelling techniques for auto-
matic label placement use sophisticated heuris-
tics for capturing cartographic knowledge, but,

as noted by Zoraster (1991), also use inferior optimiza-
tion strategies for finding good trade-offs between the va-
riety of competing concerns involved in typical labelling
problems. These techniques use procedural methods or
“if-then” production rules to represent cartographic
knowledge about good label-placement practice, and a
variant of depth-first search to explore different label-
lings (Doerschler and Freeman 1992; Ebinger and Gou-
lette 1990; Jones 1989).

However, depth-first search is now known to be a
markedly inferior technique for finding near-optimal la-
bellings in the set of all possible labellings. Some of the
more powerful optimization strategies that have been
proposed for label placement include:
• Physical relaxation while remaining tethered to the

symbols they tag, labels are moved smoothly in
response to virtual forces generated by label-label and

label-symbol overlaps (Feigenbaum 1994; Hirsch
1982);

• Zero-one integer programming scores associated with
each label’s candidate positions (a discrete set) are
refined iteratively to better reflect the relative desira-
bility of the different positions (Zoraster 1986;
Zoraster 1990);

• Gradient descent a randomly generated labelling is
improved monotonically by considering all alternative
positions for each label (again chosen from a discrete
set) and making the single label move that most
improves the quality of the whole labelling (Chris-
tensen, Marks, and Shieber 1993); and

• Simulated annealing a generalization of gradient
descent in which single label moves that worsen the
quality of the labelling are performed occasionally in
the hope of avoiding bad labellings that happen to be
locally optimal (Christensen, Marks, and Shieber
1993).
These techniques all outperform depth-first search by

a wide margin (Christensen, Marks, and Shieber 1995).
So why have these supposedly superior techniques not

been adopted widely? In general, implementations of the
better optimization strategies have not dealt with the full
range of cartographic features (that is, point, line, and
area features), nor have they incorporated sufficient car-
tographic knowledge about text placement. For these rea-
sons, the maps they produce have not been persuasive.
However, this shortcoming is not intrinsic, at least for
some of the aforementioned techniques. In this paper we
show how detailed cartographic knowledge and powerful
optimization can be combined effectively. The resulting
algorithm is general (it can label point, line, and area fea-
tures), efficient (it can label dense, page-sized maps in
seconds on a PC), and effective (the resulting labellings
are visually appealing and consistent with good carto-
graphic practice). Furthermore, compared to existing al-
gorithms, it is concisely stated and easily implemented.

The key to our approach is a careful separation of the
cartographic knowledge needed to recognize a good la-
belling from the optimization procedure required to
find one. Our notion of cartographic knowledge is a
procedure for computing an absolute numeric score
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that is properly indicative of a labelling’s quality; no oth-
er properties of this scoring function (such as continui-
ty, differentiability, or definability as production rules)
are assumed. We treat the scoring function as an arbi-
trary objective function to be optimized, and apply a
powerful optimization procedure to find its near-opti-
mal values. These values correspond to near-optimal la-
bellings.

To establish the viability of this concept, we describe a
particular optimization procedure and a particular scor-
ing function that can be used together in the framework
we propose above. Neither are necessarily optimal: it was
not our intent to provide the ultimate solution for auto-
matic map lettering, a long-term goal that is probably best
left to professional cartographers, not computer scien-
tists. However, we believe that we have identified the
framework within which the ultimate solution probably
lies. As evidence for this claim, we present a simple system
prototype that generates visually compelling labellings
for dense page-sized maps in under ten seconds on a per-
sonal computer.

We begin by describing our technical approach in suf-
ficient detail to enable our work to be replicated in its en-
tirety. We then present some sample maps labelled using
an implementation of our method, and conclude with an
analysis of present and future work on label placement.

Technical Approach
Our approach is predicated on a division of the label-
placement task into three essentially independent sub-
tasks. They are:
• Candidate-position generation Given a point, line, or

area feature, identify a set of candidate locations for its
label. A labelling is then a set of label positions, one
drawn from each feature’s set of candidate positions.

• Position evaluation Given a labelling, efficiently com-
pute a score that indicates its quality with respect both
to the position of labels relative to the tagged symbol-
ogy, and to spatial contention among the label and
other features and feature labels.

