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Minimal Discrete Curves and Surfaces

Abstract

In this thesis, we apply the ideas from combinatorial optimization to find globally
optimal solutions arising in discrete and continuous minimization problems. Though
we limit ourselves with the 1- and 2-dimensional surfaces, our methods can be easily
generalized to higher dimensions.

We start with a continuous N -dimensional variational problem and show that
under very general conditions it can be approximated with a finite discrete spatial
complex. It is possible to construct and refine the complex such that the globally
minimal discrete solution on the complex converges to the continuous solution of the
initial problem.

We develop polynomial algorithm to find the minimal discrete solution on the
complex and show that embeddability is a crucial property for such a solution to
exist.

Later on, we demonstrate that the spatial complex arising in the minimum weight
triangulation problem is not embeddable. Linear programming becomes the main
tool to investigate this problem and to develop a practical algorithm for constructing
the minimum weight triangulation of a random point set.

Finally, we consider two curve minimization problems arising in computer graph-
ics. Both of them are described by the curves on the piece-wise linear triangulated
surface. We revisit the geodesic problem, simplify and enhance the well-known exact
algorithm and construct the fast approximate algorithm. We also show that the sil-
houette simplification can be done efficiently using the minimization techniques that
we develop in the previous chapters.

In many cases, the algorithms described in this thesis can be considered as a
generalization of the classical Dijkstra’s shortest path algorithm.
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Chapter 1: Introduction 2

The general idea of this thesis is to investigate some problems where the con-
struction of discrete and continuous minimal curves and surfaces is necessary. This
statement is very broad, and we limit ourselves with several problems of theoretical
and/or practical importance. In particular, we are interested in finding curves and
surfaces that are globally minimal.

The problems that we examine here come from two different areas. The first area
is calculus in variations. We consider a classical formulation of the problem and show
that under very general conditions it is possible to find a globally optimal solution.
Interesting enough, the discrete formulation of this problem is closely related to the
minimal weight triangulation problem.

In the second part of the thesis we consider more practical problems related to
computer graphics. Finding the shortest path (geodesic) on the discrete surface is a
well-known problem. Though theoretical algorithms are known for a long time, there
are a lot of open question on implementation and approximate solutions. Finally, we
investigate the problem of silhouette simplification and show that this problem can
be successfully addressed by globally minimal approach.

Contribution In this thesis we present the following contributions:

• A novel algorithm for constructing embeddable spatial complexes that approx-
imate continuous minimum of the variational functional.

• A duality algorithm that allows finding the global minimum on the embeddable
spatial complex in polynomial time.

• A reduction of the minimum weight triangulation problem to the minimum
surface problem on the non-embeddable spatial complex.

• An integer linear program for the general triangle-based minimum weight tri-
angulation problem.

• A continuous linear problem that allows finding the minimal weight triangula-
tions for the random point sets.

• A robust modification of the exact algorithm for finding the minimum length
curves (geodesics) on a piece-wise linear surfaces (meshes).

• A fast approximate geodesic algorithm.

• A novel method for mesh silhouette simplification that treats the optimal sil-
houette as a minimum weight closed curve on a mesh.

• Implementation and testing of all the methods discussed.



Chapter 1: Introduction 3

1.1 Overview

The thesis consists of four major parts.

Variational Problems. We solve for the best function f(x) : Ω ⊂ Rn 7→ R
that minimizes some functional

∫
· · ·

∫

Ω

G(f(x),∇f(x), x) dx. (1.1.1)

with boundary conditions f(∂Ω) = Γ.
Under very general conditions this problem can be discretized and related to a

problem of finding minimal cost surface in an (n+1)-dimensional spatial complex. The
global minimum of the discrete problem can be found with combinatorial optimization
techniques (in particular, min-cut).

We pay a special attention to bi-variate variational problems where the solution
is a 2D minimal surface in 3D. We also implement the algorithm and compare it to
existing numerical techniques.

Minimum Weight Triangulations. Minimal weight triangulation (MWT)
problem can also be considered as a globally minimal surface in the discrete face
complex. The main difference of this spatial complex from the complex arising in the
previous problem is that it is not embeddable. It turns out that this property make a
dramatic difference.

The complexity of MWT is unknown. We construct the linear programming algo-
rithm and show that integer solution of this problem corresponds to MWT. Though
there exist examples where the solution of the linear program is not integer, our
approach can be of a practical use for the random point sets.

Geodesics. This chapter describes practical approaches to finding geodesic
curves on the triangulated meshes. We modify the classical MMP algorithm to make
it robust for the meshes of the large size. Because the exact algorithm is non-linear in
time and space, we also develop approximation algorithm that works in close to lin-
ear time and space. Both algorithm are implemented and compared with the existing
methods.

Silhouettes. Processing silhouettes (edges between front- and back- facing poly-
gons) on meshes is quite a challenging practical problem. It is known that for the
complex meshes the silhouettes can be very noisy and complicated.

We develop the method of constructing the approximate silhouette that have the
same main ”features” as the exact one. It is done by mapping the silhouette from
the coarse version of the model to the fine one. The problem can be stated as a
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minimal separating curve on the surface of the fine mesh. It can be approached with
the combinatorial minimization techniques developed in the previous chapters.



Variational Problems 2
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Chapter 2: Variational Problems 6

In this chapter we apply the ideas from combinatorial optimization to find globally
optimal solutions of the continuous variational problems. More specifically, suppose
that one is given a variational problem to solve for the best function f(x) : Ω ⊂ Rn 7→
R that minimizes some functional

∫
· · ·

∫

Ω

G(f(x),∇f(x), x) dx. (2.0.1)

with boundary conditions f(∂Ω) = Γ.
Most of the existing numerical methods for this classical problem are based on

two approaches: direct methods or Euler-Lagrange differential equation [8, 19]. If we
use direct approach, we describe the function f as a linear combination of some set
of fixed basis functions bi(t) with a finite set of coefficients ci

f(x) =
∑

i

cibi(x) (2.0.2)

Given this finite dimensional problems, one then solves for the best vector of coeffi-
cients ci. This is a standard numerical problem that can be approached with a variety
of numerical algorithms [46].

When a finite element set of basis functions is chosen, we are implicitly discretizing
the domain x ∈ Ω. The discretization becomes explicit in the important case of
the direct methods that is called a finite-difference approximation. In this case we
consider the basis functions to be small boxes and directly discretize function f and
its gradient. In 1-dimensional case it can be written as

f(xi) ≈ ci,
∂f

∂x
(xi) ≈ ci+1 − ci

h
(2.0.3)

It can be shown that under curtain condition the solution of the variational prob-
lem (2.0.1) is also a solution of the differential Euler-Lagrange equation

∂G

∂f
−

N∑
i=1

∂

∂xi

∂G

∂f ′xi

= 0. (2.0.4)

In general, it is a non-linear (possibly degenerate) equation. Though there exist a lot
of methods to solve the differential equation (2.0.4) [46], most of them are based on
the discretizations similar to (2.0.2, 2.0.3).

2.1 Contribution

The existing numerical algorithms share the property that (except for simple
quadratic problems), one needs to seed the algorithm with some guess c0

i which the
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algorithm iteratively improves upon. As a result, these methods efficiently converge
to some local minimum. For some problems this is acceptable, but for many difficult
problems, one needs to find the absolute best global minimum. The brute force ap-
proach to finding the global minimum is to create a large number of starting guesses,
and run local optimization from each of these initial states. This is an expensive
process, and the problems become even more intractable if one is solving for a higher
dimensional problem.

In this chapter we study how combinatorial algorithms (instead of numerical ones)
may be applied to these problems to find global minima (instead of local ones). Where
numerical algorithms discretize the domain Ω and then use floating point numbers
to represent functions Ω ⊂ Rn 7→ R, we discretize the space Ω × R. With this
discretization, the optimization becomes completely combinatorial in nature. For
example, suppose Ω = R, then a discretization of Ω × R might be describable as a
planar graph (described with a set of vertices and edges) over R2. In this case, a two
point boundary value problem reduces to the problem of finding the optimal path in
a graph, and it is well known that one can solve for the global discrete minimal path
using Dijkstra’s algorithm [12]. (see Figure 2.1).

In particular, in this chapter we present the following contributions

• In order to solve the given continuous variational problem, we must be assured
that, with enough discretization, the solution to the combinatorial problem will
be close to the continuous one. Here we show conditions sufficient to ensure
this, and we demonstrate that these conditions can be met with a sequence of
deterministic and random grids we construct.

• We prove that, in arbitrary dimension, the resulting combinatorial optimization
problem can be reduced to an instance of min-cut, over an appropriate dual
graph. In 3D, for example, this gives us a simple algorithm for finding globally
minimum discrete surfaces.

• Finally, we describe some important details about the implementation of our
algorithm and we show some experimental results demonstrating our method’s
superiority to traditional numerical approaches.

2.2 Previous work

The literature on finding solutions to variational problems is extensive. For a
detailed review, see [13, 19]. Most of the described numerical methods use some
form of local descent and can only guarantee convergence to some local minimum.
In contrast to all of these methods, our approach has global guarantees even in the
presence of local minima.
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In the literature, there are a few algorithms that are able to find global minima
for certain classes of problems. Here we review and compare them along the following
set of axes.

• Functional: Some of the methods can only solve for minimal area surfaces,
where others can minimize energy measured by any first-order functional.

• Boundary condition: Some of the methods search for surfaces that have some
proscribed boundary, while others look for closed surfaces that surround certain
points.

• Topology: Some methods solve for surfaces in R3, while others solve for scalar
functions over the plane (height fields). Surface-based methods typically find
surfaces of arbitrary topology. It should be noted that to correctly define the
continuous minimal surface problem one needs to employ the mathematical
machinery of “integral currents” [41].

• Discrete solution: All of these methods solve the continuous problem by dis-
cretizing space and solving a combinatorial optimization problem. They show
that in the limit, the discrete problem produces a solution to the continuous
problem. For some of the methods, the discrete algorithm outputs a specific
piecewise linear surface, other methods only output a volumetric “slab” in which
the solution must lie.

• Algorithm Some of the methods reduce to MIN-CUT which has the complexity
of O(N2 log N), while some reduce to circulation problems with higher com-
plexity.

• Experimentation: Some of the methods are described in publications which
include experimental results and implementation details.

Hu et al. describe a method that uses MIN-CUT to compute minimal area func-
tions [27, 28]. In particular they find the minimal area a two-dimensional function
f : Ω ∈ R2 7→ [a, b] that satisfies boundary conditions f(∂Ω) = Γ. The boundary
curve must be “extremal”, which means that it is on the exterior of volume Ω× [a, b]
in which the surface must lie. In their solution, they discretize space into N volumet-
ric nodes. They then proceed to find the ”slab” of nodes of some thickness d ¿ 1
that satisfies the boundary conditions, separates 3D volume Ω× [a, b] into two pieces
and has minimal volume. The discretized version of the latter problem can be solved
using a MIN-CUT algorithm over an appropriate graph with N nodes and O(N2d3)
edges.

Boykov and Kolmogorov have introduced a similar but more sophisticated ap-
proach for solving for minimal surfaces using MIN-CUT [6] Similar to Hu, this algo-
rithm has two major degrees of freedom: spatial discretization and connectivity. By
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cleverly selecting the weights for the edges in their graph they can solve for a wider
class of functionals than simply “area”. In particular, they allow one to choose an ar-
bitrary Riemannian metric over space, and then can solve for the minimal area surface,
where area is defined using this new metric. Unfortunately, if one is given a problem
in the form of equation (2.0.1) where the function G depends non-quadratically on
the surface normal direction, then their algorithm is not applicable.

In their paper, they solve for closed surfaces; to avoid surface collapse, they also
impose an energy term which measures which points are inside and outside the closed
surface. It seems likely that their approach could be generalized to handle extremal
boundary curves like Hu et al.

In both the above algorithms, MIN-CUT is used to divide the volumetric nodes of
R3 into slabs. They show that in the limit, the actual minimal solution lies somewhere
in a shrinking volumetric “slab” determined by the cut. These algorithms do not
compute a specific discrete surface that minimizes the functional over some discrete
space.

In contrast to the above methods, our method is applicable to any first order
functional. Our discrete algorithm outputs a specific minimal discrete surface, and
can thus be seen as a generalization of the “shortest path problem over a planar
graph” to a “smallest surface problem in a spatial CW complex”.

The closest work to ours is the algorithm described in the Ph.D. thesis of John
Sullivan [52]. More generally than the above methods, Sullivan solves for the surface
that minimizes any arbitrary first order functional. His discrete algorithm outputs a
specific discrete surface. In addition he allows his boundary to be any set of loops,
including non-extremal loops and knots. Because of his general treatment of bound-
ary conditions his algorithm reduces not to MIN-CUT but to a more complicated
network circulation problem. He then solves this problem using an algorithm with
time complexity O(N2A log N), where N is the number of nodes in his discrete graph,
and A is the complexity of the solution surface. It is unclear if his approach was ever
implemented or compared with numerical methods. In addition, due to the amount
of difficult machinery employed, this work has remained somewhat inaccessible and
unfortunately unappreciated outside of the minimal surface community.

In contrast to the work of Sullivan, by only allowing extremal boundary conditions,
we are able to apply a very simple reduction to obtain an instance of MIN-CUT with
time complexity O(N2 log N). We also describe specific constraints so that we can
solve for minimal functions, which is the focus of this thesis, though removal of these
constraints would let us solve for minimal surfaces of arbitrary topology as well. In
our work, we use random grids for finding approximate solutions which allows us to
satisfy complicated boundary conditions and to employ practical local grid refinement
techniques. Finally, we describe the details of an implementation and demonstrate
how it compares in practice to standard numerical approaches.

To summarize, we compare the relative properties of these approaches in ta-
ble (2.1).
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Algorithm HKR [28] BK [6] Sullivan [52] Our Method

Continuous
functional

Euclidean Riemannian general general

Boundary external closed surface general external
Boundary
condition

exact or
free

exact or free exact exact or free

Topology function
only

surface only surface only function and sur-
face

Discrete solu-
tion

volume volume piece-wise lin-
ear surface

piece-wise linear
surface

Method min-cut min-cut min-circulation min-cut
Experimental
justification

no yes no yes

Grids regular regular regular regular and ran-
dom

Table 2.1: Comparative properties of the graph-cut functional minimization
algorithms.

Our research was specifically inspired by recent success of the combinatorial meth-
ods in the discrete energy minimization problems emerged from computer vision
[9], [7]. Though the problems that arise in this area are completely discrete from
the very beginning, their method of construction of the directed dual graph can be
adopted for our purpose.

Duality between the shortest path and min-cut problem for both directed and
undirected planar graphs is well known and described in the literature for different
applications (see [26] pg.156, [29]). As we will see, this duality can be generalized to
higher dimension, and applied to solve variational problems.

2.3 Main ideas

Before we start the formal proofs, we want to illustrate our main ideas on the 1-
dimensional case. An advance reader, who immediately wants to see the mathematical
definition of the problem, can skip this example and start reading the chapter 2.4.

As an example, we are going to solve the classical minimization problem and find
the minimal surface of rotation [8]. In this problem we are looking for the function
that minimizes the functional

1∫

0

|f (x)|
√

1 + f ′2x dx (2.3.1)
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given the boundary conditions

f(0) = A, f(1) = B. (2.3.2)

The analytical solution of this problem is

f(x) = A
cosh (x cosh(d) + d)

cosh(d)
,

where d is chosen to satisfy the boundary condition (2.3.2).
Our first idea is to discretize both the domain x and the range f arriving at

a completely combinatorial problem. We will be looking for a solution among the
piece-wise linear functions described by subsets of a particular grid (Figure 2.1).

In fact, we have to generate a family of the convergent grids. In order for the
combinatorial algorithm to be able to give us information about the continuous solu-
tion, we must be able to create a grids which, if dense enough, contain discrete paths
that are within epsilon of the continuous solution and its derivative. The recipes how
to create the convergent grids and the proofs of their correctness can be found in the
following chapters.

The integral over the piecewise linear function can be split on the integral over its
”edges”

1∫

0

G(f, f ′, x) dx =
n−1∑
i=0

ai+1∫

ai

G(f, f ′, x) dx =
∑

edges

wi. (2.3.3)

For every given edge which is a piece of some line y(x) = kx + b we can compute its
weight as

wi =

ai+1∫

ai

G(kx + b, k, x) dx. (2.3.4)

In particular, in the case of the surface of rotation (2.3.1) we have

wi =
√

1 + k2

ai+1∫

ai

|kx + b| dx. (2.3.5)

If the entire edge is in the positive or negative semi-plane, this equation can be
simplified to

wi =
∣∣0.5kx2 + bx

∣∣√1 + k2

∣∣∣
ai+1

ai

. (2.3.6)

In the cases when variational integral is more complicated and the edge weights (2.3.4)
cannot be computed analytically, it can be done numerically.

