
 1

Meshing Genus-1 Point Clouds using
Discrete One-Forms

Geetika Tewari Craig Gotsman Steven J. Gortler

Computer Science Dept.

Harvard University

Abstract
We present an algorithm to mesh point clouds sampled from a closed manifold surface of genus 1. The
method relies on a doubly-periodic global parameterization of the point cloud to the plane, so no segmen-
tation of the point cloud is required. Based on some recent techniques for parameterizing higher genus
meshes, when some mild conditions on the sampling density are satisfied, the algorithm generates a closed
toroidal manifold which interpolates the input and is geometrically similar to the sampled surface.

Keywords: mesh generation, surface reconstruction, reverse engineering, point cloud, torus, parameteriza-
tion.

1. Introduction

Point cloud meshing, sometimes called surface recon-
struction or reverse engineering, is a procedure that
takes a set of points sampled from a 3D surface, and
reconstructs a triangle mesh that closely approximates
the surface from which it was sampled, both in terms of
its geometry and its topology. This problem is an im-
portant component in producing digital 3D models by
3D scanning.

The main problem with meshing point clouds is that
the problem is essentially ill-posed. There is no one
definition of what the true solution should be, beyond
the general requirement that the mesh should look as
similar as possible to the surface from which the points
were sampled (which is usually not even known). In
the few cases where an attempt has been made to de-
fine this, the solution is still far from unique.

2. Related Work

With the advent of high-precision 3D scanners, the last
decade has seen a wealth of methods developed to
mesh point clouds. Rather than survey them all exhaus-
tively here (which would require many pages), we
mention briefly just a few of the more well-known al-
gorithms, and refer the interested reader to the excel-
lent survey by Dey [10] for more details on these and
other algorithms.

The first algorithm for meshing point clouds was de-
scribed by Boissonnat in 1984 [4], but the problem
received little attention until the work of Hoppe et al.
[12] in 1992. These papers established two trends in

surface reconstruction: Delaunay-based methods,
where the surface is approximated by a subcomplex of
a Delaunay complex (e.g. [1,2,5,9,23]), and volumetric
methods, where the surface is approximated as the
zero-set of a scalar 3D function (e.g. [8,6,25]).

Another distinction between various meshing algo-
rithms relates to the basic objective of the algorithm.
Some algorithms simply want to “connect the dots” to
form a surface which interpolates the samples. Others
do not require that the surface pass through the sam-
ples, rather approximate them in some sense. This is
appropriate if the point cloud is noisy.

One of the main challenges to the interpolating mesh-
ing algorithms is to form a manifold (triangle) mesh
whose vertices are the point cloud, having the correct
topology and geometry close to that of sampled surface
(the so-called “underlying manifold”). Once a manifold
mesh is formed, it may be improved by a variety of
post-processing techniques which improve the connec-
tivity structure and possibly also the geometry of the
mesh (by smoothing the points) while preserving mani-
foldness and the topology. In this way the effect of
noise may also be reduced if it is present in the input,
despite initially having interpolated the input.

A family of meshing algorithms which interpolates a
point cloud was introduced by Floater and Reimers
[14] for surfaces with disk topology, and then extended
by Zwicker and Gotsman [31] for spherical surfaces.
These rely on global parameterization of the point
cloud, proceeding roughly as follows: 1) Construct a k-
nearest neighbor graph (KNNG) on the point cloud. 2)
Use the KNNG to parameterize the point cloud to a

 2

natural parameter domain. 3) Triangulate the param-
eterized points in the parameter domain using some
reasonable triangulation method (e.g. Delaunay). 4)
Adopt the resulting mesh connectivity to triangulate the
input 3D point cloud. For point clouds sampled from a
manifold surface having the topology of a disk (i.e.
possessing a boundary), Floater and Reimers param-
eterized to the plane, using the method of barycentric
coordinates, which involves solving a set of linear
equations. The equations essentially position each ver-
tex at some convex combination of its neighbors’ posi-
tions. This provides some degree of proximity in pa-
rameter space between vertices close to each other in
the point cloud. Then, triangulating the points in pa-
rameter space using a triangulation routine which fa-
vors small compact triangles, will, in turn, induce a set
of small 3D triangles on the sample set. This tends to
produce a good approximation of the underlying mani-
fold.