• Position selection Given a set of candidate label posi-
tions for each map feature, choose one label position
from each set so that the overall quality of the label-
ling, as determined by the evaluation method, is as
high as possible.
We discuss these subtasks in reverse order in the next

three sections. Because of the simplicity of the position-
selection method, we discuss it briefly; full details have
been presented elsewhere (Christensen, Marks, and Shie-
ber 1995). We then consider the problems of label-posi-
tion evaluation and generation, which form the core of
our contribution in this paper.

Position Selection
Given a set of generated candidate positions for each la-
bel and an overall evaluation function, selecting positions
for all the labels so that the evaluation function is globally

minimized1 is an optimization task. Although many dif-
ferent methods have been proposed for this task, we fa-
vour a method based on simulated annealing (Kirkpatrick,
Gelatt Jr., and Vecchi 1983):
• For each feature, place its label randomly in any one

of the candidate positions for that feature.
• Initialize a “temperature” T to an initial high value.
• Repeat the following steps until the rate of improve-

ment falls below a given threshold:
• Decrease T according to an annealing schedule
• Pick a feature randomly and move its label to a new

position randomly chosen from that feature’s set
of candidate positions.

• Compute ∆E, the change in the overall labelling’s
evaluation caused by repositioning the label. 

• If the new labelling is worse, undo the label reposi-
tioning with probability P=1.0 - exp(-∆E ⁄T).

The algorithm is almost completely specified in the
outline above. The remaining details concern the initial
temperature (chosen so that P=2 ⁄3 when ∆E=1), the an-
nealing schedule (periodically the temperature decreas-
es by 10 percent), and the termination condition
(evaluation of 5n consecutive repositionings with no
changes made, where n is the number of labelled fea-
tures). Full details concerning these issues are provided
elsewhere (Christensen, Marks, and Shieber 1993; Chris-
tensen, Marks, and Shieber 1995). It suffices here to note
that the parameters are such that 100,000 computations
of ∆E are typically required for convergence on problems
involving up to 1,500 labelled features. Thus the overall
efficiency of the label-placement algorithm depends cru-
cially on efficient computation of ∆E.

This optimization method has several advantages.
First, it is effective at finding near-optimal solutions to la-
bel-placement problems. Christensen, Marks, and Shie-
ber (1995) demonstrate through exhaustive empirical
testing of point-feature label-placement algorithms that
simulated annealing dominates all previously reported
practical algorithms for this problem. The results were ro-
bust over both actual cartographic data and randomly
generated data, and thus provide some foundation for
the use of artificial data in the present work. Second, the
method is efficient; labellings are generated in an
amount of time that is reasonable and competitive with
other algorithms.2 Finally, it makes no assumptions about
the evaluation function beyond the efficient computabil-
ity of the numeric difference ∆E. This last advantage sug-
gests that the method should generalize beyond the
point-feature label-placement problem to which it was
initially applied. The remainder of this paper can be seen
as a verification of this suggestion.

1 Our statement of the evaluation function associates lower
values with better labellings, so that the optimization prob-
lem is one of minimization. This choice is, of course, arbi-
trary.
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Position Evaluation
We now turn to the task of evaluating label positions. In
order to compare various labelling solutions, we require
the ability to compute a single numeric score, E, that in-
dicates the quality of a labelling. Furthermore, the change
in score, ∆E, that results from repositioning a single label
must be efficiently computable. In our algorithm, each la-
bel’s contribution to E is computed as a weighted sum of
simple metrics, which are described below.

For each metric, we define an ideal case and a borderline
case. In the ideal case, the candidate position is ideally lo-
cated as far as the given metric is concerned; in the bor-
derline case, the position is poor, but barely acceptable.
Metrics will be designed to yield a value of 0.0 for ideal
cases, 1.0 for borderline cases, and higher values for ob-
jectionable cases.

First, we consider metrics that quantify spatial crowd-
ing and overlap. Next, we examine positioning metrics
that depend on the spatial relationship between a label
and the feature it tags. We conclude with a description of
how the various metrics are combined into a single evalu-
ation function.

