
Polyhedral Geometry and the Two-Plane
Parameterization

Xianfeng Gu Steven J. Gortler Michael F. Cohen
Harvard University Harvard University Microsoft Research

Abstract

Recently the light-field and lumigraph systems have been proposed as general methods
of representing the visual information present in a scene. These methods represent this
information as a 4D function of light over the domain of directed lines. These systems
use the intersection points of the lines on two planes to parameterize the lines in space.
This paper explores the structure of the two-plane parameterization in detail. In partic-
ular we analyze the association between the geometry of the scene and subsets of the
4D data. The answers to these questions are essential to understanding the relationship
between a lumigraph, and the geometry that it attempts to represent. This knowledge is
potentially important for a variety of applications such as extracting shape from lumi-
graph data, and lumigraph compression.

1 Introduction

Recently the light-field and lumigraph systems have been proposed as general methods
of representing the visual information present in a scene [7, 9]. These methods repre-
sent this information as a 4D function of light over the domain of directed lines. This
information can be captured using video cameras, without requiring the solution to a
stereo vision problem. Given this representation one can generate novel views of the
scene quickly by extracting the relevant data from the representation.

Generally, when representing the visual information about a scene, one needs to
store the five dimensional radiance function (3 degrees of freedom for position and 2
for direction). Since in “free space”, radiance is constant along a line, the complete
appearance of an object from outside its convex hull, or conversely, the appearance of
scene viewed from within an empty convex region, is fully represented by the radiance
along all directed lines intersection the convex region. The space of lines has only 4
degrees of freedom, which makes a lumigraph a 4D representation. There are many
possible ways to parameterize lines in 3 space. The light-field/lumigraph systems use
the lines’ intersection with two planes to parameterize the lines. The motivation for this
choice is the simplicity of the representation, and the speed at which the data needed to
generate a novel image can be extracted. In particular, the new image can be constructed
using texture mapping operations [7].



Typically, the light leaving some geometric point is a smooth function over direc-
tions, e.g. constant in the case of a diffuse surface. Therefore the lumigraph function
will be correspondingly smooth over some associated lumigraph domain region. Thus
we may wish to understand the association between the geometry of the scene and sub-
sets of the 4D data. This paper explores the structure of the two-plane parameterization
in detail. This knowledge is both interesting theoretically and is potentially important
for a variety of applications, for example, lumigraph compression, deriving geometry
from lumigraphs, and creating more accurate renderings from lumigraphs. We do not
address the specific issues surrounding each application here, but rather discuss the
more basic theoretical issues.

There are many questions we seek to answer. The simplest such question is to deter-
mine what “the set of all lines that pass through some fixed point in space” corresponds
to in a lumigraph. This set of lines has two continuous degrees of freedom, and so the
associated lumigraph subset is a two dimensional subset. Moreover we will show that
this 2D subset is an affine manifold; one could call this a 2D plane in a 4D space. We
are also interested in “converse” questions; suppose we choose some arbitrary 2D affine
subset of a lumigraph, does this correspond to the set of lines through some fixed point?
The answer to this question is necessarily negative. There are only three degrees of free-
dom in choosing a point in space, while there are six degrees of freedom in choosing a
2D affine subset of a 4D space. 1 Therefore there must be 2D affine subsets that do not
correspond to the set of lines through a fixed point. In this paper, we will explore this
question fully, and characterize all 2D affine lumigraph subsets.

In this paper, we will also address questions such as: what is the algebraic structure
of the subset of the lumigraph that corresponds to all lines that pass through some
triangle in space? Because a triangle is bounded by line segments, it becomes relevant
to ask: what is the subset corresponding to all lines through some line segment in space?

The knowledge gained by answering the above questions may prove useful for a
variety of practical applications. One such application is extracting geometric informa-
tion from real world lumigraph data. Bolles et al. use a 3D data structure comprised of
images taken as a camera follows a linear path [3]. They then analyze the structure of
the “epipolar plane image” (EPI) slices of the 3D data, in order to extract geometric
information about the scene. In particular, a feature point in scene corresponds to a 1D
affine subset of an EPI. Instead of solving the standard stereo correspondence problem,
Bolles et al. simply search for lines in the EPI’s. This allows them to robustly deduce the
depth of scene features. Unfortunately, in order to use a 3D data structure, the camera
must follow a linear path; in practice this is a very restrictive assumption. On the other
hand, as described in Gortler et al. [7], even when one allows the camera to move freely,
one can create a 4D lumigraph data structure using a process called rebinning. Thus by
looking for certain features in the lumigraph data, one may be able to robustly deduce
geometric information about the scene, much like can be done from an EPI. For exam-
ple, by identifying certain 2D affine subsets of lumigraph data one can extract the 3D
scene locations of the associated points in space. Pursuing such a program requires us to
clearly understand the the relationship between scene features and lumigraph subsets.