Realizing that a planar parameterization is not the most
natural for a spherical point cloud, Zwicker and Gots-
man [31] parameterized that type of input to the unit
sphere, using an extension of the barycentric coordi-
nates method, as described by Gotsman et al [17]. This
involves the solution of a set of non-linear equations.
For a toroidal point cloud, we will see later that it is
possible to return to the plane, albeit in a non-trivial
manner, and the algorithm that we present here is a
member of the family of meshing techniques based on
global parameterization.

3. Our Contribution

We extend recent results of Gu and Yau [20] (see also
Gortler et al [16]) on the parameterization of closed
manifold meshes of genus 1 to parameterize a point
cloud sampled from such a surface. The parameteriza-
tion is planar and doubly-periodic with no seams, in a
sense to be made precise later, thus a planar triangula-
tion of it may be used to mesh the point cloud in a
seamless manner.

Our method does not necessarily produce results sig-
nificantly better than other interpolating reconstruction
algorithms. It does have, however, three main advan-
tages: 1) It introduces some new mathematical tools to
the surface meshing problem. 2) It is very simple to
implement. 3) Under very mild conditions on the sam-
pling density, it guarantees a closed manifold output
with the correct topology. This mesh is geometrically
very close to the sampled surface, and can be improved
in an independent post-processing step.

4. The Algorithm

In order to apply the basic method of Floater and
Reimers [14] to a toroidal point cloud, the first chal-
lenge is to identify a suitable parameter domain. Seeing
that Zwicker and Gotsman [31] parameterized a spheri-
cal point cloud to the 3D unit sphere, the first thing that
comes to mind is some sort of generic 3D torus shape.
However, working on a 3D torus is quite difficult. An
alternative is to partition the point cloud into segments,
which can then be parameterized, as separate patches,
to the plane. This is what Horman and Reimers [21]
originally proposed for a spherical point cloud. How-
ever, such a partition would introduce seams and
boundary artifacts into the result. Luckily, there is a
way to parameterize a closed toroidal manifold mesh to
the plane in a seamless way. Although this is a global
method, in the sense that it involves computing infor-
mation about the entire parameterization simultane-
ously, the information is ultimately applied locally to
small pieces of the point cloud. Nonetheless, it is the
global nature of the parameterization that guarantees
the consistency between the pieces. This follows from
results of Gu and Yau [20] and Gortler et al. [16],
which we briefly describe in Section 4.1. We then pro-
vide the details of the different steps of the algorithm in
the following subsections.

4.1 Harmonic one-forms on manifold meshes

Most parameterization methods for meshes with simple
topologies pose a system of equations for the coordi-
nates of the mesh vertices in some parameter space
(plane or sphere). These coordinates are values at-
tached to the vertices of the mesh. As we will see later,
this is not directly applicable to toroidal meshes, and
the key to parameterizing a toroidal mesh to the plane
is to solve instead a system of equations for values at-
tached to the edges of the graph. These values repre-
sent the difference in parameter values between the two
vertices incident on that edge. Values defined on the
edges of a graph are also known as a discrete one-form,
in analogy to the continuous one-forms used in differ-
ential geometry [11,25].

Standard parameterization methods attempt to param-
eterize a manifold mesh to the plane. Typically they
aim to flatten the mesh faces, such that the resulting
faces in the plane are disjoint (do not overlap), and the
distortion of their shapes relative to the 3D faces is
minimal. The interested reader is referred to the survey
by Floater and Hormann [15] for a comprehensive sur-
vey of different parameterization methods. Tutte [30]
first showed how to parameterize a manifold mesh with
disk topology by constraining the mesh boundary verti-
ces to a convex shape, and solving a linear system of

 3

equations for each of the (x and y) coordinate values of
the interior vertices. The linear system implies that
each interior vertex should be positioned in the plane at
the centroid of its neighbor’s positions. The physical
analogy to this is a spring system of zero rest lengths,
which relax to the desired rest position. Assume a pla-
nar graph G with B boundary vertices, V interior verti-
ces, E edges and F faces. Tutte proved that if G is 3-
connected, then the resulting faces in the plane form a
non-degenerate embedding, namely, have positive area
and are disjoint. This embedding also minimizes the
sum of the squares of the edge lengths among all draw-
ings of G in the plane with the same boundary condi-
tions. Floater [13] later showed that this construction
will work even if the edges are weighted, such that
ultimately each interior vertex is positioned at xi, which
is some arbitrary convex combination of the positions
of its neighbors:

() ()

{1,.., } 1, 0i ij j ij ij
j N i j N i

i V x w x w j w
∈ ∈

∀ ∈ = = ∀ ≥∑ ∑

N(i) is the set of neighbors to vertex i. Simple algebra
shows that this is equivalent to:

()

{1,.., } 0 ()ij i j
j N i

i V w x x
∈

∀ ∈ = −∑ (1)

which implies that the vector x, consisting of the (x or
y) coordinates of the interior vertices, is the solution to
a discrete Laplace equation with (convex) boundary
conditions, hence the discrete equivalent of a harmonic
function.