OVERLAP METRICS

Feature Overlap In order to discourage label-symbol
overlaps, we need to know the number of feature symbols
(the actual circles, polylines, and polygons comprising a
map’s nontextual symbology) that a given label overlaps.
We consider three metrics, PointOver, LineOver, and Ar-
eaOver, which measure overlaps with point, line, and area
symbols, respectively. When there are no overlaps of a giv-
en kind, we have the ideal case. We will take the border-
line case to be a single overlap. Thus, one reasonable
metric is to simply count the number of overlaps. This is
exactly what is done for the metric PointOver, which is de-
fined as the number of overlaps between a selected label
position and all point-feature symbols.

For area and line features, however, we need a more
subtle metric. A label position that intersects and is par-
allel to the polyline of a line feature or an area border is
completely unacceptable. However, a position that inter-
sects the polyline at right angles might qualify as barely
acceptable. We define LineOver and AreaOver according-
ly: Let p1 and p2 be the points where a polyline enters
and exits the label’s bounding rectangle. (Figure 1) Let
the vector b̂ point in the direction of the label’s baseline

2 Both of these findings are remarkable. Simulated annealing
is usually thought of as a very inefficient algorithm of “first
resort” that is used only until a better approach is devised.
However, for point-feature label placement (the purest form
of the problem, and the most useful for comparing algo-
rithms) it takes only a few seconds to label dense maps with
hundreds of point features, and it produces better labellings
than any algorithm developed during the 15 years or so for
which automatic label placement has been studied seriously
Christensen, Marks, and Shieber 1995b.

(east in Figure 1) and the vector v̂ = ( p2 - p1) ⁄| p2 - p1|  ap-
proximate the direction of the polyline where it inter-
sects the label. The value of the metric (AreaOver or
LineOver) is then 1 + 9 |v̂ . b̂|.

This metric can have value 0.0 (no intersection be-
tween label and line: ideal), or can range from 1.0 (label
and line intersect and are perpendicular: barely accepta-
ble) to 10.0 (label and line intersect and are parallel: un-
acceptable). In the example of Figure 1, LineOver is 2.56
for (a), and 9.86 for (b). These values are appropriate,
since (a) is a much better placement than (b). Of course,
neither is as good as a placement that does not intersect
the line at all, which would yield zero for LineOver.

AreaOver and LineOver discard much detail —
everything but the direction of the polyline and the label.
However, they can be computed very efficiently. In exper-
iments, a more elegant metric based on the area of inter-
section between the label and the polyline proved to do a
slightly better job of evaluating label-line intersections,
but at a high cost in efficiency.
Label Overlap Mutually overlapping labels are clearly
undesirable. As with the PointOver metric, we simply
count the number of overlaps: we define LabelOver to be
the number of overlaps between one selected label posi-
tion and all others.

It is possible to precompute values for almost all of our
metrics prior to position selection. For example, LineOver
can be precomputed for each candidate position without
any knowledge of actual selected label positions. The ex-
ception to this rule is LabelOver, which must be recomput-
ed continually during position selection. Fortunately, we
are able to accomplish this re-evaluation quickly by first
computing and storing all pairs of intersections between
candidate label positions.

PointOver, LineOver, AreaOver, and LabelOver together
comprise all the metrics concerned with spatial conten-
tion among labels and symbols. For simplicity, we have
not included metrics for other types of label-symbol over-
lap, e.g., mountain ranges, vegetation, etc. However, the
introduction of additional overlap metrics is straightfor-
ward. We now turn to metrics that govern the positioning
of a label with respect to the feature that it tags.

POINT-POSITIONING METRICS

The sole metric for point-feature labels, PointPos, is de-
termined by a straightforward ranking of a discrete set of
17 candidate positions surrounding a point. The actual

Yahoo City   (a)

Yahoo City   (b)

Figure 1 Calculation of v̂  for the overlap metric LineOver
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values used are illustrated in Figure 2, and described
more fully in “candidate label positions for point fea-
tures” on page 6. These values are based loosely on Im-
hof’s well-known guidelines (Imhof 1962):
• Label positions to the right of a point are preferred to

those on the left.
• Labels above a point are preferred to those below.
• The more a label’s baseline is offset from a horizontal

line through the centre of its associated point, the less
favoured it is.

• Finally, the three positions above the point (with pen-
alties 0.8, 0.825, and 0.875) may be shifted up slightly if
a descender would otherwise overlap the point feature.
In that case, an additional penalty of 0.25 is added.