Another important application is lumigraph compression since these data sets are

1 One can specify an affine 2D frame with 3 points in 4D. This is described by 3 � 4 = 12
numbers. Since we are only interested in the affine subset, and not the particular frame, we
are free to apply any affine transform and still obtain the same subset. There are 6 degrees of
freedom in a 2D affine transform, which we have overspecified. Thus, the subset is described
by 12� 6 = 6 degrees of freedom. More generally, in an n dimensional linear space, there are
nk + n� k2 � k degrees of freedom in choosing a k dimensional affine subset [11].



large, but highly redundant. Levoy and Hanrahan discuss a low dimensional vector
quantization method for compressing the 4D datasets that arise from a lumigraph set-
ting, achieving 120:1 lossy compression rates [9]. Their method uses no knowledge
about the structure of the data. It seems plausible that much higher compression ratios
may be achieved if structural knowledge is taken into account. By knowing what to
expect in a lumigraph, we hope to gain insight as to how to most efficiently represent
them.
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Fig. 1. 2D and 4D line parameterization

In this paper, we will use two parallel planes to parameterize lines in 3 space, and
will refer to this parameterization as 2PP. Without loss of generality, the “front plane”
will lie at z = 0 with points of the form (s; t; 0). The “back plane” is z = �1, with
points of the form (u; v;�1). A (non-parallel) line will intersect both planes exactly
once, and is identified with the 4D parameters (s; t; u; v). Words such as point, line,
segment, and plane will describe sets in 3D geometric space. Words such as 1D, 2D
and 3D affine subsets will be used to refer to “lines”, “planes” and “hyperplanes” in the
2PP parameterization.

2 Flatland

In order to build up some intuition for the problem, we will start by reviewing a lumi-
graph in flatland. In this case all geometry resides in the (x; z) plane. A line is param-
eterized by where it crosses two canonical parallel lines. Thus a line in (x; z) space is
parameterized as (s; u) in the lumigraph (see Figure 1). Because lines and points are



projective duals in 2 space, flatland is easy to understand. This kind of analysis is found
in [3].

2.1 Lines Through a Point
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Fig. 2. Lines through a point are associated with a line

We first discuss the set of all lines that pass through some point (x0; z0). This pen-
cil corresponds to a 1D subset of the (s; u) domain. Using a simple similar triangles
argument, it is clear that as one moves a constant distance ds, in order for the line to
still pass through (x0; z0), one must move some distance du which is linear in ds (see
Figure 2). Thus, this set of lines is a one dimensional affine subset of the 2D (s; u)
domain. For example, if the scene geometry consists of a single light emitting point,
the 2D lumigraph function will only be non zero over the support of a single 1D affine
subset.

The same analysis is true for all lines that pass through a single camera’s pin-hole.
When synthesizing an image with a pin hole camera, one measures the radiance along
all lines that pass through the pin-hole. Thus, the lumigraph data needed to synthesize an
image lies along a 1D affine subset in (s; u) space. The 1D subset is entirely determined
by the (x; z) position of the camera pin hole. The orientation, and intrinsic parameters
of the camera have no effect the choice of the subset. They just determine the projective
mapping between the data on that 1D subset, and the camera’s “film line”.

The converse statement is equally as simple. Any affine 1D subset of the (s; u)
domain corresponds to the set of lines that pass through a single point (x0; z0) in space.

2.2 Lines Through a Segment

In a flatland environment, one may approximate all of the visible “surfaces” using line
segments. Thus it is important to consider the set of all lines that pass through some
line segment in the (x; z) domain. Let us identify the line l0 on which this segment
lies; this line has some particular parameter value (s0; u0). Let us specify points on the
segment with the single parameter �; each � fixes some point (x0; z0) on l0. All lines
through that point are associated with a single 1D affine subset in (s; u). This 1D subset
must include (s0; u0), because the line l0 passes through all points on the segment. As
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a result, all lines passing through a segment, correspond in the lumigraph to a pencil of
1D subsets through (s0; u0). The entire pencil spans all of the 2D (s; u) space. When
approximating geometry, we are considering a segment with a boundary. The corre-
sponding (s; u) subset consists of a “wedge” of the complete 360 degree pencil through
(s0; u0) (see Figure 3).