Now we have a completely discrete problem. We have to find a path with minimum
weight from point A to point B on the graph. The weight of the path is a sum of the
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Figure 2.1: Solution of the minimal surface of rotation problem on the regular (a)
and random (b) grids. Exact solution is shown as a dashed line.

weights of its edges. All edges are oriented from left to right, because we want the
resulting path to be a function, and their weights are known from (2.3.4). Indeed,
that is an exact definition of the famous directed shortest path problem [12]. There are
many efficient algorithms for this problem, best of which have low-order polynomial
time complexity [12]. Applying this method we can find the best approximation of
the surface of rotation on the given grid (Figure 2.1).

If instead of the boundary conditions (2.3.2) we apply the boundary conditions

A0 ≤ f(0) ≤ A1, B0 ≤ f(1) ≤ B1, (2.3.7)

the only difference in the algorithm will be in changing the single source shortest path
algorithm to the multiple source one. In this case all nodes that are between A0 and
A1 are considered to be sources, and all nodes between B0 and B1 to be destinations.

This type of dicretization easily generalized to arbitrary dimensions, where our
grid will be constructed by the intersection of the hyper-planes. For example, for var-
ional problems over the plane, f : R2 7→ R we will have to construct a minimal surface
in 3D. Though minimal path algorithms cannot be generalized for this purpose, as we
will describe below, minimal surfaces can be found using duality and combinatorial
maxflow/min-cut algorithms. In order for these algorithms to work, we will have to
apply some additional restrictions on the grid and functional.

Now we are ready for the formal definition of the variational problem that we are
able to solve using our method.
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2.4 Problem definition

Our problem is to find the function f(x) : Ω ⊂ Rn 7→ R that minimizes some
functional

F (f) =

∫
· · ·

∫

Ω

G(f(x),∇f(x), x) dx. (2.4.1)

It is common to apply the strict boundary conditions

f(∂Ω) = Γ(∂Ω), (2.4.2)

but our method will also work with the less restrictive conditions

Γ0(∂Ω) ≤ f(∂Ω) ≤ Γ1(∂Ω). (2.4.3)

We require that the domain Ω is a simply-connected polytope, with boundary ∂Ω
homeomorphic to an n − 1-dimensional sphere Sn−1. For example, for n = 2, Ω is a
polygon with no holes and ∂Ω a closed piece-wise linear curve that is homeomorphic
to a circle.1

In addition, we require our boundary condition(s) Γ to be described as a piece-wise
linear function with a finite number of pieces.

We require that the solution of the variational problem fs(x) belongs to a function
space P of continuous bounded piece-wise twice differentiable functions with bounded
first and second derivatives 2. By ”piece-wise” we mean that if g ∈ P then there exists
a subdivision of the domain Ω into a finite set of non-intersecting polytopes Ω =

⋃
$g

i ,
such that on the internal points of every polytope $g

i the function g is a continuous
twice differentiable function with bounded first and second derivatives. Without the
loss of generality, we can scale the problem to make sure that

0 ≤ g(x) ≤ 1,

∣∣∣∣
∂g

∂xi

(x)

∣∣∣∣ ≤ Cg
1 ,

∣∣∣∣
∂2g

∂xi∂xj

(x)

∣∣∣∣ ≤ Cg
2 . (2.4.4)

We also require the kernel of the functional (2.4.1) to be nonnegative 3. In other
words, for all x, y such that x ∈ Ω, 0 ≤ y ≤ 1, and n-dimensional vectors p ∈ Rn we
have

1If we want to be picky, we have to mention that the case n = 1 is a minor exception, because Ω
is an interval and ∂Ω is two points.

2Though we will strongly rely on it in the proofs of the correctness of our method, we believe
that this assumptions can be weakened in many cases.

3We can weaken the condition (2.4.5), requiring the kernel to be limited from below. Indeed, we
know that if the function fs(x) is a solution of the variational problem with the kernel G(f,∇f, x)
then it is also a solution of a problem with the kernel G(f,∇f, x)+C for any constant C. Therefore,
if there exists a constant C such that for all x, y, and p in (2.4.5) we have G(y, p, x) ≥ −C, then
the problem with the kernel G(f,∇f, x) + C will satisfy (2.4.5) and have the same solution fs(x).
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G(y, p, x) ≥ 0. (2.4.5)

This ensures that the weights of all edges of graphs that we construct will be non-
negative 4.

2.5 Grids

Our basic approach is to approximate the continuous variational problem with a
discretized combinatorial one which we can globally solve in polynomial time. For
this scheme to work, it is essential that the discrete solution gives us meaningful
information about the continuous minimum. Here we present sufficient conditions for
such an approach to succeed. Then we describe a grid structure that satisfies these
conditions.

2.5.1 Sufficient conditions.

Let us assume that our variational problem is to be solved over a space of possible
functions P with a norm ‖·‖ in it. Our discretized version of the problem will only
allow for the representation of some other set L ⊂ P . The following lemma states the
sufficient conditions to guarantee that our discretized solution will be “close enough”
to the actual solution.

Definition 2.5.1. The functional F is continuous in the function space P, if
for any f ∈ P, and any ε > 0 there exists δ > 0 such that if ‖f − g‖ < δ then
|F (f)− F (g)| < ε.

Definition 2.5.2. The set L is dense in the set P if for any f ∈ P, and any ε > 0
there exists gε ∈ L such that ‖f − gε‖ < ε.

Lemma 2.5.3. Let P be a function space, and ‖·‖ a norm over P. Let F (f) be a
functional that is continuous in P with respect to ‖·‖. Suppose that L ⊂ P is dense
in P with respect to the norm. Then for any f̄ ∈ P, any ε > 0, any δ > 0 there exists
g ∈ L such that

∥∥g − f̄
∥∥ < δ and

∣∣F (g)− F (f̄)
∣∣ < ε.

Proof. Due to the density we can pick a sequence {un}n=0,1,...,∞ ⊂ L such that
limn→∞

∥∥un − f̄
∥∥ = 0. In particular, there exists an integer N1 such that for all

n > N1 we have
∥∥un − f̄

∥∥ < δ.
Because the functional is continuous, there also exists an integer N2 such that∣∣F (un)− F (f̄)

∣∣ < ε for all n > N2. Therefore, for any n > max(N1, N2) function
g = un satisfies the requirements of the lemma.

4This is not a necessary condition for the shortest path algorithms in 1D, but will be required in
higher dimensions.
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Corollary 2.5.4. Let us denote Fmin = inf
f∈P

F (f). If L is dense in P and P is dense

in L, then F (g) ≥ Fmin for any g ∈ L, and for any ε > 0 there exists g ∈ L such that
|F (g)− Fmin| < ε.

So, if the functional is continuous and we chose a set of the functions L that
satisfies the conditions of the corollary, we can solve the problem over this set L and
our the energy of our result will be as close to the minimal energy of the original
problem as we want. In most cases we can also guarantee that the solution of the
discrete problem is close to the solution of the continuous problem under the norm
‖·‖.
Definition 2.5.5. Let fmin be the global minimum, F (fmin) = Fmin. It is called
an isolated global minimum if for any ε > 0 there exists δ > 0 such that if
‖f − fmin‖ > ε, then F (f)− Fmin > δ.

Corollary 2.5.6. If there exists an isolated global minimum fmin, then for any ε, δ >
0, there exists g ∈ L such that ‖g − fmin‖ < δ and |F (g)− Fmin| < ε.

In other words, under very general assumptions we can find “good enough” so-
lution in our numerical subset L, which can be much simpler then P . In the next
sections we are going to construct such a subset.

2.5.2 Univariate variational problem

Before we go to the higher dimensions, we illustrate our approach for the univariate
problems domain.

Here we describe grids for the univariate minimization problems that satisfy con-
ditions (2.4.1 - 2.4.5). Though many constructions are possible, we have chosen this
one because it is easily generalizable to arbitrary dimension.

We assume w.l.o.g. that Ω = [0, 1] and therefore the solution of the univariate vari-
ational problem lies in the unit square of the plane Φ = {(x, f) | x ∈ [0, 1], f ∈ [0, 1]}.
Define the space P of the allowable solutions as a set of continuous finite piece-wise
twice differentiable functions f : [0, 1] 7→ [0, 1] with bounded first and second deriva-
tives. We define the integral norm to be

‖f‖ =

1∫

0

|f(x)|+ |f ′(x)| dx. (2.5.1)

This norm includes a term for both the value and the derivative of the f . As a
result, our functional F , which depends on both value and derivative, is continuous
with respect to this norm. Essentially, this means that two “close” functions must
have similar energy measurements. This continuity is needed in the preconditions of
Lemma 2.5.3.
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(a) (b)

Figure 2.2: (a) The graph C2 can be used to obtain a combinatorial problem that is
arbitrarily close to the continuous one. (b) The planar graph Cpl

2 is constructed by
intersection of the set of lines.

Our strategy is to piecewise linearly embed a planar graph in this square, and then
represent possible functions g(x) as piecewise linear paths in this embedded graph.
Every path in the graph with monotonically increasing x, from 0 to, 1 corresponds to
a piecewise linear function g : [0, 1] 7→ [0, 1]. The set of all possible piecewise linear
functions generated by the grid R we denote as M(R). For a graph with a finite
number of vertices the set M(R) is also finite. Obviously, M(R) ⊂ P .

Regular grids.

For univariate minimization problems, we will use a grid such as one shown in
Figure (2.2a). This grid, Cn, has n + 1 columns and n2 + 1 rows of vertices. The
distance between the columns is therefore equal to h = n−1 and the distance between
the rows is d = h2 = n−2. Edges are included between each pair of vertices in adjacent
columns. This graph has about n3 vertices and n5 edges. The number of the possible
functions generated by this grid |M(Cn)| = n(2n+2). Fortunately, we will be able
to find the global minimum of these possible functions with efficient combinatorial
minimization techniques. This grid has been chosen so that it can represent functions
with a wide variety of values and derivatives. In particular we can state the following:

Theorem 2.5.7. The set

L =
∞⋃

n=1

M(Cn)

is dense in P with respect to our norm.

The proof of the theorem is given in the appendix 2.9.
Combined with the corollary (2.5.6), this theorems states that if the continuous

problem has an isolated minimal solution, then it is possible to solve the variational
problems on the grids Cn, and the discrete solution will converges to the actual
solution of the continuous problem when n → ∞. Note, that our definition of the
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grid does not depend on the variational problem. In fact, any continuous variational
problem that has a solution in the set P can be solved on this grid.

The grid Cn is not planar. As described below, for higher dimensional problems,
we will need to have an embeddable grid. The grid Cn can be easily modified to obtain
the embeddable grid Cpl

n as shown in Figure(b). These planar graphs are also dense
in P because they include all piece-wise linear functions from L, M(Cpl

n ) ⊃M(Cn).

Random grids.

The described regular grid structure can be created as the intersection of sets of
lines. As n increases, the lines become more ”dense”, meaning that in the vicinity of
every point of the plane there pass more and more lines with different positions and
orientations. Random grids have the same property, and thus can be used for solving
our continuous variational problems.

The random grid Rn in the unit square of the plane Φ is created by intersection
of n random lines. One vertex is created at each line intersection, and the resulting
graph is planar. Each line is constructed by taking the point p ∈ Φ and orientation
≤ c ∈ [−π, π] from some probability distributions 5. The grid Rn+1 can be constructed
by adding one random line to Rn. Such families of the grids has a nice property that
M(Rn+1) ⊃M(Rn). The set of all functions generated by the family we will denote
as

Lr =
∞⋃

n=1

M(Rn).

Similar to the regular case, we can state the density theorem

Theorem 2.5.8. The set Lr is dense in P.

The proof of the theorem is given in the appendix 2.10.
Therefore, we can solve the variational problems in the domain of the random

grids.

Regular versus random

We have shown that univariate variational problems can be numerically solved
in the domains of the regular and random grids. What domain should be chosen
depends on the type of the problem. Here we emphasize the major tradeoffs between
these approaches.

It can be clearly seen that regular grids Cn are based on the simple blocks that can
be pre-computed for all reasonable n and stored in data files. The graph for the given
problem can be constructed by joining the blocks together. Such a structure gives
us another advantage when the kernel of the functional F (f, f ′, x) does not depend

5In this thesis we will consider uniform distributions unless the different distribution is mentioned.
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on x and the computation of the edge weight is expensive. In this case we have to
compute the weights for the small fraction of the edges and then simply copy these
values for the whole structure.

Random grids are more flexible. We can experiment with the density distributions
of the lines, making them more ”dense” in the vicinity of the possible solution. In
order to produce an ”average” answer and ”deviation” we can run the algorithm
several times on different random grids. These advantages are often dominant because
for big meshes the time for the grid construction and weight computing is usually small
comparing to the other parts of the algorithm. In our implementation we pursued
the use of random grids.

The solution for the function generating a minimum surface of rotation using both
types of grids can be seen on the Figure (2.1).

2.5.3 Grids for higher dimensions

The described grid structure can be created as the intersection of the set of lines.
The generalization in higher dimensions is straightforward; the grid is created as the
intersection of the set of hyperplanes in the n + 1-dimensional space, Ω× [0, 1]. With
this grid structure, some function space of piecewise linear functions over Ω can be
represented using appropriate subsets of facets. The proof of the correctness of these
constructions for the higher dimensions is omitted for the sake of space.

Though regular grids have a clear structure and might be easier to build and
investigate, random grids are more flexible. Similar to the 1-dimensional case, we can
experiment with the density distributions for the hyperplanes, making them more
”dense” in the vicinity of the possible solution. It is also much easier to construct
random grids that fit the given boundary conditions.

2.5.4 From grids to discrete problem.

The weight of the face can be computed by evaluating the integral (2.4.1) numer-
ically or analytically. For instance, for bivariate variational problem every face of the
grid Cn is a convex polygon located on some plane z(x, y) = Ax + By + C with the
constant gradient ∇z = (A,B)T . The cost of the face can be computed as

wi =

∫∫

face

G
(
Ax + By + C, (A,B)T , x, y

)
dx dy. (2.5.2)

2.6 Algorithms

We now have approximated our continuous variational problem by a series of
discrete optimization problems. In the univariate case, the discrete problem is a
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shortest path problem, and in the bivariate case is a minimal discrete surface problem.
We now wish to find the global optima for these problems. For the shortest path
problem, we could simply use a standard shortest path algorithm, such as Dijkstra’s
algorithm on the grid. Unfortunately, it is not clear how to use these algorithms to
solve for minimal surfaces.

In this section we show how both the discrete path and surface problems may
be globally solved in polynomial time. The basic approach will be to generate an
appropriate dual graph from the grid structure. This dual graph will be constructed so
that “cuts” of the graph correspond to paths (surfaces) in the original grid structure.
We can then apply well known algorithms to solve for the min-cut of the dual graph.
For simplicity, we first demonstrate how these ideas work for the univariate problem.
The topological machinery we use is possibly a tad bit heavy for the univariate case,
but will be sufficient to generalize to bivariate case. In fact, this machinery can be
applied to variational problems of any dimension.

2.6.1 Univariate problem

For the discrete univariate problem, we are given a planar graph (V, E) that is
embedded in <2, with positive weights on each of its edges. We will label the axes
of <2 as x and y. Because the graph is embedded, we have not only vertices and
edges, but also 2D faces. This collection of vertices edges and faces defines a complex
(formally it is a CW complex [22]) that is homeomorphic to the 2D ball (disk) B2.

We wish to compute the minimum weight path that connects two specified vertices
that are on the exterior of this complex. In addition we will want to ensure that the
our path corresponds to a function in the original variational setting; that is, there
should be one y value over each x value. We will deal with this restriction later on
in section (2.6.1).

The two boundary vertices A and B partition the exterior edges into two sets
which we call upper U and lower L. We introduce two additional faces, fr and fk, in
the graph. The source face fr is surrounded by edges in L and one additional outer
edge er. The sink face fk is constructed by edges in U and one additional outer face
ek. With these two added faces and edges, the new complex is still homeomorphic to
B2 (see Figure 2.3).

The following are simple definitions from simplicial homology modulo 2 [18].

Definition 2.6.1. A 1-chain in the graph is a union of some edges of the graph
C = ∪ei. The boundary of a 1-chain C, which is denoted as ∂1C, is a union of
vertices that are included in C an odd number of times.

Similarly, we define a 2-chain as a union of some faces of the graph A = ∪fi.
The boundary ∂2A of a 2-chain A is a union of edges that are included in A an odd
number of times 6.

6For this 2d complex, any edge can belong to no more then two faces. This is not going to be
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Figure 2.3: Duality for the minimum valid curve problem. (a) A primal graph with
boundary conditions. (b) Source and sink faces and edges are added to the primal
graph. (c) Dual graph is shown in red. (d) The minimal cut of the dual graph. The
edges across the cut are shown in black. (e) A cut of the dual graph correspond
to a partition of the primal graph. (f) The boundary of the (R, K) partition is a
minimum valid curve on the primal graph. Every edge of the curve corresponds to
an edge across the dual cut.