LINE-POSITIONING METRICS

Before describing the various line metrics that figure in
the evaluation function, we must first define some useful
terms and measures, illustrated in Figure 3. A line feature

is represented as a long, thin polygon. However, we refer
to such a polygon as a “polyline” throughout, since any
computation is done with respect to the actual polyline
that forms the nearest side of the line feature’s polygon
(whether above or below the label). The baseline of a label
position is the line upon which the characters are drawn.
However, we also take into account the shape of the text,
defining the skyline of a label to be the union of the bound-
ing boxes of the label’s characters. The skyline extends
both above and below the baseline. The ideal distance δ
from the baseline of a label to a perfectly straight line fea-

ture below it is included in several of
the line-metric formulas. The ideal
distance should vary with both the
thickness of the line feature and the
type size, so we set δ=ascent ⁄4 + thick-
ness ⁄2, where the ascent is the dis-
tance from the baseline to the top of
capital letters of the label. The swath
is an infinitely long strip which is
perpendicular to the baseline and
centred about the label. The width
of the swath is 20% greater than the
width of the label. The part of the
polyline near the label that inter-
sects the swath is termed the swath

line.
We include five positioning metrics for line-feature la-

bels in our evaluation function. The first three measure
the label’s relationship to the swath line: AveDist and
MinDist measure the average and minimum distance
from the label to the swath line; Flatness measures the de-
gree of curvature of the swath line. The final two metrics
measure aspects of the relationship between the label
and the line feature as a whole. Centredness looks at the
proximity of the label to the centre, measured end-to-
end, of the line feature. Aboveness simply indicates wheth-
er the label is above or below the line feature. We discuss
these metrics in more detail below.

In the following discussion we will assume we are meas-
uring a label that is above the line feature. The rules and
methods work the same if the label happens to be below
the line; we simply use the other side of the skyline.
Average distance  Positioning a label at an appropriate
distance from its line feature is crucial. To compute a lo-
cal measure of the average distance d from a label to its
associated line feature, we take the area between the
swath line and the lower side of the skyline, then divide
by the width of the swath. The relevant area is shaded
darkly in Figure 4.

Next we incorporate the average distance d into a use-
ful metric with the following characteristics. First the
metric should yield the optimal measure of 0.0 for an av-
erage distance δ, the ideal distance defined above. Next,
let the borderline case be an average distance of either
0.0 or 2δ. We choose to let AveDist grow as the square of
the deviation from δ, since experiment has shown this to

Gump River baseline

swath line

skyline

δ

swath

Gump River baseline

swath line

swath

Figure 4 Computing average distance
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Figure 2 An example of 17 candidate label positions for a point feature and their PointPos values

Figure 3 Terminology for line-feature labels. The swath is bounded on the left
and right by the vertical dashed lines
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work better than a simple linear model. Thus, we ar-
rive at AveDist=(d - δ2 ⁄δ2. By way of example, Figure 5
shows 10 label positions with low AveDist values for a
given line feature. The position drawn in bold has
the best value of the 10.
Minimum Distance AveDist measures the average
distance from a label to its line feature in the label’s
neighbourhood. However, due to curvature of the
line or descenders in the text, some feature segments
might lie very close to the label, or actually on it, with-
out making AveDist large. We need a metric to quanti-

fy this potential anomaly. A reasonable measure is the
minimum distance d′ between any two points p1 on the
swath line and p2 on the skyline. Ideally, d′ is the ideal dis-
tance δ; barely acceptable values are d′=0 and d′=2δ. A
function that obtains these values is 

MinDist=(d ′ - δ)2 ⁄δ2. However, as we will see, we do not
need to consider the MinDist metric explicitly when eval-
uating a labelling, because our generation algorithm only
creates candidate positions with perfect MinDist values.
Flatness It is better to locate labels where the associated
line feature is relatively flat. To quantify flatness, we com-
pute the deviation of the swath line from a straight line L
that is parallel to the baseline and offset the ideal distance
from it. We sum up the area between the swath line and
L, then divide by the width of the swath. The area sum is
shaded darkly in Figure 6.