Now let us look at (1) in a slightly different way: De-
fine new half-edge variables ∆xij = xi-xj. By definition
∆xij = -∆xji. Eq. (1) is now equivalent to the following
set of co-closedness equations for the new set of vari-
ables:

{1,.., } 0 e e
e v

v V w x
δ∈

∀ ∈ = ∆∑ (2)

where v is a vertex, e a half-edge between two vertices,
and δv the set of half-edges emanating from v. So, in
principle, instead of solving the set of V linear equa-
tions in V unknowns (1) for x, we may solve the set of
V linear equations in approximately E unknowns (2)
for ∆x (subject to equivalent boundary conditions).
However, since E>V, this set (2) is seriously underde-
termined, and this becomes apparent when we realize
that we are missing some other constraints on the vec-
tor ∆x. These are the constraints that will force them to
fit together to faces, namely that all faces are closed:

{1,.., } 0 e
e f

f F x
∈∂

∀ ∈ = ∆∑ (3)

Where f is a face and ∂f is the set of half-edges bound-
ing f. These are the closedness equations. Thus the
combined set of equations (2) and (3) is now equivalent

to the original set (1). Note that ∆xij = -∆xji, so care
must be exercised when treating the directions of edges
(and, in fact, we need use explicit unknowns only for
one half-edge per edge).

Now assuming we have solved (2)+(3) with the appro-
priate boundary conditions for the one-form ∆x - how
do we reconstruct the planar coordinates of the mesh
vertices – the vector x ? One way to do this is by desig-
nating an arbitrary vertex in the mesh as the origin and
integrate the one-form to every other vertex along
some path of edges. This integrated value will be well-
defined (unique) if the value of the integral is path-
independent. This is guaranteed precisely because of
(3). The value is then the vertex coordinate. Note that
this procedure introduces a translational degree of free-
dom due to the choice of the origin.

In itself, this transformation of the equations for the
vertex-based positions to equations for the edge-based
one-forms does not seem to add anything when at-
tempting to parameterize a disk-like mesh to the plane.
Quite the opposite, it just makes things more compli-
cated by increasing the size of the linear system from
V×V to E×E. However, the power of this transforma-
tion emerges when we consider a closed manifold
mesh with genus 1. First of all, there are no boundary
conditions (so B=0 and all vertices are interior verti-
ces). One-forms whose faces are all closed (Eq. (2)),
and all vertices co-closed (Eq. (3)) with respect to
some set of weights are called harmonic. The number
of unknowns is E, and the number of equations is V+F,
which, according to Euler’s formula, is exactly E. This
seems to imply that there are no harmonic one-forms
but the trivial zero solution, but closer inspection re-
veals that if the weights in (2) are symmetric (wij = wji),
the rank of the V co-closedness equations (2) is just V-
1, and the rank of the closedness equations (3) is just
F-1. This is because the co-closedness of all vertices
but one implies the closedness of that last vertex, and
the closedness of all faces but one implies the closed-
ness of the last face. So the dimension of the linear
space of harmonic one-forms for toroidal meshes is 2.
A basis for this nullspace can be computed, and each
basis vector used as the one-form which is later inte-
grated to generate x and y coordinates respectively,
when needed. This essentially is the parameterization
method of Gu and Yau [20] applied to the toroidal
case.

Note that the closedness equations imply that the sum
of a harmonic one-form along any boundary of a set of
faces of the mesh also vanishes. However, the same
sum along a loop of edges which merely circles a
“handle” of the mesh (but does not bound any set of
faces) will not necessarily vanish.