For our problem, we are interested only in 1-chains that satisfy boundary condi-
tions Γ = {A,B}.
Definition 2.6.2. Let us define a valid curve on the graph described above to be
any 1-chain C with er /∈ C and ek /∈ C such that ∂1C = Γ. The cost of a valid curve
is a sum of the weights of its edges.

The minimal valid curve problem is to find a valid curve with the minimal cost.
As it is proven in section 2.11, this is easily accomplished using a dual graph D

(Figure 2.3, c). That is, we associate with each face fi a dual vertex v̂i. We also
associate a single source vertex r̂ with a source face fr and a single sink vertex k̂ with
a sink face fr. With each edge ei bounding two faces fj and fk, we associate a dual

true for higher-dimensional problems.
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edge êi that connects v̂j and v̂k. We set the capacity of each dual edge the cost of the
associated primal edge c(êi) = c(ei).

Definition 2.6.3. A cut is a partition of the vertices v̂ into two sets R̂ and K̂ with
r̂ ∈ R̂ and k̂ ∈ K̂. The cost of a cut c(R̂, K̂) is the sum of the capacities of the edges
between R̂ and K̂.

Because there is a one-to-one correspondence between the vertices of the dual
graph and the faces of the primal graph, we can also denote the cut as a partition of
the faces of the primal graph into two 2-chains R and K with fr ∈ R, fk ∈ K.

Theorem 2.6.4. There is a one-to-one correspondence between the valid curves on
the primal graph and cuts on the dual graph. The minimal valid curve problem over
the primal undirected graph is equivalent to a minimal cut problem for the dual graph.

The proof of the theorem is given in the appendix 2.11.
The minimal cut is a well-known problem that can be solved in polynomial time.

Additional constraints

In the previous section we considered a general problem of finding a minimal valid
curve in G. Here we describe how to solve its restricted version where we want to find
a minimal curve with some special properties. Our final purpose is to ensure that the
chosen curve is a function.

Theorem (2.6.4) states that every valid curve C corresponds to a cut that is denoted
as (RC, KC) in the primal graph and (R̂C, K̂C) in the dual graph. If the curve passes
through an edge e, one of its adjacent faces belongs to the source 2-chain RC and the
other one belongs to the sink 2-chain KC. We specify an additional constraint to be
satisfied when the curve passes through this edge.

Constraint 2.6.5. Let e to be an edge of the primal graph. We take one of its
adjacent faces and denote it as fR

e , the other one is denoted as fK
e . We also denote

corresponding vertices in the dual graph as v̂R
e and v̂K

e . If e ∈ C, we require that
fR

e ∈ RC and fK
e ∈ KC (similarly, v̂R

e ∈ R̂C, v̂K
e ∈ K̂C).

This condition can be specified independently for every edge (and it is quite possi-
ble that some face f belongs to a source 2-chain for one edge and belongs to the sink
2-chain for another edge). Note, that the constraints do not depend on the particular
curve C and simply narrow the set of possible valid curves on the primal graph.

In order to satisfy constraints (2.6.5), instead of undirected dual graph, we create
the directed dual graph Ĝ. If the constraint (2.6.5) is specified for the primal edge e,
then the corresponding edge ê of the undirected dual graph is split into two directed
edges êR (from v̂R

e to v̂K
e ) and êK (from v̂K

e to v̂R
e ). The capacities of the dual edges

are defined as c(êR) = c(e) and c(êK) = ∞. If the constraint is not specified for e,
then the capacities are set as c(êR) = c(êK) = c(e).
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Figure 2.4: Construction of the dual directed graph. (a) We want the minimal valid
curve to be a function f(x). (b) Constraints. If an edge e (top) belongs to the
solution, the adjacent upper face belongs to a sink part of the cut and the adjacent
lower face belongs to a source part of the cut. We enforce this condition by introducing
two directed edges in the dual graph (bottom). The edge with the infinite weight is
dashed. (c) The resulting directed dual graph (edges with infinite weights are not
shown). Compare it with fig. 2.3c.

Definition 2.6.6. The cost of a cut c(R̂, K̂) in Ĝ is the sum of the capacities of the
edges from R̂ to K̂. 7

Theorem 2.6.7. Let C be a valid curve on the primal graph with constraint (2.6.5)
defined for every edge, (R̂, K̂) be a corresponding cut of the dual directed graph. The
curve C satisfies the constraints if and only if the cost of the cut is finite, c(R̂, K̂) < ∞.
Therefore, min-cut of the dual directed graph corresponds to the curve that has the
minimal weight and satisfies all of the constraints (2.6.5).

Proof. There is a one-to-one correspondence between valid curves and cuts.
If C satisfies the constraints (2.6.5), the weight of the corresponding cut is finite

because all the edges from R̂ to K̂ are finite by construction.
If the cut has a finite weight, every edge ê from R̂ to K̂ is finite. Therefore, every

edge e of the corresponding curve satisfies the condition, otherwise c(ê) would be
infinite.

Duality for minimum functions

Thus far, the particular embedding of the planar primal graph has not been im-
portant. In our application, the primal graph represents a grid which has been used
to discretize the univariate variational problem (section 2.5.2). In particular, this

7Compare with the definition (2.6.3) of the undirected graph cut cost.
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primal graph is embedded in the rectangular region [0, 1] × [0, 1] and every vertex
graph has two coordinates vi = (xi, yi). At least one of the boundary vertices has its
first coordinate equal to 0, and at least one vertex has its first coordinate equal to 1.
The edges of the primal graph (except for er̂ and ek̂) are straight line segments.

Only some valid curves on this graph will correspond to (piece-wise linear) func-
tions f : [0, 1] 7→ [0, 1]. We wish to add our additional constraints in such a way as
to restrict our solution to this subset.

One can think of every piece-wise linear function f as dividing [0, 1] × [0, 1] into
two regions, one of them is ”below” the function and the other, above. In our cut
solution, we want the region below the function to be the source-connected 2-chain
Rf .

Therefore, for every edge e of the primal graph we introduce an additional con-
dition. If the edge is belongs to the output function f , we require the face below
the edge to belong to Rf and the edge above f to belong to Kf . This is exactly a
constraint (2.6.5) described in the previous section.

Formally, the additional constraints are defined as follows. Every primal edge ei

is a segment of a line y = aix + bi
8. The adjacent face in the half-plane y < aix + bi

is denoted as fR
ei

, the face in the half-plane y > aix + bi is denoted as fK
ei

. The
constraint for ei is defined as (2.6.5). The construction of the directed dual graph for
these constraints is described in (2.6.1). Example of the dual graph can be seen on
the figure (2.4).

Theorem 2.6.8. The curve C is a function if and only if for every edge it satisfies
the constraint defined above.

Proof. If the curve is a function, it satisfies the constraints by definition. Indeed, all
the faces below the function are in the source 2-chain, all the faces above the function
are in the sink 2-chain.

Let us now prove that if a curve satisfies the constraints above, it is a function, i.e.
the curve C defines a unique mapping f : Ω 7→ [0, 1]. Let’s prove it by contradiction.
If the mapping is not unique in some point x ∈ Ω, there exist two edges e1, e2 ∈ C
and two points on these edges with the same first coordinate (x, y1) ∈ e1, (x, y2) ∈ e2.
Without loss of generality we can assume that y1 < y2 and there are no other edge
e3 ∈ C and (x, y3) ∈ e3, such that y1 < y3 < y2.

By definition the face fK
e1

is located above the edge e1 and belongs to a sink 2-
chain KC. Similarly, the face fR

e2
is located below the edge e2 and belongs to a sink

2-chain RC. Let us consider the set F of all faces intersected by an open segment
((x, y1), (x, y2)). On the one hand, this segment does not intersect any edges of C and
therefore either F ⊂ RC or F ⊂ KC. On the other hand, fK

e1
∈ F and fR

e2
∈ F , which

is a contradiction. Therefore, the mapping is unique.

8We can avoid the vertical edges in two ways. The first one is to ”shake” all vertices of the primal
graph by some small random value to make sure that there are no vertical edges in the graph. The
second one is to assign infinite weight with both of the dual edges.
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Figure 2.5: Enforcing relaxed boundary conditions. (a) Exterior edges that are within
the region allowed by the relaxed boundary condition are shown in green. (b) In the
dual graph, the edges that intersect the green edges are removed (removed edges are
dashed). (c) Resulting dual graph.

Corollary 2.6.9. The minimal function problem on the grid can be reduced to the
minimal cut problem for the directed dual graph defined above.

Relaxed boundary conditions

So far we considered the strict boundary conditions (2.4.2); in the univariate case
it can be stated as f(0) = A, f(1) = B. In fact, by a very small modification we can
allow the relaxed boundary conditions (2.4.3); in the univariate case it can be stated
as A1 ≤ f(0) ≤ A2, B1 ≤ f(1) ≤ B2.

To enforce these constraints (see figure 2.5), we remove from the dual graph all
edges (shown in dotted red) that are dual to exterior edges (shown in green) that are
within the region allowed by the relaxed boundary condition.

The removal of these dual edges is equivalent to assigning a zero cost to their
associated primal edges. This allows the boundary of the function to ”slide” up and
down in the allowed region with no added cost. It can be easily seen that after this
modification there is a one-to-one correspondence between functions that satisfy the
relaxed boundary conditions and cuts in the dual graphs.

2.6.2 Minimal cost valid surface

The generalization of the shortest path problem to higher dimensions is straight-
forward9. Here we show its application in 3D. In the discrete spatial minimal cost

9Unlike the minimal curve problem, which can be solved efficiently even for non-planar graphs,
the minimal cost surface problem can only be solved efficiently for a complex that is embedded
in three dimensional space. Without this restriction, the minimal cost two dimensional function
problem becomes NP-Complete by reduction to min-cost planar triangulation [43].
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surface problem a three-dimensional spatial complex G is homeomorphic to B3 and
consists of vertices vi, edges ei, faces fi, and cells ci. Associated with each face fi is
a cost wi. Also input is a closed boundary 1-chain Γ, which is on the exterior of the
complex and which is homeomorphic to a circle S1.

The boundary Γ partition the exterior faces of the complex into two sets which
we call upper U and lower L. These sets are both disks, due to the Jordan Curve
Theorem. Following the recipe of section (2.6.1), we attach a source and a sink cell
cr and ck to the complex. The source cell cr is bounded by the faces of L and one
additional outer face fr. The sink cell ck is bounded by the faces of U and one
additional outer face fk. This new complex is still homeomorphic to the ball B3.

For our problem, we are interested only in 2-chains that satisfy the boundary
condition Γ.

Definition 2.6.10. A valid surface in the spatial complex is any 2-chain A with
fr /∈ A and fk /∈ A such that ∂2A = Γ.

Note that under this definition, our “surface” can include handles, have discon-
nected components, or even be non-manifold.

The minimal valid surface problem is to find a valid surface with minimal cost.
Omitting the intermediate steps that were described in details for the univariate

case, we construct the directed dual graph as follows. That is, we associate with each
cell ci a dual vertex v̂i. A source cell cr corresponds to a source dual vertex r̂, a sink
cell ck corresponds to a sink dual vertex k̂. Each non-exterior face fi is a segment of
a plane z = aix + biy + di and has two adjacent cells. One of them, cr

fi
, is below the

plane, the other one, ck
fi

is above the plane. In the dual directed graph, with each

face fi we associate two dual edges. One of them, êr
i , goes from v̂r

fi
to v̂k

fi
, the other

one, êk
i , goes the opposite direction. The capacities of the directed edges are set as

c(êr
i ) = w(f), c(êk

i ) = ∞.

Theorem 2.6.11. The minimal function problem on the grid can be reduced to the
minimal cut problem for the directed dual graph defined above.

The proof of this theorem is identical to that of the univariate case, except that
is based on 3-chains and their properties in a complex homeomorphic to B3.

For the relaxed boundary case, we have and upper and lower boundary curve,
Γ1 and Γ2. In the graph construction we remove from the dual graph all edges that
are dual to exterior primal faces that are within the region allowed by the relaxed
boundary condition.

2.7 Implementation and results

We implemented our algorithm for the case of minimal cost surfaces. Again, the
corresponding spatial complex is 3-dimensional.
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The spatial complex is represented using a BSP-tree data structure. In this tree,
the root node is associated with the volume of the entire bounding 3D cube. Ran-
dom planes entered into the tree one by one. As each plane is entered, each node
whose associated volume is intersected by the plane is split into two ”child” nodes
representing the associated halves of the parent node’s volume. At the end of this
construction, each leaf of the tree represents a cell in the spatial complex. The nice
property of this representation is that the leaves that are intersected by a hyperplane
can be located hierarchically, because the hyperplane intersects the child cell in the
binary tree only if it intersects the parent cell. Some interesting properties of the
dual graph are investigated in the section 2.12.

Integrals over each of the faces (2.5.2) are computed analytically or evaluated
numerically by Monte-Carlo methods. We also used the elegant implementation of
the min-cut algorithm written by Kolmogorov [5].

For problems with a fixed boundary condition Γ we force a small number of the
planes (usually, less than 10% of the total number of the planes) to go through the
piece-wise linear segments of the boundary constraints. In other words, each segment
of the boundary becomes a pencil of planes; the orientations of the planes are chosen
randomly.

As we have proven above, as the number of the planes goes to infinity, the discrete
surface will approach the continuous minimal surface. Unfortunately, our computing
constraints currently limit us to the use of only few hundreds of planes. In order
to deal practically with these limitations we have explored the use of a number of
heuristic-extensions.

Relaxation. One obvious extension which we call relaxation is to use the output
of the our combinatorial optimization as the starting guess for a numerical iterative
method. Because the numerical method only has to discretize the 2D domain, it can
be discretized to a much higher resolution. The goal of this step is to refine the answer
to a high-resolution, highly accurate local minima that is nearby to the combinatorial
global optimum. For our numerical method, we employed a multi-resolution gradient
descent method. The multi-resolution hierarchy was made up of three grids with
sizes 20x20, 40x40, and 80x80. A finite differencing approach was used to derive the
discrete optimization problem.

Plane selection. Because we use random grids, a natural way to use the
method is to run the discrete algorithm several times and to pick up the solution
with the smallest energy. We can use this idea to develop the following extension,
which we call plane selection. With this extension we run our discrete algorithm
several times for a single problem. After each iteration, we keep the planes that
have been included in the current minimum, drop the planes that are not included
in the minimum, and replace these with new random planes. At each iteration, the
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(a) (b)

Figure 2.6: Results of the plane selection algorithm. Boundary conditions are shown
in red. (a) Minimal area surface for the saddle boundary conditions, 150 random
planes. (b) Membrane in the gravity field, 200 random planes.

energy must necessarily not increase. Of course, plane selection can be coupled with
relaxation.

Adaptive Refinement The last extension, to adaptively refine the grid by
only subdividing cells that lie near to the current solution. More specifically, we run
the algorithm a number of times and compute an average solution as well as deviation
from this average. From these data we construct an upper and lower boundary
(”envelope”) of the desired answer. In the succeeding iterations we add more random
planes, but all the cells above (resp. below) the envelope are merged with the source
(resp. sink).

2.7.1 Simple examples

We first show how our algorithm behaves on some simple classical variational
problems. Next we show how our algorithm works on a problem that has numerous
local minima.

Our first example is the famous problem of finding the function of the minimal
area that ”spans” a given boundary curve. Such a function f(x, y) minimizes the
integral

F1(f) =

∫∫

Ω

√
1 + f ′x(x, y)2 + f ′y(x, y)2 dx dy. (2.7.1)

Figure 2.6a shows the result when using a saddle boundary configuration.
A standard elasticity problem is the deformation of a membrane in a gravity field.
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Such a membrane function f(x, y) minimizes the integral

F2(f) = F1(f)−
∫∫

Ω

k(x, y)f(x, y)g dx dy (2.7.2)

In Figure 2.6b, we show a solution with a constant density k(x, y) = c, though nothing
changes in our method if we use any other distribution of the density or gravity field.

The space and time costs of our algorithm can be seen in the table (2.2). In this
experiment a cubic cell Φ was subdivided by Nplanes random planes. We measured
time of the construction of the cell tree, time of the min-cut computation, number
of the total cells in the cell tree, and total memory usage. The experiments were
performed at Athlon 1.5GHz machine with 2GB of memory. From the table, we
observe that the major bottlenecks of the algorithm are memory usage and min-cut
computation time. In theory the worst case for n planes has n3 memory complexity
and n6 log n time complexity. From experiments with various sized problems, we
observed that in practice the algorithm had n2.7 memory complexity and n4.6 time
complexity.

Nplanes Tcell tree, sec. Tmin−cut, sec. Ncells, thousands Memory used, Mb

40 0.5 0.5 11 3
60 2 3 40 13
80 4 14 107 35
100 8 34 205 68
120 14 95 375 123
140 22 210 590 195
160 34 380 903 300
180 48 830 1300 428
200 68 1350 1810 596
220 90 2100 2410 790
240 117 3400 3150 1040

Table 2.2: Experimental time and memory usage by the minimal surface algorithm.
Nplanes is a number of the planes used for the unit cube subdivision. Tcell tree and
Tmin−cut are the times used for the construction of the cell tree and computation of
the min-cut. Ncells is the number of the cells in the cell tree.