Let the quotient—representing the swath line’s devia-
tion from a straight line—be d ′′. In the ideal case, d ′′ is ze-
ro; we will pick the borderline case to be when d ′′=δ. As
with AveDist and AreaPos, we let Flatness grow as the square
of d ′′. Hence, Flatness=d ′′2 ⁄δ2. Several label positions with
low Flatness values for a sample line feature are shown in

Figure 7. The label appears in the lowest-valued po-
sition.
Aboveness Consider a horizontal line feature and
a label running left to right: the label may be placed
above or below the line. Following Imhof, we prefer
labels above the line to those below. Therefore the
metric Aboveness has a value of 0.0 if the position is
above, 1.0 if below.
Centredness Currently, our heuristics assume that
each line feature will have only one label. Therefore
it is important that labels lie near the centres of

their associated lines. To evaluate this quality, we need a
global metric Centredness, which we compute as follows.
We find the point p on the polyline closest to the mid-
point of the label baseline. Let l1 be the distance along the
polyline from one end to p; let l2 be the polyline’s total
length. Then l= l1 ⁄l2 ranges from 0.0, if p lies at an end, to
1⁄2 if p lies in the middle, to 1.0, if p lies at the other end.
The ideal case is when l= 1⁄2 ; the borderline case is when l
is 0.0 or 1.0. A suitable metric is thus Centredness=|2l - 1|.

AREA-POSITIONING METRICS

Area-specific metrics quantify the relationship between a
label position and its area feature. We will assume that
area features are usually large enough to accommodate
their labels, which consist of closely spaced horizontal
text. Given this assumption, a single, simple metric is gen-
erally all that is required for satisfactory area-feature la-
belling. The metric, AreaPos, measures the proximity of a
label to its area’s centroid.1 Let c be the distance from the
centre of a label position to the centroid of its area fea-
ture. In the ideal case, c=0. Let s be the distance from the
area’s centroid to its furthest vertex. We will take the bor-
derline case to be when c=s. A suitable linear function is
therefore AreaPos=c ⁄s.

1 This metric alone is completely adequate for the sample
maps we consider. However, it will clearly not suffice for all
area-feature shapes and all position-generation algorithms.
If necessary, additional metrics that are more sensitive to the
shape of the area feature, e.g., metrics that encourage align-
ment with an area’s medial axis (Ahn and Freeman 1984),
can be incorporated into the evaluation function. We omit
such metrics from this discussion.

Gump River baseline

swath line

δ

swath

Figure 6 Computing flatness

Rio Owo

Figure 5 Label positions with good AveDist values

Iquiro River

Figure 7 Label positions with good Flatness values
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THE OVERALL EVALUATION 
FUNCTION

The overall evaluation
function is a weighted
sum of the metrics de-
scribed above for each la-
bel on the map. Suitable
values for the weights
were set intuitively and re-
fined empirically; they are
summarized in Table 1.
Notice that the weight giv-
en to the MinDist metric is
irrelevant, since the posi-
tion-generation proce-
d ure  for  l ine - feature
labels is guaranteed to
generate only positions
for which the MinDist val-
ue is perfect (0.0).

Position Generation
While we express most of the system’s cartographic knowl-
edge in the evaluation function, it is clearly helpful for the
generation routines to be created with some knowledge
of the evaluation metrics. We have identified three quali-
ties of a good position-generation method:
1 For efficiency during position selection, the number of

generated positions should be relatively small. For
example, in our system, the generation algorithm
never provides more than 32 candidate positions for
each feature.

2 The generation method should strike an appropriate
balance between efficiency and quality: identifying
only high-quality positions is too expensive and diffi-
cult, whereas naive methods tend to produce too
many low-quality candidates. An appropriate balance
can be achieved by keeping the position-evaluation
function in mind when formulating the position-gen-
eration procedure.

3 The candidate positions for a given label should occupy
a variety of different locations near its feature in order
to give the selection algorithm the opportunity to
exploit trade-offs among label positions for different
features in its quest for a globally optimal labelling.

Note that it is not important that all the generated po-
sitions be of the highest quality, nor even that the best im-
aginable position be included. Instead, it is important that
the set of positions includes a variety of locations, even if
that requires inclusion of some mediocre positions. This
is in contrast to other systems that first identify a single
ideal position for a feature, and then choose minor per-
turbations of the position when attempting to resolve con-
flicts. Such strategies, by constraining the search space
excessively, make the search for a globally optimal label-
ling much harder.