 4

 A key consequence of this theory becomes apparent
when, given two (linearly) independent harmonic one-
forms, ∆x and ∆y, defined on the edges of a closed
manifold toroidal mesh, we consider two submeshes
having disk topology with an intersection which also
has disk topology. In this case, the parameterization-
by-integration procedure described above, when ap-
plied to ∆x and ∆y on each of the submeshes, results in
two planar parameterizations which coincide, up to
translation, on the vertices common to both subsets.
This is a key feature of the parameterization, and guar-
antees that “pieces” of the mesh may be parameterized
locally and independently, yet they will all fit together
seamlessly at the global level, as illustrated in Figure 1.
Furthermore, Gortler et al. [16] have shown that this
parameterization results in a “Tutte-like” embedding of
the submeshes in the plane, namely that the faces are
all non-degenerate and disjoint, analogously to Tutte’s
theorem for the disk.

4.2 One-forms on arbitrary graphs

While the harmonic one-form theory described in the
previous section is elegant and well-understood for
manifold meshes, where the vertex and face structure is
well-defined, it requires some modifications before it
can be applied to parameterization of point clouds.

The first step in parameterizing a point cloud is to con-
nect the points together into a graph. This is typically
done using a k-nearest neighbor graph (KNNG). The
result will generally not be planar or represent a mani-
fold in any way (or even close to it). Indeed, an ori-
ented manifold graph on the point cloud is precisely
what we would like to generate in the output !

The main problem in applying the one-form theory
developed in Section 4.1 to an arbitrary graph is the
absence of well-defined faces to use for the closedness
equations (3). However, it turns out that it is possible to
do something similar when the cycles of the graph are
used instead of the faces. Namely, we must force all
cycles in the graph corresponding to boundary loops in
the underlying surface to be closed – the integral of the
one-form along that cycle should vanish.

There are an exponential number of cycles in a graph.
Fortunately, in order that all these cycles be closed, it
suffices to solve closedness equations for a basis of the
cycles. By basis, we mean a minimal set of cycles that
span all other cycles. In order that the term “span” be
meaningful, we have to define a vector space. Assume
an (arbitrary but fixed) orientation for each edge in the
graph. Given a cycle of half-edges (e1, e2 ,.., em) of
length m, express it as the vector ∆c∈{-1,0,+1}E, where

10 { ,.., }

1 {1,.., } . . , () ()
1 {1,.., } . . , () ()

m

e k k

k k

e e e
c k m s t e e orient e orient e

k m s t e e orient e orient e

∉⎧
⎪∆ = + ∃ ∈ = =⎨
⎪− ∃ ∈ = ≠⎩

It is well known [3] that all cycle vectors of a graph are
members of a linear subspace of RE of dimension D=E-
V+1. Thus by computing a basis of this subspace {b1
,.., bD} and imposing the linear equation ∆xTb=0 for
every such basis vector will force every cycle to be
closed. It turns out, quite conveniently, that bases for
this subspace may be formed from cycle vectors them-
selves (namely bi∈{-1,0,+1}E).

Assume that there exists an underlying genus-1 mani-
fold such that the edges of the KNNG may be “drawn”
on it as geodesic arcs. Then some of the cycles of the
KNNG will correspond to boundaries (of surface re-
gions) on the manifold, and some will not. The latter
will “loop around the handles of the surface”. We call

these cycles homologically non-trivial cycles, or non-
trivial cycles for short. Cycles which bound some re-
gion of the underlying surface will be called trivial
cycles. An example of a trivial cycle and the two non-
trivial cycles of a MCB of the KNNG of a point cloud
is shown in Figure 2. At least two of the basis cycles
must be non-trivial and closedness equations should
not be formed for them. If, ideally, exactly two basis
cycles are non-trivial, these form a basis for the first
homology group of the underlying genus-1 manifold.
In this case we will have E-V-1 independent closedness
equations. When adding also the V-1 independent co-
closedness equations for the vertices, there are in total
E-2 linearly independent equations. These equations
may be expressed as a full rank matrix A of size E×(E-
2), hence they have a two-dimensional solution space
in RE, which may be computed as the nullspace of A.

There is a standard procedure for computing a cycle
basis of a graph in O(ElogE) time, using a spanning
tree of the graph [3]. However the cycles in this basis
may be quite long. This is bad for two reasons: 1) Long
cycles cause the matrix A to be less sparse. 2) Long

Figure 1: Seamless local parameterization of disk-like
submeshes of the torus. The dark blue regions in the
plane are identical up to translation.