2.7.2 Examples with many local minima

Here we experimented with a class of problems that has a huge number of local
minimums and can hardly be solved in reasonable time by existing methods.

Our problems were created by starting with a 3D unit cube that has some given
3D density distribution D(x, y, z) in it. Our problem was then to find the surface that
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time,
sec

memory,
Mb

energy histogram

a) local optimization, starting
from random guess

13.5 3

0.0 

0.1 

b) combinatorial optimiza-
tion, 240 planes, + relaxation

3590 1040  

0.0 

0.5 

c) plane selection, 150 planes,
5 iterations, + relaxation

1365 200

0.0 

1.0 

Table 2.3: 2·106 possible local minimum surfaces. (a) Local optimization with random
starting guess. (b) Global combinatorial optimization with 240 planes. (c) Global
optimization enhanced with a plane selection heuristic.

breaks the cube into two pieces using minimal effort. In this case we must minimize
the functional

∫∫

Ω

D (x, y, f(x, y))
√

1 + f ′x(x, y)2 + f ′y(x, y)2 dx dy (2.7.3)

We only enforced the relaxed condition that the boundaries map to [0..1].
The distributions were created by summing up a number of 3D Gaussian blobs. We

chose m locations over Ω, above each location we placed k Gaussian blobs at random
heights. This results in (k + 1)m locally optimal functions. The density distribution
can be very complex; a 2D slice of such a distribution is shown in Figure (2.7,a).

In our experiments we compared our algorithm against a standard numerical op-
timization method. For the numerical method, we used a multi-resolution gradient
descent method with random starting conditions. We terminated the iterations when
the improvements were below 10−5.

For our first experiment we constructed a density field with m = 9 and k = 4,
there are about 2 · 106 possible local minimums for this example. The results of
the experiment can be found in the table 2.3. In the rightmost column, we show a
histogram of the minimal energies found by each method. We have shifted and the
energies so that the leftmost column only counts solutions that are within epsilon of
the absolutely smallest energy reported by any of the algorithms. (Since we do not
have a closed form solution for this problem, we, of course, have no proof that this
in-fact represents the global minimum.)
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(a) (b)

(c) (d)

Figure 2.7: (a) A two-dimensional slice of the density function. Intensity of the color
is proportional to the density. (b) Numerical optimization methods converge to the
local minimum. (c) The minimal discrete surface using a grid of random planes. (d)
Our method followed by numerical relaxation.

As we can see here, the local optimizer finds solutions with a range of energies,
although it never finds the best one. The 240-plane combinatorial method, most
often finds the best solution, but occasionally finds non-optimal ones. The use of
plane selection with only 150 planes always finds the same solution at a fraction of
the cost in both time and memory.

All of the combinatorial solutions were followed by relaxation. The typical effect
of this relaxation is to improve the quality of the result by about 1%. More specifically
the quantity “(relaxed - unrelaxed)/relaxed” is on the order of 10−2.

Next we experimented with a density field that had two levels of detail. In par-
ticular, we started with the functional from the previous experiment and randomly
added the same number of Gaussian blobs, but these blobs were 5 times smaller than
the original ones.

For the adaptive refinement extension, we ran three steps of refinement using an
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time,
sec

memory,
Mb

energy histogram

a) local optimization, starting
from random guess

13.5 3

0 

0.12 

b) combinatorial optimiza-
tion, 240 planes, + relaxation

3590 1040  

0 

0.12 

c) plane selection, 150 planes,
20 iterations, + relaxation

5450 200  

0 

0.20 

d) adaptive refinement, 150
planes, 3 iterations (5 plane
selection iterations each), +
relaxation

4120 290  

0 

1.0 

Table 2.4: Comparison of the different algorithms for the functional with two level of
details.

envelope offset of 1, 0.2, and 0.05 respectively. At every step we use 5 iterations
of the plane selection extension to construct the best possible solution and the next
envelope. This method always succeeded in finding the global minimum. These
results are summarized in table 2.4.

2.8 Discussion

We are currently investigating various applications where our algorithms may be
applicable. These include segmentation of volume data, and constructing iso-surfaces
from contours. We hope that, combinatorial methods, such as the ones described
here may find more applications and impact in the scientific computing community.

It would be nice to be able to solve variational problems of higher co-dimensions,
such as minimal 2-surfaces in R4, but it seems unlikely that such a generalization
exists. Similarly, it seems difficult to generalize these methods for functionals that
depend on the second derivative of the function.

In this thesis we limited ourselves by constructing the grids as intersection of
the hyper-planes. This is one of the reasons that time and space complexity of
our method is so high. Every hyperplane that was added to the list intersected
a lot of cells, most of which are located far form the solution. One of the possible
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directions for future research is to construct grids that can be refined locally in order to
increase precision of the approximation without overcomplicating the grid structure.
For example, in the planar case we investigated subdivision rules for triangular grids.
Unfortunately, the simple subdivision rules (such as 1-to-4 split) do not ensure the
necessary density properties of the resulting grids and more complicated rules (such
as pinwheel grids [47]) are hard to implement and generalize to higher dimensions.

Using spatial octrees (for 3D hyper-planes) is not as elegant and easy to implement
as binary trees, but it is likely to increase the performance of the algorithm and better
balance of the tree.

The dual graphs that arise from our algorithm are very sparse and have a special
structure. For example, it can be easily shown (section 2.12) that the dual graph
of any hyperplane grid is bi-chromatic. Exploiting these properties in MIN-CUT
algorithm seems like a very interesting direction of future research.

2.9 Proof of the density theorem (2.5.7)

Before we begin to prove the theorem, we formulate technical lemma that we will
use in the proof.

Lemma 2.9.1. Let f(x) : [a, b] 7→ R be a twice differentiable function, f(a) = A,
f(b) = B. Then there exists such a point x̄ ∈ [a, b] that

df

dx
(x̄) =

B − A

b− a

Corollary 2.9.2. If f(a) = A + ε1, f(b) = B + ε2, then there exists such a point
x̄ ∈ [a, b] that ∣∣∣∣

df

dx
(x̄)− B − A

b− a

∣∣∣∣ ≤
|ε1|+ |ε2|

b− a

Theorem 2.9.3. Let us consider a continuous twice differentiable function f(x) :
[0, 1] 7→ [0, 1] with bounded first and second derivative, |f ′(x)| ≤ C1, |f ′′(x)| ≤ C2.
For any ε > 0 there exists g ∈ L such that ‖f − g‖ < ε.

Proof. Every piecewise linear function generated by the grid Cn can be coded by the
second coordinate of its vertices

(dk0, dk1, . . . , dkn) | ki ∈
{
0, 1, . . . , n2

}
,

where d = 1/n2. In this notation the closest piece-wise linear approximation g(x) of
the function f(x) will look like

(
d

[
f(0)

d

]
, d

[
f(h)

d

]
, d

[
f(2h)

d

]
, . . . , d

[
f(nh)

d

])
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where [·] denotes the integer part of a number and h = 1/n. By choosing g(x) this
way we make sure that |f(hi)− g(hi)| ≤ d/2 for any i = 0, 1, . . . , n.

Let us now assess the difference between f and g from above, using the fact that
f has limited first and second derivatives.

‖f − g‖ =

1∫

0

|f(x)− g(x)|+ |f ′(x)− g′(x)| dx (2.9.1)

≤ max
x∈[0,1]

(|f(x)− g(x)|) + max
x∈[0,1]

(|f ′(x)− g′(x)|)

The difference |f(x)− g(x)| in the points hi, i = 0, 1, . . . , n is less then d/2 and
therefore

|f(x)− g(x)| ≤ d/2 + C1h (2.9.2)

for all x ∈ [0, 1].
Let us take a look on the interval [hi, h(i + 1)] for some 0 ≤ i ≤ n − 1. The

derivative of the piecewise linear function g(x) is constant on this interval and equal
to (g(h(i + 1))− g(hi)) /h. We also know that at the ends of the interval the distance
between f(x) and g(x) is less then d/2. Applying the corollary (2.9.2), we can say
that there exists a point x̄ ∈ [hi, h(i + 1)] such that

|f ′(x̄)− g′(x̄)| ≤ d

h
.

Using the fact that the second derivative is limited, we can conclude that

|f ′(x)− g′(x)| ≤ d

h
+ C2h. (2.9.3)

is true for all x ∈ [hi, h(i + 1)] and therefore for all x ∈ [0, 1].
Combining (2.9.1), (2.9.2) and (2.9.3), and taking into account that h = 1/n,

d = 1/n2, we have

‖f − g‖ ≤ d/2 + C1h + d/h + C2h

=
1

2n2
+

1

n
(C1 + C2 + 1) −→

n→∞
0.

Thus, for any ε > 0 we can choose such an integer n and such a function g ∈
M(Cn) ⊂ L that ‖f − g‖ < ε.

We can easily generalize this theorem for piece-wise differentiable functions.

Corollary 2.9.4. Let us consider a continuous piece-wise twice differentiable func-
tion f(x) : [0, 1] 7→ [0, 1] that has a finite number of pieces. The first and second
derivative are defined at every internal point of these pieces and bounded, |f ′(x)| ≤ C1,
|f ′′(x)| ≤ C2. For any ε > 0 there still exists g ∈ L such that ‖f − g‖ < ε.
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Proof. We create the piece-wise linear function g the same way we did it in the previ-
ous theorem. The only difference from the previous proof is that now the function f
has a finite number of points where the first and second derivatives are discontinuous.
Let us consider one of these points x̂ that is covered by k-th segment of the function
g. Because the first derivative is bounded, we have

(k+1)h∫

kh

|f(x)− g(x)|+ |f ′(x)− g′(x)| dx ≤ (2 + C1)h.

Therefore, the total difference introduced by these points of discontinuity goes to zero
when h goes to zero.

The proof of the theorem (2.5.7) now becomes trivial. We proved that for every
function f ∈ P and any ε > 0 there still exists g ∈ L such that ‖f − g‖ < ε.
Therefore, L is dense in P .

2.10 Proof of the density theorem (2.5.8)

Our investigation of the random grids will be based on the obvious fact that can
be stated as follows.

Lemma 2.10.1. Let f(x) be a piece-wise linear function with n linear segments, Rm

be a random grid with m ≥ n, and ε > 0. Then there is a non-zero probability
p(f, m) > 0 that there exists such a function g(x) ∈M(Rm) that ‖f − g‖ < ε.

All the lines are generated independently, therefore we can consider the grid R2m

to be the intersection of two independent grids of the size m. Using the basics of the
probability theory, we can conclude that for the conditions given in the lemma

p(f, 2m) ≥ 2p(f, m)− p(f, m)2.

We know that the sequence pn+1 = pn + pn(1 − pn) with the starting point 0 <
p1 < 1 converges to 1. That is why

p(f,m) −→
m→∞

1. (2.10.1)

In other words, we can state the following corollary.

Corollary 2.10.2. Let f(x) be a piece-wise linear function, and {Rm, m = 1, 2, . . . }
be a family of the random grids, and ε > 0. Then the probability that there exists
such a function g(x) ∈ Lr that ‖f − g‖ < ε is equal to 1.

Corollary 2.10.3. Let {Rm, m = 1, 2, . . . } be a family of the random grids. Then
Lr is dense in L and therefore Lr is dense in P.
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2.11 Proof of the duality theorem (2.6.4)

In section 2.6.1 we already defined 1- and 2-chains and their boundaries.

Definition 2.11.1. The chain is called closed if its boundary is the empty set.

The following lemmata reduce the minimum valid curve problem to one of planar
partitioning.

Lemma 2.11.2. On our complex, there is a one-to-one correspondence between valid
curves and closed 1-chains which include the edge er and do not include ek.

Proof. The correspondence between a 1-chain C satisfying the properties of the lemma
and a valid curve S is C = S ∪ er.

Lemma 2.11.3. On any complex homeomorphic to B2, there is a one-to-one corre-
spondence between 2-chains and closed 1-chains. The relationship between the corre-
sponding 2-chain A and 1-chain C can be expressed as ∂2A = C.
Proof. The first homology group H1 is defined as the quotient group: H1 = ker(∂1)

Im(∂2)
.

In any complex homeomorphic to B2, H1 is the trivial group (see [18]), therefore
ker(∂1) = Im(∂2).

Combining these two lemmas together, we establish the following correspondence.

Theorem 2.11.4. On our complex, there is a one-to-one correspondence between
valid curves and 2-chains that include the face fr and do not include the face fk.

Because there is a one-to-one correspondence between the faces of the primal
graph and the vertices of the dual graph, there is also a one-to one correspondence
between 2-chains that includes the face fr and does not include the face fk and cuts
in the dual graph.

This proves theorem (2.6.4).

2.12 Dual graph is bi-chromatic

The dual graph of the complex obtained by the plane intersection has special
properties. Some of them might be interesting to the future researchers. Note, that
the complex and dual graph considered here do not include source and sink vertices.

Definition 2.12.1. Let the d-dimensional space be divided by n non-equivalent hyper-
planes Aix + Bi = 0, i = 1, 2, . . . , n, Ai is a d-dimensional vector. The subdivision
code of a point x̄ is an n-dimensional vector b(x̄)i = sign(Aix̄ + Bi).

Lemma 2.12.2. Two points are located in the same cell if and only if they have the
same subdivision code.
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We do not prove this lemma because of its triviality.

Lemma 2.12.3. Two points are located in the neighboring cells if and only if their
subdivision codes are the same except for one element which is 1 for one of the points
and −1 for another.

Proof. Two neighboring cells have one hyperplane that separate them. That is one
exactly one element in their subdivision codes is different.

Lemma 2.12.4. The dual graph of any grid obtained by the hyperplanes intersection
is two-colorable (except for the source and sink vertices).

Proof. For every cell k we can introduce a parameter Pk which is equal to the number
of all positive elements in the cell subdivision code. Let us color with the white color
all the cells where Pk is even and with the black color all the cells where Pk is odd.

By the lemma 2.12.4 all cells have the neighbors of the opposite color only.
The dual graph has a vertex for every cell and an edge between every two neigh-

bors. Therefore, the dual graph is also two-colorable.
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Finding the minimum weight triangulation of the set of points on the plane is
a classical problem of computational geometry. Though it might seem to be very
far from the problems considered in the previous chapter, these problems exhibit a
tremendous similarity in the context of spatial complexes. In this chapter we show
that the spatial complexes arising in the minimum weight triangulation are not em-
beddable and that embeddability is crucial in finding the solution of the problem in
polynomial time.

Minimal discrete surface on the embeddable complex can be found in polynomial
time using the duality graph introduced in chapter (2.6). While the duality trick does
not work for non-embeddable complexes, we explore linear programming techniques
to construct an approximate solution for the minimal weight triangulation (MWT)
problem.

In particular, we reduce the minimum weight triangulation problem of n points
to the linear program with O (n3) variables and (in)equalities. This approach has a
number of interesting properties of both theoretical and practical value.

• Integer solution of our linear program is equal to MWT.

• In general case, the straightforward implementation of our approach successfully
computes MWT of up to two hundreds random points.

• Our approach can be merged with existing methods to provide fast implemen-
tations of MWT algorithm.

Though in some special cases we can prove that the solution of our LP is always
integer, in general there exist a counterexamples where the solution of the linear
problem is not integer. Still, we believe that the linear programming approach can
be of a practical use for the MWT problem.

3.1 Edge-based and triangle-based definitions of

the problem

Let S be a set of n points in Euclidean plane. A triangulation of this set is
a maximum set of non-crossing edges between the points of S. The weight of the
triangulation is equal to the sum of the lengths of its edges. To avoid degeneracies,
in this thesis we suppose that no three points are located on a line, and no two
triangulations of S have the same weights. Clearly, these conditions can always be
satisfied by infinitely small perturbation of the positions of the points. The problem
of finding the triangulation with the minimum total Euclidean length of it edges is
historically called the minimum weight triangulation (MWT) problem. This problem
is the major problem addressed in this chapter. For the clarity sake, in this text we
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will sometimes call this problem Euclidean MWT. The complexity of the Euclidean
MWT problem is currently unknown.

We can also consider the generalization of Euclidean MWT problem when the
weights of the edges are arbitrary positive numbers. Let us call this problem the
general edge-based MWT problem. This problem is known to be NP-hard.

In this thesis, we redefine triangulation in terms of triangles, which seems more
natural for our approach.

Definition 3.1.1. A set Te of empty triangles consists of all triangles with the
endpoints in S that do not have any other points of S in their interiors.

Obviously, any triangulation T consists of the triangles from the set Te. Note,
that because the set of points S is non-degenerate, no points can appear exactly on
the edge of any triangle. For our purpose, we introduce the set Q of all points of the
plane inside the convex hull of S, and the set E of all points of the plane covered by
the edges with the endpoints in S.