We describe position-generation procedures for the

three fundamental types of map feature: points, lines, and
areas. These types are not entirely disjoint; for example,
line features can sometimes be best described as area fea-
tures, as with a river on a large-scale map. However, this is
merely a problem of choosing the most appropriate fun-
damental type as a representation, not a new problem in
position generation.

CANDIDATE LABEL POSITIONS FOR POINT FEATURES

Point-feature labels are generated according to the fixed
pattern illustrated in Figure 2. Conceptually, this pattern
is defined by matching anchor points on the label to an-
chor points on the point feature.

Anchor points of a point feature are at multiples of 45
degrees on a circle centred on the feature. The radius of
this circle is given by max(r * 1.3, r + 0.1 * f ), where r is
the radius of the point feature (or its effective radius if
noncircular), and f is the width of ‘x’ in the label’s font.

Anchor points of a label are on a box formed by the top
and sides of the label’s bounding box, and the baseline.
Horizontally, a point is located at an end, at the midpoint,
or one-third of the way from an end.[to where? the mid-
point or the other end?] Vertically, a point is aligned with
one of four lines: the top of the bounding box, a line
through the tops of lower-case letters (the “x-height
line”), a line centred between the x-height line and the
baseline, or the baseline. Not all combinations of anchor
points are generated as candidate positions; the 17 posi-
tions used are shown in Figure 2.

[The following needs to be clarified. Suggest: “In ad-
dition, label positions are altered to take advantage of the
kerning possibilities of particular letters (the information
is stored within the program). For instance, …”] In addi-
tion, label positions are altered with respect to per-letter
kerning information kept in a lookup table. For instance,
if a label is in the most favourable position, it will be slight-
ly more to the left if the first letter is ‘V’ rather than ‘D’.
As noted in the section on point-positioning metrics, can-
didate positions may also be altered to take descenders
into account, thereby affecting the point-positioning met-
ric values shown in the figure.

CANDIDATE LABEL POSITIONS FOR LINE FEATURES 
The problem of generating positions for lines is thornier:
unlike point features, line features appear in a rich variety
of curves and orientations. We would prefer all candidate
positions to avoid overlapping the features they tag. For
point features, we can easily generate candidate positions
that are guaranteed to be valid and of reasonable quality.
With line features, however, we must be slightly more in-
dustrious in order to meet this proviso without paying an
unreasonable price in performance.

Our approach is to apply a limited version of our over-
all generate/select paradigm before the general label-
selection procedure is begun. Here is a summary:
1 Generate many candidate positions without worrying

about their validity.

Overlap metrics
PointOver 10
LineOver 15
AreaOver 10
LabelOver 40

Positioning Metrics
Point positioning

PointPos 1
Line positioning

AveDist 1
Flatness 1
MinDist NA
Centredness 3
Aboveness 0.25

Area positioning
AreaPos 10

Table 1 Metric weights
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2 Adjust them in simple ways that optimize
some of the more easily computed line met-
rics.

3 Evaluate them according to all precomputa-
ble line metrics.

4 Cull all but the k best positions for some k.
This procedure is clearly efficient, involves

no time-consuming search, yet produces a vari-
ety of relatively good positions. Here is a more
detailed version of the procedure.
1 Generate multiple positions along the length

of the line feature: 
a) Let start be the point at one end of the

polyline.
b) Let inc be one eighth of width, the width of the label.
c) Repeat [the following steps?] until start is less than

width from the end of the polyline, measured as dis-
tance along the line: 
i) Find a point end on the polyline that is a distance

width from start. 
ii) Generate two coincident positions with base-

lines that run from start to end; mark one
“above”, the other “below”.

iii) Increment start by inc.
(At this point, the algorithm will have produced a large
number of candidate positions, none of which will be
positioned at a good distance from the line. In fact,
most will intersect the line. However, the next step cor-
rects this problem by applying a translation.)

2 Adjust all generated candidate positions to achieve the
ideal value for the MinDist metric by applying appro-
priate translations perpendicular to their baselines.
One position of each pair is moved to a position above
the line; the other, below.

3 If a line feature is shorter than its own label, no posi-
tions will have been generated in steps 1–2. If this is
the case, pick a point at the centre of the line feature
and generate positions as if the given point were a
point feature. 