 5

cycles tend to be non-trivial cycles, which we do not
want to force to be closed, and different (linear) equa-
tions must be formed for them, taking this into account.
Luckily, there exist algorithms for computing a so-
called minimal cycle basis (MCB), which form a cycle
basis which minimizes the sum of the lengths of the
cycles [22]. A MCB tends to contain very small cycles
(mostly of length 3), and only two long cycles which
are usually non-trivial. Computing a MCB requires
O(E3) time.

The advantage in using the MCB is that if the sample is
dense enough, the two longest cycles are guaranteed to
be non-trivial, and the rest trivial. To formalize this, we
need the following definitions, which have been used
before [1] in this context:

Definition: The medial axis of a 2-manifold M ⊆ R3,
denoted by MA(M), is the set of points in R3 equidistant
from at least two distinct points of M.

The function d(A,B) denotes the Euclidean distance
between two sets A and B, i.e. the shortest distance
between two points in each set.

Definition: The local feature size of a point p on a 2-
manifold M ⊆ R3, denoted by fs(p), is d(p,MA(M)).

Definition: A set of points S on a 2-manifold M ⊆ R3 is
said to be an (ε,δ)-sample of M if for every p∈M,
d(p,S) ≤ ε⋅fs(p), and for all s1,s2∈S, d(s1,s2) ≥ δ⋅fs(s1).

The last definition requires the sample set to be dense
with respect to the local feature size, but at the same
time, the samples cannot be too close to each other.

The following theorem, proved elsewhere [18], pro-
vides the guarantee we need:

Theorem [18]: Let M ⊆ R3 be a smooth closed 2-
manifold surface. Given an (ε,δ)-sample of M, there
exists a large enough value k (which is a function of ε
and δ) such that the MCB of the k-nearest neighbor
graph of the sample set contains exactly two cycles
which are non-trivial and whose length is ≥ 4(k+3). All
the other cycles are trivial and have length ≤ 2(k+3). ◊

To summarize, the system of linear equations that must
be solved for the one-form on the KNNG is:

 {1,.., } 0 e e
e v

v V w x
δ∈

∀ ∈ = ∆∑ (4)

and

{1,.., 2} 0 e
e c

c C x
∈∂

∀ ∈ − = ∆∑ (5)

where C is the size of the MCB, and the cycles are or-
dered such that the two non-trivial cycles are last.

It is interesting to note that in the special case where
the point cloud graph happens to be the connectivity
graph of a closed manifold of F triangular faces, the
MCB is just the set of all F-1=E-V-1 face boundaries
but one, plus two non-trivial loops, for a total of E-V+1
cycles, as expected.

Figure 2: Three MCB cycles on a KNNG of a point
cloud: trivial (blue) and non-trivial (red and green).
The first should be closed and the latter two not.

4.3 Solving the harmonic one-form equations

Once the sparse coefficient matrix A representing equa-
tions (4) and (5) for the one-form have been con-
structed, the harmonic one-forms may be generated by
computing an orthogonal basis (using a standard inner
product) of the two-dimensional nullspace of A. This
may be achieved by running a nullspace computation
procedure, e.g. by inverse iteration on A, which may be
done efficiently using a sparse LU factorization [19].

There is, however, an alternative to the nullspace com-
putation method. Since the non-trivial cycles are also
known, the basis may also be computed by solving two
non-homogeneous linear systems of size E+V-1, where
the right-hand side vector of the first is all zeros and a
one in the row corresponding to the first non-trivial
cycle, and the rhs vector of the second has all zeros,
except a one in the row corresponding to the second
non-trivial cycle.

4.4 Parameterizing subgraphs using the one-forms

Having computed the two independent (and orthogo-
nal) harmonic one-forms for the edges of the KNNG G,
any connected subset of vertices (which represent
points in the 3D cloud) may now be parameterized.
This is done by assigning any arbitrary vertex as the

 6

origin with coordinates (0,0), and then integrating each
of the two one-forms along the edges of G using any
traversal strategy (e.g. DFS, BFS) to form 2D coordi-
nates for every other vertex. Thus every other vertex in
the subset is ultimately assigned 2D coordinates.
Thanks to the closedness of all cycles, these are inde-
pendent of the exact integration paths used.