3 3D Geometry

In 3 dimensions, lines and points are not projective duals, and the association becomes
more complicated. It is our goal to understand this case as well as the flatland case.

3.1 Lines Through a Point

The most basic question to ask is what 2PP subset corresponds to all lines through a
point (px; py; pz) in space? Points along the line passing through some point (s; t; 0)
and the point (px; py; pz) can be parameterized by w and expressed as:"

s
t
0

#
+w

"
px � s
py � t
pz

#

This line crosses the z = �1 plane when w = �1=pz at the point"
s+ s=pz � px=pz
t+ t=pz � py=pz

�1

#

making the 2PP parameterization for this line to be

(s; t; (1 + 1=pz)s� px=pz; (1 + 1=pz)t� py=pz)

Thus, the set of lines passing through the point describes a 2 dimensional affine subset
of the 2PP. If one parameterizes the 2 dimensional subset with parameters (a; b), then
the corresponding (s; t; u; v) value is

subset(a; b) = (a; b; (1 + 1=pz)a� px=pz; (1 + 1=pz)b � py=pz) (1)



3.2 Lines Through a Segment

In general it is common to approximate the 3D geometry of a surface using a set of
triangles. A triangle is defined by 3 segments. Thus our next question will be what is
the 2PP subset corresponding to a segment in space. Clearly, we have added a new
degree of freedom and the corresponding subset is a three dimensional subset.

Call the line of the segment l0, it is defined by a point (px; py; pz) and a direction
(dx; dy; dz). l0 corresponds to some (s0; t0; u0; v0) of the 2PP domain. Define one de-
gree of freedom � to move along the line l0 which specifies some point (x0; y0; z0).
The lines through each point (x0; y0; z0) on l0 make up one 2D affine 2PP subset. Also
note that the set of lines that passes through (x0; y0; z0) includes l0 itself. Thus, the 2D
affine subset contains (s0; t0; u0; v0). In this sense the three dimensional subset corre-
sponding to all lines through l0 is a “pencil” of 2D affine subsets that all share the single
point (s0; t0; u0; v0). If we consider a bounded line segment, then the associated subset
is a wedge of the “pencil”.

The geometry of this subset can be determined by fixing s, t, and �. Points along
the resulting line is are written as"

s
t
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#
+w

"
px + �dx � s
py + �dy � t
pz + �dy

#

The line crosses the z = �1 plane when w = �1=(pz + �dz) at the point"
s + s=(pz + �dz)� px=(pz + �dz)� �dx=(pz + �dz)
t+ t=(pz + �dz)� py=(pz + �dz) � �dy=(pz + �dz)

�1

#

Thus the corresponding 3D subset can be parameterized and defined as

subset(a; b; �) = (a; b; a+ a=(pz + �dz)� px=(pz + �dz) � �dx=(pz + �dz); (2)
b+ b=(pz + �dz)� py=(pz + �dz) � �dy=(pz + �dz) )

If the line is not parallel to the z = 0 plane, we can specify l0 with the direction
(dx; dy; 1) and the point along the line that crosses the z = 0 plane, (px; py; 0). Thus
the coordinates (s0; t0; u0; v0) of l0 are (px; py; px�dx; py�dy). Defining� = 1+1=�
equation 2 becomes

subset(a; b; �) = (a; b; �(a� s0) + u0; �(b� t0) + v0 )

This surface is bilinear in the variables (a; b; �). Because the� parameter is not directly
measurable from lumigraph data, it is best to eliminate this hidden parameter. When we
do so, the subset is expressed as the solution to the following implicit bilinear equation

0 = (s� s0)(v � v0) � (t � t0)(u� u0) (3)

Another natural representation is to eliminate � and express the (s; t; u; v) subset para-
metrically as

subset(a; b; c) = ( a; b; c;
(b� t0)(c � u0) + v0

a � s0
)

If we hold s; t constant, then v is linear in u. This is simply the image of the line as seen
from a camera at s; t. If we hold s; u constant, then v is linear in t. This is exactly what
is observed in a single EPI slice. See figure 4 for such a lumigraph decomposition of
the fruitbowl lumigraph used in [7]. If we hold t; u constant, then v is linear rational in
s. See figure 5 for such a lumigraph decomposition.



3.3 Lines Through a Triangle

The set of all lines through a triangle is a 4D manifold of the 2PP domain with a bound-
ary. The boundary of this manifold is defined by the 3D subsets associated with the
set of all lines that pass through the three line segments defining the triangle. Thus the
subset of lines passing through a single triangle can be fully described by the equations
above.