Definition 3.1.2. A set of the triangles T = {ti} ⊂ Te is a triangulation of the
point set S if ∪ti = Q, and triangles overlap only by their edges, i.e. ti ∩ tj \ E = ∅.

To make sure that the weight of the triangulation corresponds to the weight from
previous definitions, we have to remember that every edge in the triangulation belongs
to two triangles, except for the edges on the convex hull of S.

Definition 3.1.3. The weight w of the triangle with the edges e1, e2, e3 is computed
as

w = α1 |e1|+ α2 |e2|+ α3 |e3| (3.1.1)

where αi = 1 for the edges on the convex hull and αi = 0.5 for all other edges.

After having defined the weight of a triangulation as a sum of the weights of its
triangles, it is possible to talk about MWT. Clearly, for the non-degenerate sets new
definition of the MWT problem corresponds to the old one.

When the weights of the triangles are arbitrary positive numbers, the problem
of finding the triangulation of minimum weights becomes the general triangle-based
MWT problem. Obviously, it is more general than Euclidean and edge-based MWT
and therefore it is also NP-hard.

3.2 Previous work on MWT.

In 1977 Lloyd [16] proved that the following problem is equivalent to the 3-
satisfiability and therefore NP-complete. If not all edges are allowed, find any trian-
gulation that consists of the allowed edges or show that no such triangulation exists.
This problem has an immediate application for our case. By assigning zero weight
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to the allowed edges and non-zero positive weight to the not allowed edges, Lloyd’s
problem becomes the special case of general edge-based MWT, and thus the latter
one is NP-hard.

On the contrary, the problem of finding Euclidean MWT is open for more than
thirty years [50, 17], but its complexity still remains unknown. No polynomial time al-
gorithms are constructed so far, nor is it proven that the problem is NP-hard. Detailed
review of the previous work can be seen in the extensive survey by Aurenhammer and
Xu [2]. Here we overview the main directions of recent research.

Apart from the direct studying of the complexity of the problem, several ap-
proaches have been explored. It is possible to approximate MWT by triangulations
that are based on greedy and Delauney triangulations [1]. Though these methods
are not guaranteed to find the edges of the MWT, in some cases they give a good
approximation of the MWT.

For the purpose of this thesis, we are more interested in the methods that can
locate the actual edges of the MWT. When S is a vertex set of a convex polygon,
dynamic programming leads to a simple n3 algorithm [35], that nowadays can be
found in many textbooks. In fact, this algorithm does not exploit convexity and
can be easily generalized for any interior face of a planar straight line graph [2] and
any positive triangle weights, i.e. it solves the general triangle-based MWT for this
restricted setup.

Local methods such as β-skeleton [11] and exclusion regions [15] can give us edges
that are guaranteed to be in the MWT or to be out of it. Global methods, such as
intersection of all locally minimum triangulations [14], usually produce a connected
subgraph of MWT.

Recent experimental papers [4] combine these approaches to generate MWT for up
to several thousands randomly distributed points. Still, there exist examples where
all the methods fail and the construction of MWT in reasonable time is not possible.

3.2.1 Previous edge-based linear programming approach.

Though linear programming (LP) can be used for solving or approximating many
of the discrete problems, we found only one significant attempt to apply it to edge-
based MWT problem [2]. This linear program is edge-based. Each of the N = (n

2 )
edges ei is assigned a constant weight wi = |ei| and a real-valued variable xi. The
objective is to minimize

N∑
i=1

xiwi (3.2.1)
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a b

Figure 3.1: n = 5. Solution of the edge-based linear program, the edges with non-zero
variables xi are shown. (a) Integer LP gives minimum weight triangulation; xi = 1
for all solid edges. (b) Continuous LP gives non-integer solution which is smaller than
(a); xi = 1 for the solid edges, xi = 1/3 for the dashed edges.

subject to constraints

0 ≤ xi ≤ 1, (3.2.2)

xi + xj ≤ 1 for ei ∩ ej 6= ∅, (3.2.3)

xi +
∑

ei∩ej 6=∅
xj ≥ 1. (3.2.4)

Condition (3.2.2) provides the integer boundaries for the real-valued variables.
Condition (3.2.3) is established for every crossing pair of edges, it ensures that edges
of the triangulation do not intersect each other. Condition (3.2.4) is established for
every edge. If the edge is not in the triangulation, it should be intersected by at least
one of the triangulation edges.

Integer solution of the problem (3.2.1 - 3.2.4) corresponds to a minimum weight
triangulation of S [2]. Each edge in MWT is indicated by xi = 1, each edge outside
of MWT is indicated by xi = 0. Unfortunately, integer LP is NP-complete, and the
optimal solution of the continuous LP is not integer in most cases (Figure 3.1).

3.3 Minimum weight triangulation problem as a

spatial complex

Let us consider the general triangle-based MWT problem1 and construct a spatial
complex for it.

Triangulation is a planar problem, all vertices have two coordinates. Let us ”lift”
these vertices at the arbitrary hight from this base plane, in other words let us in-
troduce the third coordinate for each vertex and give it some random finite value.

1Again, this problem is known to be NP-hard.
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a b

Figure 3.2: A subset of the spatial complex that corresponds to a single triangulation.
(a) Triangulation of the set of points on the plane. (b) Random third coordinate is
introduced for each vertex.

These coordinates are linearly interpolated for the edges and triangles. For notation
purpose all lifted objects have the upper index l.

It is hard to visualize the resulting spatial complex, because the lifted triangles
intersect each other. On the figure 3.2 we show only a subset of the spatial complex
that corresponds to a single triangulation.

The union of all lifted vertices, edges, and triangles establish a 3-dimensional
spatial complex Gl similar to the complexes described in the previous chapter. There
are several simple facts about the spatial complex that are stated here without a
formal proof.

Lemma 3.3.1. The boundary ∂Q of the convex hull Q of the vertices in the base
plane corresponds to a closed 2 1-chain Γl in Gl.

Lemma 3.3.2. There is a one-to-one correspondence between the triangulations T
in the base plane and 2-chain T l in Gl with the following properties:

• ∂T l = Γl

• T l is a continuous piece-wise linear function over Q
The problem of finding the triangulation with the minimum weight now becomes

the problem of finding the minimal 2-chain that satisfies additional constraints. It
might seem that this is exactly the problem that is solved in the chapter (2.6) in
polynomial time. What is the catch?

There is one crucial difference between the lifted complex Gl and the complexes
considered in the chapter (2.6). Defining Gl, we introduced vertices, edges and faces,
but we did not introduce the cells. Indeed, the faces of the complex Gl intersect not
only on the edges but in some arbitrary places. That is why the cells are not defined
and the duality algorithm cannot be applied to the complex.

2the definition of closed 1-chain is given in the section (2.6.4).
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Note, that if we could construct the embedding of Gl in 3D such that faces intersect
on the edges only, then all the conditions of the chapter (2.6) would be fulfilled and
we could find the minimum triangulation in polynomial time. This might be possible,
for example, when not all triangles are allowed in triangulation.

3.4 Triangle-based linear program

Linear programming provides another interesting approach to the MWT problem.
The rest of the chapter is devoted to the thorough investigation of this method. Note,
that similar linear program can be set up for the spatial complex in the previous
chapter, but duality method is more computationally efficient.

Triangle-based linear program is defined as follows. Every triangle ti ∈ Te is
assigned a real-valued variable xi. The objective is to minimize the weight of the
triangulation

F (x) =
∑
Te

xiwi (3.4.1)

Each variable has to be nonnegative.3

xi ≥ 0 (3.4.2)

Every edge of the convex hull ek is in MWT. Therefore, one of the triangles
adjacent to this edge is also represented in MWT. This condition can be expressed
by the following equality. ∑

ti3ek

xi = 1 (3.4.3)

Finally, there is an equality for every edge ek that is not on the convex hull. The
line, that this edge belongs to, divides the plane onto two half-planes. The set of the
triangles that are adjacent to ek can be split accordingly onto two sets, T 1

k and T 2
k .

If ek belongs to MWT, then exactly one triangle from T 1
k and one from T 2

k belong to
MWT. If ek is not in MWT, then non of the adjacent triangles is in the MWT. This
idea is expressed in the following equality.

∑

T 1
k

xi =
∑

T 2
k

xi (3.4.4)

It is interesting to note, that (3.4.1 - 3.4.4) is a direct generalization of the well-
known LP approach to the shortest path problem.4

3Unlike (3.2.2), we do not define the upper boundary, because it will be satisfied automatically.
4In some sense, we are trying to construct the ”shortest surface” with the boundary condi-

tions (3.4.3) and connectivity condition (3.4.4). The crucial difference between these two problems
is that shortest path LP has integer solutions for any positive weights wi. In our case, the problem
of finding the minimum triangulation with arbitrary weights is NP-complete and the success of the
method is provided by the weight definition (3.1.1).
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3.4.1 Analysis of the triangle-based integer LP

Every triangulation T is represented by the integer-valued vector x, where xi = 1
for all triangles in T and xi = 0 for all triangles not in T . By our definition of
triangulation (3.1), this representation corresponds to the following constraint. First
we choose any point p that is inside the convex hull of S and not on any edge in S,
p ∈ Q \ E . The set of triangles that cover p is denoted as C(p) ⊂ Te.

∑

C(p)

xi = 1 (3.4.5)

In fact, this constraint is automatically satisfied by the initial constraints of the
problem for both integer-valued and real-valued instances of LP.

Theorem 3.4.1. A real-valued vector x satisfies the condition (3.4.5) if and only if
it satisfies the conditions (3.4.3 - 3.4.4).

Proof. (3.4.3 - 3.4.4) ⇒ (3.4.5). First, let us take any edge ek of the convex hall of S
and the set of the triangles Tk = {ti} adjacent to this edge. The the condition (3.4.5)
is directly ensured by (3.4.3) for every point p that is covered only by the triangles of
Tk, i.e. for all

p ∈ Qk =
⋂
Tk

ti \
⋃

Te\Tk

ti \ ek.

Because S is a non-degenerate set, the set Qk is not empty and includes some area
adjacent to ek.

Second, let us take any point p and connect it with a point on the boundary of
the convex hull by a straight segment γ that does not pass through any point of S. In
the previous paragraph we have shown that the condition (3.4.5) is satisfied at least
for some part of γ. If it is not satisfied in p, then there is exists a point p̄ ∈ γ such
that the condition is satisfied on the one side of this point and not satisfied on the
other one. Clearly, p̄ belongs to some internal edge e, because (3.4.5) can change its
value only on the edge. But in this case the condition (3.4.4) is not satisfied for the
edge e.

(3.4.5) ⇒ (3.4.3 - 3.4.4). This part of proof is constructed in a similar manner
and omitted here for the sake of space.

Corollary 3.4.2. Integer solution of the linear program (3.4.1 - 3.4.4) corresponds
to MWT.

Proof. Integer solution x of the linear program satisfies (3.4.2), therefore xi can be
only 0 or 1. Constraint (3.4.5) ensures that x corresponds to a triangulation defined
in (3.1). Because any triangulation satisfies all the constraints of LP, x corresponds
to the triangulation with the minimum weight.
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3.4.2 Solving integer LP using continuous LP

Unfortunately, integer LP is NP-complete and there is no known polynomial-time
algorithm for this problem. Instead, we can solve the problem (3.4.1 - 3.4.4) for the
optimal real-valued vector x and hope that the solution is integer.

Definition 3.4.3. The lifted complex is embedded if its faces intersect only on the
edges. The complex is embeddable if such an embedding exists. 5

Theorem 3.4.4. For the embeddable lifted complex continuous LP always has an
integer solution.

The proof of the theorem is given in the section 3.6.1.
The theorem proves that linear programming can be used to solve the problems

arising in the previous chapter. Unfortunately, the lifted complex is not embeddable.
Though for some special case (chapter 3.6) we can prove that the solution of the
continuous LP always has integer values, in general this in not true.

Note, that the linear problem described above can be applied to any minimum
triangulation problem, including general triangle-based one, which is known to be
NP-hard. So we know 6, at least for triangle-based MWT, that continuous linear
program should give non-integer solutions in some cases. These examples have a very
special structure and, as predicted, exploit the fact that the spatial complex is not
embeddable.

3.4.3 Double-coverings and non-integer solutions of LP

Any triangulation T is a subset of Te that covers points in the triangulation area
Q \ E exactly one time. It is important to consider another family of subsets of
Te that cover this area exactly two times. We call such a subset D ⊂ Te double
covering. The simplest example of double covering is as a union of two triangulations
D = T1 ∪ T2, but in general case this representation is not possible. If for every
triangle in the double covering we assign xi = 0.5, then the constraint (3.4.5) is
automatically satisfied. Therefore, double covering satisfies all the conditions of our
LP and theoretically can be a solution of the continuous LP. Of course, we can easily
construct triple-coverings e.t.c.

In fact, there exist double coverings that cannot be represented as a union of two
triangulations. The simple six-point example is given on the figure (3.3). In general,
a double-covering can be a solution of the triangle-based LP, if the weights of the
triangles of the double covering are small and the weights of all other triangles are
large.

5The embeddability of the spatial complexes can be considered as a generalization of the planarity
to the next dimension.

6unless P=NP
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a b c

Figure 3.3: Single- and double- coverings. (a) Triangulation (single-covering) of 6-
point set consists of five triangles. (b) Double-covering of the same set consists of ten
triangles. For simplicity, only two triangles are shown, the rest can be obtained by
the rotation of this pair around the center point by 4πk/5, where k = 1, 2, 3, 4. (c)
The same double-covering. All ten triangles are shown (transparent). Note, that this
double-covering cannot be split onto two triangulations.

a b

Figure 3.4: 13-point counterexample for Euclidean MWT. (a) Minimum weight tri-
angulation weights 18.798. (b) Solution of the continuous LP corresponds to a double
covering with a weight 18.764. Triangles are shown transparent.

Intuitively, this situation is unlikely to happen when the weights of triangles are
defined as Euclidean length (3.1.1). For example, on the figure (3.3c) we had to use
relatively long and ”heavy” edges to construct a double covering. For a long time
we could not construct the counter example for the Euclidean MWT, nor could we
prove that the solution of the LP is always integer. Numerous experiments showed
that LP gives integer solution when points are randomly distributed on the plane (the
experiments are described in the following chapters).

The triskaidekaphobic counterexample that we found is surprisingly similar to
the counterexample for LMT method [14]. One vertex is located in the middle, and
exactly 13 vertices are uniformly distributed on the unit circle around it (figure 3.4).
The weight of the minimal triangulation is 18.798, the weight of the minimal double
covering is 18.764.
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3.4.4 Random experiments

We believe that the proposed linear program might be of a practical use when
the vertices are uniformly distributed on the plane. The experiments are essential
to check the robustness of the algorithm. The number of the empty triangles is
O(n3). Indeed, in the worst case when S is a vertex set of a convex polygon, every
triangle is possible. The same is the number of inequalities (3.4.2). The number
of equalities (3.4.3 - 3.4.4) is equal to the number of the edges (n

2 ) and therefore
quadratic. Given that the best known LP algorithm is cubic, the time complexity of
the straightforward implementation of the algorithm is O(n9).

We used CPLEX to solve the resulting linear program, points were distributed
uniformly in the unit square. For such a setup, our straightforward implementation of
the algorithm allows to compute MWT of up to two hundreds randomly distributed
points. For 200 points, the linear program consists of about 70, 000 variables and
inequalities and 20, 000 equalities; it takes CPLEX about twenty minutes to converge.

We tested random point sets from 10, 20, 60 and 200 points. The total number of
sets tested is about 100, 000. In all tested cases the solution of the LP problem was
integer and therefore the exact MWT was constructed.

Using previous methods to minimize the number of variables

The algorithm proposed above is not practical, since for the randomly distributed
sets of points it is possible to construct a large subgraph of the MWT for up to hundred
thousands points in reasonable time [4]. When the resulting subgraph is connected,
each of the remaining faces can be triangulated in O(n3) time. Some modification of
our algorithm should be used when the resulting subgraph is not connected.

Indeed, we can efficiently use the information about edges that are guaranteed
to be in MWT and that are guaranteed to be out of MWT. If the curtain edge is
guaranteed to be out of MWT, then all the triangles adjacent to this edge are no longer
valid and can be ignored in linear program constructing. If the edge is guaranteed to
be in the MWT, then all triangles that intersect this edge can be also eliminated.

In our experiments, we used the diamond test [15] to locate the edges that are
not in MWT. This simple but powerful test significantly reduced the number of the
valid triangles and allowed us to compute MWT of up to two thousands points.

3.5 Discussion

Our method and LMT [14]. Interesting enough, the results of our method
are very similar to the results shown by LMT, though methods are very different by
their nature. There are two major similarities:

• Both methods seem to work fine for the sets of randomly distributed points on
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Figure 3.5: Comparison of the linear programming and LMT approach for a random
wheel example. (a) Typical random setup for n = 20. (b) Experimental probability
of success by LMT (green line) and our LP method (blue line) depends on the number
of points in the example.

the plane. LMT finds the connected subgraph of the MWT, and our method
converges to the integer solution.