4 Score the generated positions according to all precom-
putable metrics—everything but LabelOver. 

5 Delete all but the k best positions.
Typically, we use k=32, which is a good compromise al-

lowing a sufficient variety of positions while not overly ex-
panding the search space. Figure 8 shows a typical line
feature labelled at the best generated position, as well as
the skylines of the 15 next-best positions.

CANDIDATE LABEL POSITIONS FOR AREA FEATURES

For many simple applications (car-navigation systems and
the like), area features can be identified adequately by
simple horizontal labels. We utilize the same strategy for
areas that we used for lines: generate a large number of
candidate positions, then cull by precomputable metrics. 

Given a polygon P representing the area’s boundary,
we find the inset polygon P ′ such that if a label is centred
at any point in P ′, the label will lie entirely inside P. (If no
such P ′ exists, then it is impossible to place a label inside
P that does not overlap the boundary of P. In this case, the
area is labelled as if it were a point feature.) We then gen-
erate n (typically 200) quasi-random points evenly distrib-
uted throughout P ′ using a Sobol' [should there be a
prime or apostrophe following “Sobol” as appears in the
original? If so, which—prime or apostrophe?] quasi-ran-
dom sequence (Press et al. 1992).1 Candidate positions
are generated centred at these 200 points. These positions
are scored and all but the best-scoring k positions (again,
we use k=32) are eliminated.

Figure 9 shows the top 20 generated positions for the
label of a given area feature; the label itself is shown at the
most favourable position of the 20.

Sample Maps
As evidence that the labelling algorithm that we have pre-
sented has the potential to generate cartographically
plausible labellings fully automatically and in reasonable
time, we present a selection of sample maps with random-
ly generated point, line, and area features as labelled by
our prototype software system.2 The sample maps exhibit
the ability of the algorithm to trade off the evaluation cri-
teria for point, line, and area features in a reasonable
manner.

Figure 10 shows a randomly generated map with 300
point features, 10 line features, and one area feature. The

1 The n points are most useful if no two points are close together, because labels for nearby points are likely to overlap the same
features and labels. The Sobol' [AS ABOVE] quasi-random sequence is well suited for achieving a dispersed distribution of points.

2 The point-feature coordinates were picked randomly from a uniform distribution. Points less than 0.1 inches from the centre of
any existing point feature were rejected so as to eliminate feature-feature overlaps. Additionally, a small number of points in con-
figurations that precluded any valid labelling were removed or adjusted by hand. Line features were generated automatically by
a fractal algorithm. Having a parametrized map-generation procedure that could produce maps with a variety of feature densities
and characteristics was extremely useful in developing and testing our algorithm.

Nano R.

Figure 8 Generated label positions for a line feature
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map was labelled in eight seconds on a 200-MHz Pentium
PC. Only three of the eight seconds were spent selecting
positions.1

Figures 11 through 13 show a typical progression of
the position-selection process. Initially, labels are placed
in random locations (Figure 11); in under half a second,
most of the labels are positioned satisfactorily (Figure
12); and in under one second, the final labelling has

been found (Figure 13).
A different type of map

is shown in Figure14. In
contrast to the map in Fig-
ure 10, this map contains
mostly line and area fea-
tures, and shows the ability
of the algorithm to find a
plausible labelling under
the tight constraints pre-
sented by the interaction
of these features.

1 Most of the time is spent on precomputation that facilitates
efficient position evaluation. Several time-consuming aspects
of this precomputation, primarily pairwise intersection test-
ing, use inefficient algorithms that were selected primarily
for their ease of implementation. A commercial-grade imple-
mentation on a state-of-the-art workstation should be able to
label maps like the one in Figure 10 virtually instantaneously.

Area feature

Figure 9 Candidate label positions for an area feature
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Figure 10 A randomly generated map labelled by the presented algorithm
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Conclusions and Future Work
We have presented a cartographic labelling algorithm
that we believe is:
• general—point, line, and area features are labelled

using a unified methodology;
• effective— it produces compact, visually appealing

maps;
• efficient— text placement is accomplished in less than

10 seconds on a standard personal computer for page-
or screen-sized maps with up to 300 labelled features;

• accessible— it is simply explained, easily implemented,
and readily extended.
Our implementation of the algorithm illustrates the

advantages to be gained from a framework in which car-
tographic knowledge is summarized numerically in a
scoring function that is then optimized by powerful heu-
ristic search techniques.