4 Occlusion

In an actual scene, a triangle may be obscured by other geometry. As such, not all of the
light rays emanating from some triangle are represented in the lumigraph of the scene.
If a triangle is partially obscured by another triangle, then only the rays that emanate
from the first triangle and do not pass through the blocking triangle will be represented
in the lumigraph. In this case, the set of lines seen from the first triangle will make up a
more complicated 2PP subset. The three dimensional geometry of these “critical” sets
of lines is well understood [6]. The relationship between critical manifolds of various
dimensions is also well understood [4]. We wish to understand the algebraic nature of
these critical sets when expressed in the 2PP parmeterization.

4.1 Apparent vertices: Lines Through 2 Lines

When a triangle is obscured, then the observed set of rays can terminate at apparent
vertices. These are created when edges from two polygons appear to cross from the
receiver’s point of view [1]. The set of rays that pass through apparent vertices can be
expressed as “the set of lines that pass through 2 lines”. Equation 3 gives us the implicit
equation for all lines that pass through one line. Thus the sets of lines passing through
two lines is the solution to the two equations

0 = (s� s0)(v � v0) � (t � t0)(u� u0)

0 = (s� s1)(v � v1) � (t � t1)(u� u1)

By subtracting the first equation from the second, we can rewrite the equations as

0 = (s� s0)(v � v0)� (t� t0)(u� u0)

0 = (s1 � s0)v+ (v1 � v0)s+ (s0v0 � s1v1)� (t1 � t0)u+ (u1 � u0)t+ (u0t0 � u1t1)

This is the intersection of the solution set of a quadratic equation, and a 3D affine
subset. The result is a 2D quadric subset of the 2PP domain.

Thus in a partially obscured triangle, the corresponding 2PP subset is a 4D manifold
bounded by a 3D piecewise quadric manifold (corresponding to the apperant edges).
The 3D quadratic pieces meet at 2D affine manifolds, (corresponding to actual vertices),
and at 2D quadric manifolds (corresponding to apparent vertices).

4.2 Lines Through Three Lines

In a scene with multiple triangles, there exist so-called “critical” locations; these are
places where the number of apparent vertices changes. These locations make up the
contours of the aspect graph of the scene [6, 13, 8]. Such critical locations occur at
“eee” events, when three edges of the scene appear to intersect from the point of view
of the receiver. A degenerate “eee” case occurs when one polygon edge and one polygon



vertex appear from the point of view of the receiver to coincide. Such cases are called
“ve” events. At these “eee” and “ev” locations, the irradiance undergoes a discontinuity
in its second derivatives [1, 8].

We would like to understand the structure in the 2PP of sets of rays on “eee” events.
This problem can be expressed as “what are the set of lines that pass through 3 lines”.
This can be expresses as the solution to

0 = (s � s0)(v � v0)� (t� t0)(u � u0)

0 = (s � s1)(v � v1)� (t� t1)(u � u1)

0 = (s � s2)(v � v2)� (t� t2)(u � u2)

This set is reducible to the following three equations

0 = (s� s0)(v� v0)� (t� t0)(u� u0)

0 = (s1 � s0)v + (v1 � v0)s+ (s0v0 � s1v1)� (t1 � t0)u+ (u1 � u0)t+ (u0t0 � u1t1)

0 = (s2 � s0)v + (v2 � v0)s+ (s0v0 � s2v2)� (t2 � t0)u+ (u2 � u0)t+ (u0t0 � u2t2)

This is the intersection of a quadratic equation, and a 2D affine subset. The result is a
1D conic subset of the 2PP domain.

4.3 Lines Through One Point and One Line

A “ve” event is a special case of an “eee” event. In this case, it can be shown that the
quadratic elements of the equations can be eliminated leaving three linear constraints.
Thus the corresponding subset is a 1D affine subset.

Thus for a partially obscured triangle, three of the 3D quadratic manifolds compris-
ing its boundary can meet either in a 1D conic section, or degenerately in a 1D affine
subset.

5 Converse Questions

In order to better understand the lumigraph structure, it is useful to ask converse ques-
tions such as: what is the set of lines corresponding to a 2D affine 2PP subset. This will
help us geometrically interpret observed lumigraph structure.

We said above that the subset associated with all lines that pass through a point is a
2D affine subset. As mentioned in the introduction, a simple counting argument shows
that there must be 2D affine subsets that do not correspond to lines through a single
point. In particular it takes only 3 numbers to specify a point in space, whereas there
are 6 degrees of freedom in choosing a 2D affine subset of 4D space [11]. What are the
other 2D affine subsets? In order to understand these questions we first must introduce
the concept of a shallow segment.