• Counterexamples for both methods have very similar wheel-shapes (figure 3.4).

It is hard to come up with a fair experiment to compare both methods. Still, there
is some evidence that our linear programming approach is a little bit more general
than LMT. To show this, we did the following experiment. N points are randomly
placed on the circle around one central point. The probability of tested method to
succeed is shown on the figure (3.5).

Different metrics. Another good thing about LP approach is that it is very
flexible. We can apply it not only for Euclidean MWT problem, but to any other prob-
lem where triangles are assigned the positive weights. If the solution of LP is integer,
the answer corresponds to minimal wight triangulation due to the corollary (3.4.2).
If the weights of the triangles are arbitrary, the integer solution of the LP is highly
unlikely, but if the weights of the triangles come from some metric, the probability of
success is much higher.

In particular, we experimented with two different metrics, L1 = |∆x| + |∆y| and
L∞ = max (|∆x| , |∆y|). For random point distribution, our algorithm works for all
the example considered. It seems, that these metrics are ”strict” enough to avoid
double-covering. What properties of the metrics provide integer solution for triangle-
based LP, is an open question.

Higher order problems. We tried to generalize our approach to the higher
order problems such as finding the minimum weight tetrahedralization of the set of
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points in 3D. When the weight of the tetrahedralization is the sum of the areas 7 of
its faces, the tetrahedra-based generalization of the linear problem is straightforward.

Unfortunately, it turned out that the double coverings happen all the time in the
LP solutions of the tetrahedralization problem. We believe that it happens because
of the one significant difference from the triangulation problem. Every triangulation
of some point set have exactly the same number of triangles and edges. For tetrahe-
dralization, this is not true; two tetrahedralizations of the same point set can have
different amounts of tetrahedra. The double coverings ”exploit” this fact to provide
non-integer solutions of the linear program.

3.6 Special cases

In this section we show that in some special cases the solution of the LP is guar-
anteed to be integer and therefore we can find MWT in polynomial time. One of the
instances of MWT problem when polynomial time solution is known is the case when
S is a vertex set of a convex polygon. Note, that edge-based linear program does not
work for this problem (Figure 3.1).

Lemma 3.6.1. When S is a vertex set of a convex polygon, triangle-based LP always
has an integer solution.

Proof. Essentially, our proof is based on the fact that for this setup every double-
covering can be represented as a union of two triangulations. We also use the fact
that if the vectors x = {xi} and y = {yi} satisfy the constraints (3.4.2 - 3.4.4) of the
linear program, than for every c ∈ [0, 1] the vector z = (1 − c)x + cy also satisfied
them.

Let us now suppose that x is a non-integer solution of a triangle-based LP, F (x) =
C. We can prove that x is not optimal. To do that, we extract a triangulation from x
(figure 3.6) as following. Fix any triangle with a positive variable xi, one of its edges,
and one of the vertices on the edge. Constraints (3.4.4) guarantee that there exist
another positive triangle adjacent to the chosen edge. In this manner we can add
triangles counter- or clockwise around the chosen vertex until we hit the boundary
of the convex hull. Now we can fix all these triangles, fix any outer edge and vertex
on this edge and repeat the whole process until we complete the triangulation T . We
can define c1 = min(xi|ti ⊂ T ). If y is an integer representation of the triangulation
T , then x can be represented as a mix of two solutions x1 and y:

x = (1− c1)x1 + c1y

7In fact, the generalization of the LP works if the weight of a face is arbitrary positive number.
On the contrary, it is not obvious how to generalize LP if we define the wight of the tetrahedralization
as the sum of the lengths of its edges. The reason is that each internal face belongs to exactly two
tetrahedra and we can apply a formula similar to (3.1.1) in order to compute the weights of the
tetrahedra. The number o the tetrahedra that contain the curtain edge is unknown in advance and
it is not clear how to split the weight of the edge among them.
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Figure 3.6: For the convex set S, any non-integer solution x consists of several tri-
angulations. Here is how we can extract one of them. (a) Fix any triangle with a
positive xi (dark grey) and one of its vertices. Constraint (3.4.4) guarantees that
going around this vertex in a clockwise or counter-clockwise direction we can always
find a triangle with a positive variable xj. These triangles are shown in light gray.
(b) Fixing the triangles found on the previous step, we can repeat procedure until
the whole triangulation is complete.

It is easy to check that x1 and y satisfy the constraint (3.4.5). Repeating the
procedure for x1, we can represent x as

x = (1− c1)(1− c2)x2 + c1y + (1− c1)c2z,

where z is a triangulation different from y. We can construct two new vectors that
satisfy all the constraints of the problem.

x3 = (1− c)x2 + cy

x4 = (1− c)x2 + cz

where c = c1+c2−c1c2. Because the set S is not degenerate, then either F (y) < F (z)
or F (z) < F (y). Therefore by linearity either F (x3) < F (x) or F (x4) < F (x).

In the proof of the lemma (3.6.1) we never used the fact that the set S is convex.
In fact, this lemma can be generalized for a larger class of problems.

Corollary 3.6.2. When S is a vertex set of an interior face of a planar straight line
graph, triangle-based LP always has an integer solution.

3.6.1 Proof of the theorem 3.4.4

Proof. The proof by contradiction is based on the very same idea as the proof given
in the previous section. For the embeddable complex every non-integer solution x of
the continuous linear program can be split into two different solutions, and therefore
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it cannot be optimal. Because of the lack of space, here we provide only the general
idea of the proof.

Because the complex Gl is lifted, every triangle tli of the complex can be also
considered as a linear mapping Li of the triangle ti from the base plane Q, i.e.
Li : ti ⊂ Q 7→ <.

Definition 3.6.3. The lifted triangle tli is lower than the triangle tlj, if there exists
at least one point in the base plane q ∈ ti ∩ tj such that Li(q) < Lj(q).

For the embeddable complexes the notion of ”lower” is well defined, because the
triangles intersect on the edges only. For the non-embeddable complexes this defini-
tion does not make a lot of sense and the rest of the proof does not work.

Let us consider the set Ll that consists of the lifted triangles tli with the following
properties:

• the LP variable xi of this triangle is non-zero, xi > 0

• there is no triangle tlj lower than tli such that xj > 0

We will show now that the 2-chain Ll corresponds to a valid triangulation by the
lemma 3.3.2. Indeed, Ll corresponds to a continuous piece-wise linear function over
the domain Q.

• Ll does not cover any area of the domain twice by construction.

• Ll is continuous by the LP constraint (3.4.4).

• Ll fits the boundary condition by the constraint (3.4.3).

Therefore, the triangulation represented by Ll can be an integer solution y of the
linear program. The initial solution x can be split into y and some other solution x1

similar to the previous section,

x = (1− c1)x1 + c1y,

where c1 = min(xi|ti ⊂ Ll).
The proof that in this case the initial solution cannot be optimal is given in the

previous section.
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In the previous chapters we considered the problems that could be reduced to the
2-dimensional minimal discrete surfaces on the 3-dimensional spatial complexes. In
the rest of the thesis we will be interested in 1-dimensional minimal curves on the
piece-wise linear triangulated surfaces (meshes).

In this chapter we present practical methods for computing both exact and ap-
proximate geodesic (shortest) paths on triangular meshes. These paths typically cut
across faces in the mesh and so are not directly found by graph algorithms (such as
Dijkstra’s shortest path algorithm). The exact version of the algorithm is based on the
interval propagation idea introduced by Mitchell, Mount, and Papadimitriou 1, and
has the same O(n2 log n) worst case time complexity. The fastest approximate version
works in roughly O(n log n) time and still guarantees computing exact geodesics on
any subdivision of a plane. The desired tradeoff between the time complexity and
the error of the approximation can be achieved by setting the interval simplification
threshold. The algorithms were evaluated on meshes with up to 100,000 vertices.

Many mesh-processing algorithms require a subroutine that efficiently computes
geodesic paths between vertices on a triangular mesh. When parameterizing a com-
plicated mesh, one often breaks it up into a set of charts; (See, for example, [37] for
a manual chartification system, and [49] for an automatic one). In these cases, the
parameterization can be done more efficiently (with less distortion and better packing
efficiency) when the charts are bounded by geodesic paths. Geodesic paths also are
needed when segmenting a mesh into subparts, such as done in [33]. In mesh editing
systems, such as [36], one desires straight boundaries to define the bounding extents
of editing operations.

Many mesh processing algorithms require geodesic distances between vertices in a
triangular mesh. For example, radial-basis interpolation over a mesh requires point to
point distances. This type of interpolation is used in numerical applications, such as
skinning [51], and in mesh watermarking [45]. Shape analysis algorithms such as [24]
use Morse analysis of a geodesic distance field. Mesh parameterization methods [54]
based on isomap type algorithms [53] are also driven by point to point geodesic
distances.

In this chapter, we first give a simplified interpretation of, and describe a simple
way to implement, the “MMP exact geodesic algorithm” [40]. The MMP algorithm
has worst case running time of O(n2 log n) but runs much faster on most meshes.
The original description of the MMP algorithm is quite complicated, and has never
been implemented as far as we can tell. Our simplified interpretation makes an
implementation very straightforward. In particular it involves no special handling of
saddle vertices 2, and guarantees no gaps in the distance field due to numerical errors.

The MMP algorithm splits up each edge on the mesh into a set of smaller intervals
over which exact distance computation can be dealt with atomically. In the second

1Further in the text their algorithm is referred as MMP.
2A saddle vertex is a vertex for which the sum of the angles of the adjacent mesh faces is more

than 2π.
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part of this chapter, we explain how approximate geodesics can be computed by
running a version of MMP that skips these edge-splits. This approximate approach is
(essentially) of comparable complexity to Dijskstra. Our approximate algorithm also
has the property that it computes the exact geodesics if given a flat (planar) mesh.

4.0.2 Related Work

An exact geodesic algorithm with worst case time complexity of O(n2) was de-
scribed by Chen and Han [10]. This algorithm was partially implemented by Kaneva
and O’Rourke [31]. We show in our results section that our exact implementation
runs many times faster than that method.

An exact geodesic algorithm with worst case time complexity of O(n log2 n) was
described by Kapoor [32]. This is a very complicated algorithm which calls as “sub-
routines” many other complicated computational geometry algorithms. It is not clear
if this algorithm will ever be implemented.

Approximate geodesics (with guaranteed error bounds) can be obtained by adding
extra edges into the mesh and running Dijsktra on the one-skeleton of this augmented
mesh [30], [38]. These algorithm requires the addition of numerous extra edges to
obtain accurate geodesics. The algorithms described in [30] relies on the selective
refinement, and therefore significantly depends on the first approximation path found.
If this approximation is far from the actual solution, the subdivision method might
converge to the local minimal path (instead of the global geodesic one), or it might
take a very large number of iterations until the refinement area moves to the vicinity
of the actual geodesic and the process converge.

Approximate geodesics are computed by Kimmel and Sethian [34] using an algo-
rithm that runs in O(n log n) time. The approximate geodesics found by this method
can be quite inaccurate, even for planar meshes. We show in our results section that
our approximate geodesic computation is much more accurate than that method.

Polthier and Schmies [44] describe a different definition of a geodesic path on
meshes using a notion of “straightest” instead of “shortest”. This notion may be
inappropriate for some applications of geodesics.

4.1 Exact Algorithm

Our implementation of the exact algorithm is based on a very simple idea. Let us
fix the source vertex on the mesh. The minimal distance from the source is a scalar
function that is defined for every point on the surface of the mesh. In particular,
for every edge ei, that is parameterized by the parameter x, the minimal distance
function Dei

(x) is well defined.
Let us consider two edges e1 and e2 that belong to the same face. If the shortest

path from some point x2 ∈ e2 goes through the point x1 ∈ e1, then the distance func-
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Figure 4.1: If the shortest path from the point x2 of the edge e2 crosses the edge e1,
the distance function in this point can be computed by theorem (4.1.1).

tion in the point x2 can be simply computed as De2(x2) = De1(x1)+∆(x1, x2), where
the ∆(x1, x2) is Euclidean distance between these points across the face. Because this
path is the shortest possible one, we can generalize this observation.

Theorem 4.1.1. If the shortest path from the point x2 ∈ e2 goes through the edge e1

that belongs to the same face (fig. 4.1), then

De2(x2) = min
x∈e1

(De1(x) + ∆(x, x2)) (4.1.1)

Based on this theorem, we can write a simple algorithm (table 4.1) that is guaran-
teed to find all the distance functions on the edges correctly. This algorithm works for
any convex or non-convex triangulated mesh with or without boundary. If the queue
is sorted by the minimal value of the edge distance function, we have a Dijkstra-style
propagation of the distance function across the surface.

The algorithm described above is a close relative of many algorithms developed
for this problem before. On the one hand, it can be considered to be a continuous
version of the discrete subdivision algorithm described in [38]. On the other hand,
this interval-based algorithm is also in the heart of [40].

4.1.1 Back-tracing the shortest path

When all the distance functions on the edges are computed, tracing the shortest
path is very simple. Any geodesic path is piece-wise linear curve with nodes on the
edges of the initial mesh. Geodesics can be traced backward step-by-step by finding
the next appropriate nodes. Let us take some initial node q that belongs to face f
with edges e1, e2 and e3. If q does not belong to any of the edges, the next node of
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algorithm FindMinimalDistanceFunctions

1. Compute distance functions for all edges that belong to the same faces as
source. Put these edges in the queue. Define distance functions to be infinite
for the rest of the edges.

2. until the queue is empty

3. Remove the next edge e from the queue.

4. for all edges ei that belong to same faces as e.

5. Compute D̂ei
(x) according to (4.1.1) for all x ∈ ei

6. Update distance function at ei as Dei
(x) = min

(
Dei

(x), D̂ei
(x)

)

7. If the function Dei
(x) is changed, put the edge ei on the queue.

8. end for

9. end until

Table 4.1: Simple algorithm for computing minimal distance functions on the edges.

the shortest path is point x̂ that minimizes the distance function

min
x∈{e1,e2,e3}

(D(x) + ∆(x, q)) (4.1.2)

Otherwise, if q ∈ e1, the next node of the shortest path x̂ minimizes

min
x∈{e2,e3,e4,e5}

(D(x) + ∆(x, q)) , (4.1.3)

where e4, e5 are the edges of the other face adjacent to e1. We can keep tracing the
shortest path until we hit the origin.

4.1.2 Intervals of optimality

To derive the general representation of the distance functions Dei
(x), we briefly

review the interval theory developed in [40].
First, let us consider convex polygons without boundary. The shortest path

from some point on the edge to the source crosses some set of faces F = {fi}. It
can be shown that on a convex polygon with no boundary the shortest path never
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Figure 4.2: When the faces are unfolded on the plane, the shortest path from the the
source (or pseudo-source) s to any point on the interval of optimality p is represented
as a straight line. c is the distance from the (pseudo-)source to the edge origin, x is
a parameter along the edge.

goes through the vertices of the polygon, except for the source vertex and, possibly,
geodesic endpoint. We can unfold this sequence of faces to lay them flat on a plane. In
this unfolding, the shortest path must be a straight line. In fact, the sets of points on
an edge whose shortest pathes go through the same sets of faces, form the continuous
intervals of optimality on the edge (fig. 4.2).

Using the cosine theorem, the distance function on such an interval p can be
represented as

Dp⊂ei
(x) =

√
x2 − 2xc cos θ + c2, (4.1.4)

where x is a distance from the origin of the edge, c is a distance from the source to
the edge origin and θ is an angle is the angle between the edge and vector −→c .

In the presence of a boundary, or when the polygon is non-convex, shortest passes
can go through the vertices or follow edges of the polygon. In this case, other vertices
can act as pseudo-sources for the intervals of optimality and one more parameter is
needed to represent the distance function on the interval.

Dp⊂ei
(x) = d +

√
x2 − 2xc cos θ + c2, (4.1.5)

where d is a distance from the source to the pseudo-source, c is now a distance from
the pseudo-source to the origin of the edge. The distance function on the interval can
therefore be uniquely defined by three parameters (d, c, θ).

In general, the distance function on the edge is a continuous piece-wise smooth
function that consists of the interval functions of the type (4.1.5).

4.1.3 Interval propagation

Given the distance function De1 on the edge e1, the propagated distance function
on the adjacent edge e2 is defined by formula (4.1.1). It is possible to solve this prob-
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Figure 4.3: When interval p propagates onto the adjacent edge, it can create up to
three new intervals. Central intervals Ic has its (pseudo-)source located in the same
point sp; left and right intervals Il and Ir have their (pseudo-)sources located in the
points sl and sr respectively.

lem algebraically, using the distance function representation (4.1.5), but it is much
simpler to employ geometrical reasoning. We can propagate intervals independently
and denote as De2|p⊂e1(x2) the distance function that is created on the edge e2 by the
interval p ⊂ e1,

De2|p⊂e1(x2) = min
x∈p⊂e1

(De1(x) + ∆(x, x2)) . (4.1.6)

The equation (4.1.1) can be restated as minimum over the interval propagated
functions De2,p,

De2(x2) = min
p⊂e1

De2|p⊂e1(x2). (4.1.7)

The interval propagation function De2|p⊂e1(x2) can be computed from the geo-
metrical reasons as follows. Part of the edge e2 can ”see” the pseudo-source sp of the
interval p directly through the interval p. Obviously, for the points in this region, the
shortest path to the pseudo-source is a straight line. Therefore, this whole region can
be represented as an interval with the pseudo-source sp (fig. 4.3).