A feature that emerges from the parameterization-by-
integration method, is that if G1 and G2 are two con-
nected subgraphs of G, V3 = V(G1)∩V(G2) and each is
parameterized using one-form integration, their param-
eterizations will coincide on V3 up to a translation of
the plane. This is useful, because if we independently
triangulate each of the resulting 2D parameterizations
using a triangulation method which is translation-
invariant, the triangles will coincide on V3. This is il-
lustrated in Figure 3.

4.5 Meshing the point cloud

Following Floater and Reimers [15] and Zwicker and
Gotsman [31], we mesh the point cloud by triangulat-
ing its 2D parameterized equivalent, and adopt that
triangle structure for the 3D points. However, since our
parameterization, as derived from the one-forms, is
essentially doubly periodic (around the surface “han-
dles”), we cannot easily parameterize the entire point
cloud in one sweep. It is best done in (overlapping)
pieces. The one-form theory guarantees that all pieces
fit together seamlessly and consistently.

In practice, we mesh the point cloud in overlapping
patches by choosing a number of “seed” vertices from
the cloud. For each seed we extract the subgraph of all
vertices connected to the seed vertex, whose distance
(in the KNNG) from the seed is less than some parame-
ter d. This subgraph is parameterized to the plane and
then triangulated using 2D Delaunay triangulation. The
subset of Delaunay triangles within radius r<d of the
seed are adopted for the 3D point cloud. The reason not
to adopt all the Delaunay triangles is because the points
along the convex hull of the patch are triangulated
without knowledge of the points outside the patch, and
this may lead to triangles along the patch boundary
which will be inconsistent with those in neighboring
patches. The entire point cloud is ultimately covered
with these subsets of triangles, so care must be taken to
ensure that all points are covered. This is easily
achieved by taking a sufficiently large number of seeds
(say V/10) and appropriate d and r (say d=30 and
r=15). There is a fair chance that some points may par-
ticipate in triangles originating in more than one patch.
However, since our method guarantees that all parame-
terizations are identical up to a translation, these trian-
gles will be identical, and duplicates may be simply

removed at the end. Figure 3 shows the parameteriza-
tion of two adjacent patches in a KNNG of a point
cloud.

A pseudo-code summary of all the steps of our mesh-
ing algorithm appears in Figure 4.

5. Output Quality

It would be very useful to guarantee certain natural
properties of the output mesh. First and foremost, we
would like a topological property, that the output is
indeed a closed genus 1 manifold. Beyond that we
would like a geometric property, that the piecewise-
linear mesh surface is close to the sampled surface.

Figure 3: Triangulation of overlapping patches. (Top
left) KNNG connectivity on parameterized vertices in
patch of radius 6 around a red vertex. (Bottom left)
Same for blue vertex. (Right) Delaunay triangulations
of the same vertex set as on left. Note the equivalence
up to translation in the marked subpatch around the
colored vertices. Beyond this edge effects might creep
in.

The topological guarantee is provided by the Theorem
of Section 4.2. It seems that in practice the condition of
the Theorem is easily satisfied, and we are able to ob-
tain the desired closed manifold of genus 1 at relatively
low sampling densities.

At this stage, we are not able to prove that the output of
our algorithm, given that the above conditions on the
sampling density are satisfied, is geometrically close to
the sampled surface. However, the following intuitive
argument seems to indicate that this should be the case.
The parameterization of the point cloud to 2D is one
which minimizes the sum of squares of the (weighted)
KNNG edge lengths. This means that points which are
close to each other in 3D will be close to each other in
2D. Now the subsequent Delaunay triangulation of the

 7

2D parameterization also prefers short edges (although
it does not strictly minimize this) and large angles.
Thus the triangles that are formed in 2D, and subse-
quently in 3D, are quite small and fat. Interpolating the
points using this type of triangles is more likely to po-
sition the triangles close to the surface than other types
of triangles.

Input: Set of n points in 3D
Output: Closed manifold triangle mesh with genus 1
 whose vertices are the input points.
Algorithm:
1. Generate G – the KNNG on the input for suitable

k.
2. Compute B – the MCB of G.
3. Identify C1 and C2 – the two non-trivial cycles in B

as the two longest cycles in B.
4. Remove C1 and C2 from B and populate A – the

sparse coefficient matrix of the harmonic one-
form equations – derived from the trivial cycles.