While we believe this framework to be far superior to
previous approaches that are based on expert-system pro-
duction rules and depth-first search, we do not claim that
the specific algorithm described here cannot be im-
proved. For example, the following problems warrant fur-
ther attention:
• Disambiguation Our current scoring function classi-

fies the interaction between each label and its feature
as either overlapping or non-overlapping. However,
more subtlety is necessary to identify candidate posi-
tions that do not overlap features, but that come close
enough to cause some degree of ambiguous associa-
tion.

• Selectivity A useful option in labelling dense maps is
to allow for (occasional) deletion of certain labels or
even the features themselves in areas of congestion. As
noted above, we had to resort to some manual feature
deletion in our sample maps to ensure that an accepta-
ble labelling was feasible. Automation of this selection
process has already been demonstrated in the context
of point-feature label placement (Langran and Poiker
1986; Christensen, Marks, and Schieber 1995b).

• Flexibility When label or feature deletion is not
acceptable, the text can be modified to make the label-
ling problem simpler, or at least to provide additional
placement options. For example, labels can be
replaced by numbers (with a suitable key shown else-
where), and text can be broken and stacked. Another
option is to use a line to connect displaced labels and
the features they tag. 

• Expressivity Suggestion of candidate positions should
allow for greater expressivity. For instance, horizontal
labels are not ideal for all area features, curved labels
may be better for some line and area features, and
long linear features should allow for multiple occur-
rences of the label and for distribution of multi-word
labels along the length of the feature.
These problems present no conceptual difficulty for

the algorithm outlined here. We anticipate that they can
be addressed by improved generation procedures and
evaluation metrics without a significant increase in execu-
tion time. In the hope that others might want to build on
our work, we are happy to make our software available on
request to other researchers. Our testbed is written in C,
runs on Unix platforms, and produces PostScript output.
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Figure 11 The initial random labelling of a randomly generated map

Figure 12 The map of Figure 11, halfway through position selection

Figure 13 The final labelling of the map of Figure 11
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Résumé Certains algorithmes, apparemment puissants et vi-
sant le positionnement automatique d’étiquettes sur des cartes,
utilisent des méthodes heuristiques qui représentent une exper-
tise cartographique considérable. Par contre, leur efficacité est
diminuée par des méthodes de recherche et d’optimisation qui
s’avèrent inefficaces. D’autre part, aucune approche de posi-
tionnement d’étiquettes qui utilise une technique efficace d’op-
timisation n’a vraiment été utilisée lors de la production de
cartes générales où l’on retrouve des points étiquetés, des lignes
et des surfaces. Aucune méthode n’a démontré sa capacité à gé-
nérer un étiquetage de qualité acceptable. Nous présentons ici
un algorithme de positionnement d’étiquettes qui réussit à ren-
contrer les deux objectifs d’efficacité et de grande qualité en
combinant des méthodes cartographiques simples et des tech-
niques d’optimisation efficaces basées sur des variables
aléatoires.

Zusammenfassung Ein allgemeiner Algorithmus für die Pla-
zierung der Kartenschrift Einige scheinbar leistungsfähige Al-
gorithmen für automatische Kartenschriftplazierung
verwenden eine Heuristik, in die beträchtliche kartographische
Erfahrung eingegangen ist, die aber von nachweisbar unzuläng-
lichen Methoden der Suche und Optimierung behindert wird.
Andererseits hat man zwar Verfahren der Schriftplazierung, die
auf einer leistungsfähigen Optimierungstechnik basieren, in

der Produktion allgemeiner Karten—d.h., solcher mit benann-
ten Punkt-, Linien- und Flächenobjekten—eingesetzt, aber
nicht zeigen können, daß sie Beschriftungen von annehmbarer
Güte erzeugen. Wir führen einen Algorithmus für die Schrift-
plazierung vor, der beide Ziele—praktische Leistungsfähigkeit
und hohe Qualität der Beschriftung—erreicht, und zwar durch
die Kombination einer einfachen kartographischen Heuristik
mit wirkungsvollen stochastischen Optimierungstechniken.
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