The shortest path of the points to the ”left” side of this region have to pass
through the ”left” end of the interval p. That is why these points can be represented
as an interval with new pseudo-source sp,l. Similarly, the points on the ”right” side
of the edge can be represented as an interval with new pseudo-source sp,r.

Summarizing, the interval propagation function De2|p⊂e1(x2) consist of up to three
intervals with different pseudo-sources. In theory, the shortest path cannot bend on
the edge (it can bend only at the saddle or boundary vertex) and construction of
the ”left” and ”right” intervals might seem unnecessary in many cases. However, by
introducing these additional intervals, we achieve two goals simultaneously. First, we
do not have to come up with a special treatment of the saddle and boundary vertices.
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Second, and more important, this trick provides numerical stability of the algorithm
and covers small gaps in the ”wavefront”.

4.1.4 Interval intersection

In order to compute the minimum of two interval functions in formula (4.1.7) and
algorithm (4.1), we need to find the points where two interval functions are equal to
each other. Unlike the interval propagation, this operation is easier to do algebraically.
Let us say that two different functions D1(x) and D2(x) are defined on the edge e.
We want to find such points x̂ that D1(x̂) = D2(x̂). When the pseudo-sources are the
same distance from the initial source, d1 = d2, there is one intersection at most.

x̂ =
c2
2 − c2

1

2 (c1 cos θ1 − c2 cos θ2)
(4.1.8)

In general, when d1 6= d2, we have to solve a quadratic equation

Ax̂2 + Bx̂ + C = 0, (4.1.9)

where

A = P 2 −D2, B = PQ− 2c1 cos θ1D
2,

C = Q2/4− c2
1D

2, P = c1 cos θ1 − c2 cos θ2,

Q = D2 + c2
1 − c2

2, D = d1 − d2.

4.1.5 Interval-based algorithm

Putting it together, we can now derive final interval-based algorithm. In this
algorithm, each edge distance function Dei

(x) is represented as a list of intervals Lei
.

Therefore, when we propagate an interval onto another edge, we create a new list
of intervals that consists of up to three intervals (section 4.1.3). When we find the
minimum of two distance function, we intersect two lists of intervals and take the
smallest ones (section 4.1.4).

Obviously, all the edges that belong to the same faces as the source, can be seen
from the source directly and therefore have only one interval each.

The interval propagation algorithm can be seen in the table (4.2). We maintain
the interval priority queue sorted by the minimum value of the distance function
on the interval. This queue is described in [40] in order to maintain a Dijkstra-style
properties of the interval propagation. Computing the minimum value of the distance
function on the interval is straightforward and omitted here for the sake of space.

In our implementation of the algorithm, each interval also has a bit that shows
the direction of the interval propagation. Instead of propagating the interval into
two directions, we propagate it only into one direction. In practice it makes the code
faster, because the interval propagation procedure is computationally expensive.
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algorithm IntervalPropagation

1. Represent each edge that belongs to the same face as source vertex by one
interval. Put these intervals in the priority queue.

2. until the queue is empty

3. Remove the next interval p from the queue. It belongs to an edge e.

4. for all edges ei that belong to same faces as e.

5. Compute propagated interval list L̂ei,p.

6. Update the interval list of the edge at ei as Lei
= min

(
Lei

, L̂ei

)
.

7. Remove deleted intervals from the priority queue.

8. Add created intervals to the priority queue.

9. end for

10. end until

Table 4.2: Interval-based algorithm for computing minimal distance functions on the
edges. When the interval list is updated, some intervals might be deleted and/or
created.

4.1.6 Properties of the interval-based algorithm

Our interval-based algorithm is based on the algorithm developed in [40], but has
several crucial differences.

We do not have to worry about saddle vertices and boundary vertices, which
otherwise require additional treatment. In the original algorithm, every saddle ver-
tex became a pseudo-source of intervals. Similarly, it was reported by [31] about
Chen&Han algorithm, that such vertices required significant additional processing
time in their implementation of the shortest path algorithm.

Even more important property is robustness. When the intervals are propagating,
some of them become very small. The processing of the small intervals can require
a lot of time and memory, and become a source of numerical instability. However,
in MMP algorithm, it was not possible to clip small intervals, because it could result
in large gaps when the intervals are propagated. By propagating side lobes of the
intervals, we guarantee that all the gaps are covered in the very beginning.

This robustness property gives us an opportunity to construct a wide class of the
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approximate algorithms. We can simplify the intervals when they are small or when
two neighboring intervals are similar. By construction of our algorithm it will never
lead to gaps when the intervals are propagated.

Also, in contrast to [40], we do not have to consider edge-face pairs and can treat
each edge independently of where the signal comes from. This simplifies algorithm
implementation.

4.2 Merge simplifications

Unfortunately, the exact algorithm is in the worst case quadratic in memory and
n2 log n in time [40]. When the mesh has hundreds of thousands of vertices, this
non-linear growth can become a bottleneck. The reason of such a growth is that far
from the source intervals become smaller and smaller. In many cases, a set of small
intervals can be approximated by a single interval with high precision.

In both MMP and Chen&Han algorithms, even the slightest modification of any
interval could lead to a potential distance function gap somewhere on the mesh. On
the contrary, our algorithm remains stable after interval approximation, which is
demonstrated in the following lemma.

Lemma 4.2.1. Let us take the results of the exact algorithm, pick one of the edges,
ek, and one interval pm on this edge. Let us say that the distance function on this
interval, Dpm⊂ek

(x) is defined by the constants d, c, θ. Let us also define a new distance
function D̄pm⊂ek

(x) by changing these parameters arbitrarily and re-propagate the
interval through the mesh. Then the resulting distance field in any point of the mesh
will not change more than ε, where

ε = max
x
|D̄pm⊂ek

(x)−Dpm⊂ek
(x)|.

To make a bridge to our flat-exact algorithm developed in the next chapter, here we
describe a possible simplification algorithm that is based on interval merging. Because
of the perfect results shown by the flat-exact algorithm, we did not implemented the
merging algorithm described here.

The easiest merging strategy is to check the neighbors of the interval before its
propagation, and if their distance function are approximated by its distance function
well enough, merge them together.

There are still two issues remain. First, after a chain of simplifications the algo-
rithm can come to the loop, i.e. some interval become modified by its own ”children”
intervals. Second, simplifications can create local minimums in the distance field of
the mesh and the tracing-back algorithm that computes geodesics can stuck in such
a minimum.

It is possible that both issues can be handled by applying some restrictions on the
simplification rules. We did not find the set of restrictions that is elegant and fast to
compute; that is why we resolve both issues by the following method.
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Figure 4.4: Comparison of the approximate geodesics algorithms for the planar mesh,
which is subdivision of a triangle (top). The source is located in the upper corner of
the mesh. Kimmel-Sethian algorithm is on the right, our flat-exact one is on the left.
Geodesics are shown in green, iso-distant curves are shown in blue.

4.2.1 Dependence DAG

In our algorithm, every interval is a result of the propagation of another interval
(for mathematical accuracy, we have to mention that the intervals adjacent to the
source vertex are the results of the propagation of this vertex). We can consider a
dependence graph. A vertex of this graph corresponds to an interval of the mesh,
and the edges of the graph are directed from the parent intervals to their children.
At every stage of our exact algorithm, this directed graph is acyclic (DAG). The idea
is to maintain such a dependence DAG for approximation algorithm.

In the exact algorithm, an interval has only one parent by construction. The only
difference of the approximation algorithm is that one interval can have many parents.
Whenever the intervals are merged, the resulting interval inherit all their children and
parents. Similarly, whenever we create new interval that covers the area of the edge
that belonged to some other interval, it has only one parent but inherits all children
of this previous interval.

We merge or propagate intervals only if the dependence graph remains acyclic.
This rule solves the cycling problem automatically. By back-tracing the geodesics only
from children to parents, we make sure that the tracing algorithm always converge to
the origin.

Checking whether the resulting graph remains acyclic in theory requires breadth-
searching the whole graph, and therefore ruins the complexity of our algorithm. How-
ever, in practice this check is extremely fast, because most of the time we do not have
to consider the entire graph. The updated intervals are located on the frontier of the
distance propagation wave, i.e. they are located very close to the leaves of the DAG.
Therefore, if the graph remains acyclic, the search will stop after processing the few
descendants of the updated interval.
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Figure 4.5: Edge e3 with source s is used to compute the propagated distance function
in the vertex v3.

4.3 Flat-exact algorithm

Though interval simplification improves both time and memory complexity of the
algorithm, it is even more complicated to implement this algorithm from scratch than
the original exact algorithm. That is why we focused on the approximation algorithm
that is also very simple to implement. Though it can be considered as an extreme
case of the interval simplification described in the previous chapter, this algorithm
can also be related to algorithm described in [34].

The following section describes an approximation algorithm where each edge is
represented by a single interval. Now terms ”edge” and ”interval” are equivalent and
we will call interval parameters to be edge parameters.

In the extreme case when the entire mesh is located in one plane, the resulting
distance function will coincide with the exact one. Because of this reason, we call the
simplification to be flat-exact. This property is extremely important in practice. For
example, figure (4.4) shows the planar mesh that was created as a regular subdivision
of a triangle with the source in the upper corner of the mesh.

The main structure of the interval-based algorithm remains unchanged. Initially,
one interval is created for all edges that belong to the same faces as the source. Then
the intervals are propagated by a very simple rules across the mesh.

4.3.1 Simplified interval structure and propagation rules

Another simplification we make is that the distance field on the whole mesh can
be represented by the distances values in the vertices of the mesh. In particular, the
distance function on the edge is defined by its values in the vertices of the edge, D(v1)
and D(v2). The distance function on the edge is still of the form (4.1.4), that has
three parameters (d, c, θ). In order to compute them from the two vertex distance
values, from now on we consider d = 0, i.e. we ignore the pseudo-sources. After this
assumption, the one-to-one correspondence between the (c, θ) and (D(v1), D(v2)) is



Chapter 4: Geodesics 64

 

v1 

v3 

e34

v2 

v4 
v5 

e12 

e24 

e13

e32

v3 

v2 

v4 
v5 

s345 

s234 

Figure 4.6: Construction of the dependance DAG. The vertex v3 is updated from the
edge e12 (red arrow), the blue arrows show the desirable parent-children links. On
the right, two possible pseudo-sources for the edge e34 are located symmetrically to
this edge.

trivial

D(v1) = c, (4.3.1)

D(v2)
2 = c2 + L2 − 2cL cos θ, (4.3.2)

where L is the length of the edge. Our new construction also implies that the distance
function is continuous on the 1-skeleton of the mesh.

The propagation rules change as follows. Given the edge e3 to be propagated,
we first define the distance in the opposite vertex of the triangle (fig. 4.5). If the
quadrilateral (s, v1, v3, v2) is convex, i.e. the opposite vertex can ”see” the source
s of the interval, the propagated distance D̂(v3) is computed as Euclidean distance
between two points, D̂(v3) = d(se, v3). Otherwise, the distance is computed along the
edge, D̂(v3) = min(D(v1) + |e2|, D(v1) + |e2|).

If new distance in the vertex v3 is smaller than the old one, we update all the
edges adjacent to v3 and put them in a priority queue. The simplified algorithm is
represented in the table 4.3.

4.3.2 Dependance DAG for the simplified algorithm

In order to avoid cycling, we use the same idea of the dependance DAG as before.
Each edges of the is represented by a vertex in the DAG. The dependence information
is now maintained as follows. Let us say that the vertex v3 has its distance updated
from the edge e12 that belong to the face f123 (fig. 4.6). The distance function over
all the edges adjacent to v3 have now been affected by e12. So to avoid cycling in the
distance propagation, we add a pointer from e12 to all of the edges adjacent to v3.

During shortest path back-tracing, we will only trace paths that go towards an-
cestors edges, as recorded in the DAG. If an edge has no ancestor edges that it shares
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a face with, then we only trace the path back to one of its vertices. So, when v3 is
updated to allow as much edge to edge back-tracing when possible we would also like
to other DAG edges.

We do this by ”estimating” the direction to the source and adding extra depen-
dencies into the DAG as follows. Consider edge e34, and assume that the weights of
both v2 and v5 are finite. To assess direction of the source we compute the parameters
(c35, θ35) and find the positions of two possible pseudo-sources, s234 and s345. Then we
also assess how well these pseudo-sources approximate the distance function values
in the vertices v2 and v5.

Q234 = |D(v4)− ‖s234 − v4‖|+ |D(v3)− ‖s234 − v3‖| ,
Q345 = |D(v4)− ‖s345 − v4‖|+ |D(v3)− ‖s345 − v3‖| .

If Q234 < Q345, we set e32 and e24 as parents of e34 otherwise we set e35 and e54 to be
parents of e34.

If both of the vertices v2 and v5 have infinite weights, then no extra DAG infor-
mation is added, and back-tracing will have to go through edges in the graph.

Again, the initial vertex v3 is updated only in case that after this update the
resulting dependency graph remains acyclic.

Finally, we want to mention that the situations when the dependency graph may
become cyclic are very rare and have only been seen in hand-crafted examples.

4.4 Results

In order to test the algorithms, we compared them with several existing ones. The
fastest (and least precise) algorithm for approximate geodesic path computation is
Dijkstra shortest path that runs on the edges of the mesh. We also implemented an
acute version of the approximation algorithm proposed by Kimmel and Sethian [34]
and used publicly available implementation of Chen and Han’s algorithm by Kaneva
and O’Rourke [31](due to unknown implementation reasons, we were unable to test
this algorithm to all the meshes we have). The algorithms were tested on an Athlon
1.5GHz machine with 2Gb of memory.

To assess the relative error, we used the following test. Given the mesh and a
randomly selected source vertex, we computed the shortest paths to all vertices of
the mesh. The relative error was computed as a sum over all vertices

E =
1

Np

∑
i

∣∣∣∣
|p̄i| − |pi|
|pi|

∣∣∣∣ , (4.4.1)

where |pi| is the length of the shortest path obtained by the exact algorithm, |p̄i|
is the length of the shortest path obtained by an approximation algorithm, and Np is
the total number of the computed paths.
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algorithm SimplifiedIntervalPropagation

1. Compute the distance for all vertices adjacent to the source. Put all edges
that belong to the same faces as source in the priority queue.

2. until the queue is empty

3. Remove the next edge e from the queue.

4. for both faces fi adjacent to e.

5. Consider the vertex v opposite to e.

6. Compute updated distance function D̂(v).

7. Update the dependence graph.

8. if D̂(v) < D(v) and the dependence graph is acyclic

9. D(v) = D̂(v)

10. Put all edges adjacent to v in a queue.

11. end if

12. end for

13. end until

Table 4.3: Simplified algorithm for computing minimal distance function.

The results of both exact and flat-exact algorithms are shown in figures 4.8, 4.4.
One of the interesting effects that we observed with our exact algorithms, is that

it is usually works much faster for the models with a lot saddle vertices and gives the
slowest performance on the saddle objects (compare sphere2 vs. parasaur models).
This happens because on the convex models the intervals do not eliminate each and
become smaller and smaller while the ”wavefront” propagates further from the source.

The flat-exact algorithm runs a little bit slower than Kimmel-Sethian algorithm
because of the necessity to maintain the DAG structure, but gives significantly better
results.