5.1 Lines Through a Shallow Segment

We define a shallow line to be a line that lies in a plane of constant z. A shallow seg-
ment is a segment of a shallow line. As we will see, shallow lines are important in
characterizing affine 2PP subsets.



What 2PP subset corresponds to all lines through a shallow line l defined by a point
(0; py; pz) and a direction (1; dy; 0) in space? 2 This subset can be computed starting
from equation 2, and setting dz to zero.

subset(a; b; �) = (a; b; a+ a=pz � �=pz; b+ b=pz � py=pz � �dy=pz)

Once again, we eliminate � resulting in

subset(a; b; c) = (a; b; c; (1 + 1=pz)b� dy(1 + 1=pz)a+ dyc � py=pz )

Thus we conclude that for a shallow line, the corresponding 3D lumigraph subset is
affine.

5.2 2D Affine Lumigraph Subsets

In general a 2D affine subset of a 4D space results from the intersection of two 3D affine
subsets. As a result, the set of lines that pass through two shallow lines l1, l2, must be a
2D affine subset. There are 3 degrees of freedom in specifying each shallow line, giving
us a total of 6 degrees of freedom. It can be shown that these 6 dofs are indendent and
can thus specify any 2D affine lumigraph subset.

Thus we conclude that any 2D affine subset corresponds to the set of lines through
two shallow lines. The set of lines passing through a single point, is simply a degenerate
case where two shallow lines intersect in a point.

6 Relationship to Plücker Coordinates

One classic way to represent lines in 3D space is using 6 coordinates called Plücker
coordinates. Plücker coordinates express elements of the space P (G2(R4)) from the
Graßman-Cayley algebra [10, 5, 2, 13, 11, 12]. This 5D projective space consists of
lines in 3D and “linear combinations of lines in 3D” up to an arbitrary scale. Given the
6 Plücker coordinates of an element of this space, one can test if it represents a single
line (and not a non-decomposable linear combination of multiple lines) by seeing if
the coordinates satisfy a certain quadratic constraint. This leaves 5 degrees of freedom.
Because the scale is arbitrary, we are left with 4 independent degrees of freedom to
describe a line.

For Lumigraph purposes, the 2PP parameterization has certain advantages over
Plücker coordinates. The 2PP domain is a four dimensional linear space, while lines in
Plücker coordinates live on a quadric four dimensional manifold in a five dimensional
projective space. This can have a dramatic impact on the space complexity of the rep-
resentation as well as the time required to compute the coordinates of the lines needed
to extract an image. But because the algebra and geometry of Plücker coordinates is
well understood, we wish to understand the relationship between 2PP coordinates and
Plücker coordinates.

Given a line (s0; t0; u0; v0) in the two plane parameterization, one identifies two
points on the line, (s0; t0; 0) and (u0; v0;�1) and computes the normalized Plücker
coordinates as

(s0v0 � t0u0; �s0; s0 � u0; �t0; 1; v0 � t0 )

2 If the line is “vertical”, then we can define it by a point (px; 0; pz) and a direction (dx; 1; 0).



The formula for the first Plücker coordinate is non-linear and so in general this mapping
is non-linear. Interestingly, the Plücker subsets corresponding to many of the geometric
features discussed in this paper still have the same algebraic complexity as they do in
the two plane parameterization. For example, to compute the Plücker coordinates of the
lines that pass through a single point (px; py; pz)we start with equation 1 and map them
to the Plücker coordinates:

subset(a; b) = (apy=pz � bpx=pz; �a; �a=pz + px=pz; �b; 1; b=pz � py=pz )

The non-linear parts of the mapping cancel out. As a result we see that the set of lines
passing through a single geometric point is a 2D affine subset of normalized Plücker
coordinates. The same result is obtained in a coordinate free setting in [5, Prop 2.4].

The set of lines that pass through two lines is associated with a quadric in (s; t; u; v),
and the set of lines that pass through three lines is associated with a conic in (s; t; u; v).
Once again, the same is true of the associated subsets of Plücker coordinates [13].

7 Conclusion
In this paper we have investigated the association between sets of lines through certain
features in 3D geometric space, and subsets of the two plane parametric domain. This
gives us insight into the structure of lumigraph functions, and may prove very useful in
extracting geometric information from lumigraphs as well as lumigraph compression.
We plan to pursue these avenues as future work.
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