The only limitation of the flat-exact algorithm that we could find can be observed
when the two distance ”wavefronts” meet on the opposite sides of some obstacle. In
this case our one-interval simplification rule oversimplifies the distance field and the
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Figure 4.7: Limitations of our flat-exact algorithms. In the areas where several wave-
fronts meet together, the one-interval approximation of the edge distance function
leads to geodesic distortion. Enlarged area of the bunny head is shown in the middle
(flat-exact). Result of the exact algorithm is shown to the right. Geodesics are shown
in green, iso-distance curves are shown in blue.

geodesics are visibly distorted (fig. 4.7).
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Figure 4.8: The results of the our exact (top row) and flat-exact (bottom row) al-
gorithms are shown on the cat, bunny, and dragon models (366, 10000, and 50000
vertices respectively). Geodesics are shown in green, iso-distant curves are shown in
blue. In the bunny model, the source is on the back side.
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model (# of ver-
tices)

Dijkstra Kimmel-
Sethian

Chen-Han Our Ex-
act

Our Flat-
exact

cat (366) 0/6.1 0.011/2.0 5.0/0 0.12/0 0.015/0.27
plane (561) 0/7.3 0.015/0.4 5.2/0 0.031/0 0.016/0
sphere1 (1562) 0.01/7.2 0.047/0.89 11.0/0 2.56/0 0.063/0.02
sphere2 (6242) 0.015/7.2 0.203/0.82 - 40.1/0 0.21/0.01
handmale (7609) 0.023/5.7 0.26/2.6 - 11.5/0 0.34/0.24
bunny (10000) 0.025/5.3 0.37/1.8 44160.0/0 12.5/0 0.41/0.15
buddhaf (14990) 0.06/4.8 0.62/3.7 101500.0/0 10.9/0 0.85/0.66
parasaur (21935) 0.082/6.3 0.78/1.1 - 45.5/0 0.86/0.1
rockerarm (40177) 0.16/5.7 1.6/0.34 - 235.0/0 1.7/0.02
horse (48500) 0.21/4.9 1.9/0.4 - 343.0/0 2.2/0.05
dragon (50000) 0.23/6.4 2.3/2.0 - 64.0/0 2.7/0.19

Table 4.4: Time/error statistics for the geodesics algorithms. Time is given in seconds,
the relative error is computed by 4.4.1 and shown in percents.
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In this chapter we investigate one more problem that can be stated as a problem
of finding the globally minimum curve on the surface. It turned out that the duality
introduced for the globally minimum surfaces can be also used in this case.

Complex meshes tend to have intricate, detailed silhouettes. In this chapter we
propose two algorithms for extracting a simpler, approximate silhouette from a high-
resolution model. Our methods preserve the important features of the silhouette by
using the silhouette of a coarser, simplified mesh as a guide. Our simple silhouettes
have significantly fewer edges than the original silhouette, while still preserving its
appearance.

Silhouettes play an important role in several areas of computer graphics, such as in-
teractive visualization, non-photorealistic rendering and shadow computation. There
are several systems that draw silhouettes in various ways to help depict geometric
models ([20, 21, 23, 39], and many others). Unfortunately, many high-resolution ge-
ometric meshes often have overly complicated silhouettes. For example, see second
column of the figure 5.5, which shows the silhouette of the models as viewed from
both the eye position as well as an auxiliary side view; these silhouettes contain a
large number of loops, many intertwined loops, and loops that are quite wiggly. This
silhouette complexity is usually unnecessary and sometimes costly, both in terms of
speed and quality of rendering algorithms applied on silhouette edges. In this thesis,
we propose methods for computing ”approximate silhouettes” that attempt to repre-
sent the most salient features of the silhouette, while suppressing the extra detail and
complexity. Our basic approach is to first compute the actual silhouette of a smoothed
coarse geometric mesh that approximates the original model (see figure 5.5, column
1). This ”coarse silhouette” typically has a simpler structure. Our goal is to create a
silhouette for the fine mesh that is similar in structure to the coarse silhouette. This
results in a high resolution, but ”simple” silhouette (see figure 5.5, cols. 3,4). We
have explored a few approaches, and in this thesis we describe two different methods
that present various tradeoffs.

5.1 Previous Work

There have been a number of interesting approaches to efficiently compute sil-
houettes on models. Sander et al. [48] build a spatial hierarchy that allows one to
quickly dismiss subsets of mesh edges as being non-silhouette. Barequet et al. [3] and
Hertzmann and Zorin [23] describe methods that also build a hierarchy, but do their
computation in a dual space. Barequet et al. [3] also describe how their method can
be used incrementally to more quickly recompute silhouettes under small viewpoint
changes. Markosian et al. [39] propose a method to find silhouettes by tracking them
from frame to frame as well as randomly testing for the creation of new silhouette
loops. This method tends to find the larger loops more reliably. Northrup et al. [42]
address the simplification of the silhouettes in the image space by linking the vis-
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ible segments into the chains, thus resulting in a simpler, approximate silhouette.
Hertzmann and Zorin [23] describe an elegant way of finding simple approximate
silhouettes on meshes. Silhouettes found by this method are quite smooth and are
always comprised as a set of non-intersecting loops. In their method, the silhouette
edges all span across mesh triangles and are not original mesh edges. In our methods
the silhouette is actually composed of actual mesh edges. Furthermore, redundant
short loops are usually removed from our computed simple silhouettes.

5.2 Approach

The input to our system is a high-resolution fine mesh. From this mesh, we create a
progressive mesh [25]. We then extract a simpler, coarser mesh, and apply smoothing
on it in order to prevent artificially generated silhouettes. During runtime, for a given
viewpoint, the objective is to create a silhouette for the fine mesh that is similar in
structure to that of the coarse mesh. In this section we will describe two approaches to
achieve this objective. In particular we will describe one method in which the set of the
edges in the coarse silhouette are constrained to be some subset of the actual silhouette
edges. In this method, loops from the actual silhouette are iteratively included into
the simple silhouette as long as they sufficiently match the coarse silhouette. The
second method constrains the simple silhouette to be structurally similar to the coarse
silhouette. For each coarse-silhouette loop, a corresponding loop is found on the
original mesh. With this second approach, it may be necessary to sometimes include
non-silhouette edges in the simple silhouette. Next we will describe how we decompose
the silhouette into loops - a sub-step that is required for both methods, - and then
we present the two silhouette extraction methods.

5.2.1 Loop decomposition

On a smooth surface, the silhouette is comprised of a set of disjoint closed loops.
On a triangle mesh, these loops can intersect (for example, a silhouette vertex can
be incident to four silhouette edges) creating a slightly more complicated structure.
Our first step will be to take a complicated silhouette and describe it as the union of
(possibly intersecting) loops. Given a viewpoint, a silhouette edge is an edge that is
adjacent to one front-facing triangle and one back-facing triangle. Silhouette edges
are directed edges, where the left adjacent face is front-facing. A silhouette vertex
is a vertex adjacent to a silhouette edge. In particular, on a triangle mesh, the
faces around a silhouette vertex can be partitioned into an alternating set of front-
facing and back-facing triangles, thus the number of silhouette edges adjacent to a
silhouette vertex must be even. Since each silhouette vertex has an even ”silhouette
edge valence,” we can decompose the silhouette into a set of loops. We desire a
decomposition that results in loops without self-intersections. We achieve this by
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(a) (b)

Figure 5.1: Fine silhouette (left) and simple silhouette (right) computed using the
loop picking algorithm. The simple silhouette consists of only four loops.

starting with an arbitrary vertex and walking along the directed silhouette edges
until we get back to the original vertex, thus closing the loop. We repeat this process
until all silhouette edges have been assigned to loops. In order to accelerate the
walking algorithm, we use a hash table of directed silhouette edges indexed by the
source vertices [48].

During this walk, we may get to intersections where we have pick between two
or more edges to follow. When that happens, we just arbitrarily pick any one of the
possible edges. If at any point during a walk we encounter a sub-loop, we ”detach”
it and store it as a separate loop. This method does not produce unique loop de-
composition, as it is sensitive to the location where the walk starts and the decisions
made at silhouette intersections. However, this greedy approach is extremely fast,
and by snapping off sub-loops, it achieves our objective of constructing loops without
self-intersections.

5.2.2 Loop picking

In this approach, we first extract the silhouette of both the coarse and fine meshes
using the algorithm from [48]. We then perform loop decomposition on the fine
silhouette, yielding a set of silhouette loops. Our goal is to pick a subset of the fine
silhouette loops that minimizes an error metric based on distance to the coarse mesh
silhouette. More specifically, the metric is the sum of the squared distances between
each coarse silhouette vertex, and its closest point on the fine silhouette. The loops
are picked one by one in greedy fashion, minimizing this metric. We terminate when
the error gets below a specified threshold that is proportional to the amount of detail
that is desired. In order to do this efficiently, we first pre-compute the distances from
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Figure 5.2: Coarse and fine bands are shown with colored triangles on the bunny
modes. In order to show the mapping between models, each triangle on the coarse
mesh (left) has the same color as corresponding fine triangles on the fine mesh (right).

every coarse silhouette vertex to its closest vertex on each of the fine silhouette loops,
and store these distances in a 2D array. When evaluating a candidate loop, we just
do look-ups to this array to compute the error. Applying the above algorithm results
in a set of long silhouette loops that resemble the silhouette of the coarse mesh. Short
loops and loops that are not geometrically close to a coarse mesh silhouette edge are
not picked because they do not significantly decrease the error. Very short loops are
pruned and discarded a priori in order to make the search more efficient. Figures
5.1 and 5.5(col. 3) show examples of simple silhouettes extracted using the above
algorithm. For performance results, refer to the Section 5.3 .

5.2.3 Method B: Loop mapping

In the previous method, we started with the fine silhouette, and selected loops
based on their proximity to the coarse silhouette. In this method, we instead start
with the coarse silhouette, and try to create loops over the fine mesh that resemble
the coarse loops. For every loop of the coarse silhouette we find a corresponding
loop on the fine mesh. The goal of this method is to retain all major features of the
silhouette and ensure continuity when the model is rotated. By meeting this goal we
do not guarantee that all edges of the fine loop belong to the fine silhouette.

The first step of this algorithm is to decompose the coarse silhouette onto non-
self-intersecting loops using the method described in Section 5.2.1. We also need
a mapping between coarse and fine models, i.e. for each fine triangle we need to
know the corresponding coarse triangle (figure 5.2). To create such a mapping, we
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Figure 5.3: One loop of the coarse silhouette of the gargoyle (left) and its mapping
on the fine mesh (right).

simplify the mesh using half-edge collapses. Each coarse mesh edge corresponds to the
shortest path of fine mesh edges between the two analogous vertices on the fine mesh.
Therefore, each face can then be trivially mapped to a set of faces on the fine mesh. We
define the coarse band of a coarse loop as all triangles that have at least one common
vertex with this loop. The coarse loop splits the coarse band into two parts, internal
and external. The outer boundary of the internal part of the band is called internal
boundary, the outer boundary of the external part of the band is called external
boundary. The internal and external boundaries of the coarse band could consist of
more than one loop, but this does not affect our algorithm. We can map the coarse
band from the coarse mesh onto the fine band on the fine mesh (figure 5.2). Note,
that internal and external boundaries of the coarse band are mapped to the internal
and external boundaries of the fine band. Our goal is to approximate the coarse loop
with the best possible loop in the fine band. To do this, we find a minimal-cost loop
of edges over the fine mesh that separates the internal and external boundaries. In
order to measure the cost of an edge, the simplest approach would be to set its weight
to be equal to its length. In this case, we will be looking for the shortest loop possible.
To ensure that the fine loop is close to the fine silhouette, we multiply the weights of
the fine edges that are on the fine silhouette by the small parameter . Increasing the
value of this parameter makes the loop smoother and decreasing forces it to include
more edges from the actual silhouette. In our experiments we set α = 0.1. Figure 5.3
shows a loop from the coarse silhouette and its corresponding loop on the fine mesh.
Now we have to find a minimal path on the weighted graph that partitions it into
two parts. This is a standard problem that can be easily solved with the minimal
cut approach. First, we construct the dual graph 1 (figure 5.4). That is, we associate

1compare to section 2.6.1
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with each face of the band fi a dual vertex Fi. We also create a single source vertex
R and a sink vertex K. With each non-boundary edge ei bounding two faces fj and
fk, we associate a dual edge Ei that connects Fj and Fk. For each edge ei belonging
to the external boundary we associate a dual edge Ei which connects the sink K with
the single face that ei bounds. For each edge ei belonging to the internal boundary
we associate a dual edge Ei which connects the source R with the single face that ei

bounds. We set the capacity of each dual edge the weight of the associated primal
edge c(Ei) = wi. We define a cut of the dual graph as a partition of the vertices Fi

into two sets F and Q with R ∈ F and K ∈ Q. The cost of a cut is the sum of the
capacities of the edges between these sets. Similar to section 2.6.1, it can be shown
that the edges across the minimal cut in the dual graph correspond to dual to the
edges of the minimal separating path in the primal graph. The only difference is that
in this setup we do not have a boundary and the curve is closed.

In summary, the entire algorithm can be described as follows:

• Preprocess:

– Simplify original mesh and establish mapping between the simplified coarse
and the original fine mesh.

• Runtime:

– Decompose coarse silhouette into loops.

– For every coarse loop:

∗ Calculate the coarse band.

∗ Find the internal and external boundaries of the band.

∗ Find the corresponding fine band and its boundaries.

∗ Compute the weights of the edges and create a dual graph.

∗ Compute the min-cut of the dual graph.

∗ Find the corresponding fine loop.

5.3 Results

We implemented both algorithms, and applied them to several models. Table 5.1
shows the mesh resolutions and timings of our algorithm on the bunny and gargoyle
models. Figure 5.5 shows silhouette renderings for both methods. We also show
side views of the silhouette, in order to demonstrate how intricate the original fine
mesh silhouette is. For silhouette extraction, we used an optimized version of the
algorithm from Sander et al. [48]. It extracts the silhouette of a 20,000-face bunny
mesh in half a millisecond. The loop decomposition step from Section5.2.1 also takes
approximately half a millisecond for that model. The total silhouette extraction time
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Figure 5.4: Primal (left) and dual (right) graphs. Internal boundary (red) on the
primal graph corresponds to the source edges on the dual graph. External boundary
(blue) on the primal graph corresponds to the sink edges on the dual graph.

bunny gargoyle

The number of coarse mesh faces 1,000 1,000
The number of fine mesh faces 20,000 30,000
coarse mesh sil. extraction time (ms) 0.038 0.042
+ loop decomposition 0.098 0.102
fine mesh sil. extraction time (ms) 0.553 0.917
+ loop decomposition 1.051 1.602
Loop picking total time (ms) 5.172 9.582
Loop mapping total time (ms) 190.000 521.000

Table 5.1: Quantitative results (Pentium 4, 2.0Mhz).

for the loop picking algorithm is 5 and 10 milliseconds for the bunny and gargoyle
models, respectively. So, we can compute the simple silhouette of a 20,000-face bunny
model at a rate of 200 frames/sec. Note that this does not include model or silhouette
rendering time. The loop mapping algorithm is significantly slower, running at a rate
of 2 to 5 frames/sec. However, it results in a rendering with far fewer silhouette edges,
while still resembling the fine mesh silhouette, as shown in Figure 5.5.

5.4 Discussion

In this chapter, we described two algorithms to extract a simple silhouette from a
high-resolution mesh by using the silhouette of a coarse, simplified mesh as a guide.
The silhouette produced by both of these methods are composed by actual edges



Chapter 5: Silhouettes 78

of the original model. The loop picking algorithm is very efficient and extracts a
subset of the actual silhouette edges. The loop mapping algorithm is slow, but it
is able to capture all the important features of the silhouette with far fewer loops,
thus further eliminating the redundancy present on the silhouette of high resolution
meshes. Another advantage of this method is that only small amount of the edges of
the fine mesh has to be processed. The major limitation of both proposed approaches
is that we cannot guarantee the temporal coherence of the silhouette approximation
for the moving models.
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coarse mesh silh. fine mesh silh. loop picking loop mapping

154 edges 1668 edges 1014 edges 720 edges

155 edges 1845 edges 1081 edges 898 edges

Figure 5.5: Silhouette rendering comparisons of the bunny and gargoyle meshes.
Model parameters and benchmarks can be seen in the table 5.1. Front (row 1) and
side (row 2) views of bunny mesh silhouette. Front (row 3) and side (row 4) views of
gargoyle mesh silhouette.
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In this thesis we discussed several methods that can be considered to be the
generalizations of the Dijkstra shortest path method. In chapters 2 and 3 we go to
higher dimensions and explore the problem of ”shortest” discrete surface. The duality
algorithm described their can be also successfully applied in the 1-dimensional case
(chapter 5). In chapter 4 we allow the shortest path to cut across the mesh face and
investigate the ”continuous” version of Dijkstra.

The main property of all the algorithms described is their ability to find the
globally minimal curves and surfaces in polynomial time. The natural price for this
property is the higher-than-linear time and memory complexity 1, which prevents us
from running the algorithms on the data structures of a very high resolution.

The standard application of these algorithms could be generating the initial guess
for the fast local methods that can be used on a structures of very high resolution but
converge to the local minimums only. The balance between global and local methods
still remains unclear. There are a lot of open questions in this relatively unexplored
topic.

Another issue considered in this thesis is the close relationship between continuous
and discrete methods. It is shown in chapter 2 that the continuous variational problem
can be reduced to a purely discrete combinatorial optimization problem. On the other
hand, in chapter 3 we addressed a discrete minimum weight triangulation problem by
a continuous linear programming approach. The geodesic problem on the mesh can
be successfully approached by the discrete algorithm (chapter 3) or by the numerical
solution of the differential equation [34].

Unfortunately, it seems that very often the discrete and continuous communities
do not interact very closely. Applied physics and engineering major students often the
advanced algorithms classes; computer science major students ignore the numerical
modelling classes. We hope that our thesis will increase the attention to the problems
that are located on the boundary of these two worlds.

1n log n Dijkstra shortest path is a nice exception.
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