5. Compute ∆x and ∆y – an orthonormal basis for
null(A).

6. M := ∅
7. for i := 1 to number of well distributed ”seed” ver-

tices
8. Parameterize a patch P of breadth d around seed

 vertex vi in G by integrating ∆x and ∆y while
 running BFS

9. Compute D – the Delaunay triangulation of P.
10. M := M ∪{triangles of D within radius r of vi}.
11. end
12. Output the unique triangles in M.

Figure 4: Pseudo-code of meshing algorithm.

6. Experimental Results

We have fully implemented the meshing method de-
scribed here in MATLAB (except for the MCB algo-
rithm, which was implemented in C++ and obtained in
executable form) and applied it to a number of point
clouds sampled from genus 1 surface models. This was
run on a 2.99 GHz Pentium 4 PC with 2GB RAM.

6.1 Some examples

Figures 5-8 show the results of our meshing algorithm
applied to some point clouds sampled from some well-
known genus 1 models. For example, Figure 5 shows a
result on the “rocker arm” model, which was decimated
down to 7,634 points. This point cloud was meshed in
4.5 minutes. It is a perfect manifold, containing 15,268
triangles. However, it is not watertight, as the surface
may self-intersect. This can be resolved by independent
post-processing. We applied the methods of Surazhsky
and Gotsman [28] and Surazhsky et al. [29], originally

designed for a remeshing scenario. These improve the
regularity of the connectivity by edge flipping, and the
regularity of the geometry by “sliding” points along the
imaginary manifold surface. Some of these results are
shown in the same figure, as in Figure 7. All of the
resulting meshes in Figures 5-8 are closed manifolds of
genus 1.

6.2 Other degrees of freedom

There are a few degrees of freedom in our algorithm
that may be exploited. The first is the choice of weights
used in the co-closedness equations (4). The geometry
of the input point set is taken into account via these
weights. We used we = 1/le, where le is the Euclidean
length of edge e. This tends to position the points in the
plane such that the 2D edge lengths are close to the 3D
edge lengths. It is also possible to use other decreasing
functions, such as wij = exp(-le). We did not observe a
major difference.

Another degree of freedom is in the choice of the two
independent one-forms from the two-dimensional
space of harmonic one-forms. The nullspace routine
that we employ computes two vectors which are or-
thonormal in RE. Theoretically, we could have used any
other two linearly independent vectors from this space,
namely the result of an arbitrary non-degenerate affine
combination of the two orthonormal vectors. Since we
integrate these vectors to produce x and y coordinates,
and then use Delaunay triangulation to produce the
mesh triangles, this could affect the result, as Delaunay
triangulation is not affine-invariant.

6.3 Performance

The most computationally-challenging components of
our meshing algorithm are the computation of a KNNG
on V points in R3, the computation of a minimal cycle
basis (MCB) on E=O(kV) edges and computation of the
nullspace of a sparse matrix of size ExE. Computing
the KNNG may be done in O(VlogV) time using stan-
dard spatial data structures [7,27]. Computing the MCB
theoretically requires O(E3) time, but the implementa-
tion that we received from Michail, based on [24], runs
in a matter of minutes for graphs of up to 15,000 verti-
ces. Computing the nullspace of the resulting sparse
matrix using the methods described in [19] required
just a few seconds. Reconstructing the manifold re-
quired a minute or so, and the post-processing im-
provements a few seconds. In total, the entire algorithm
runs in minutes on clouds of 15,000 points, and we
believe it may be further optimized by an order of
magnitude.

 8

6.4 Implementation details

There are a number of important parameters in our al-
gorithm which have to be chosen carefully. The first is
k – the degree of the vertices in the KNNG constructed
on the sample points. The first concern is that k should
be sufficiently large for the graph to be 3-connected,
otherwise we may get degeneracies in the parameteri-
zation. On the other hand, in order that the harmonic
equations give the correct result, there should be only
two identifiable non-trivial cycles in the MCB. Any-
thing else will affect the dimension of the nullspace of
A, and non-harmonic one-forms will result. This means
that the sampling density should be sufficiently high
and k sufficiently small such that any non-trivial cycle
is sufficiently long. As demonstrated by Gotsman et al.
[18], the probability the MCB containing more than
two non-trivial cycles is almost nil, for most reasonable
values of k. A good value of k will generate a MCB of
short (length at most 2(k+3)) trivial cycles and long
(length at least 4(k+3)) non-trivial cycles. In practice,
we found that k = 7 or 8 was a good choice, since we
adopt the edge (i,j) only if both i∈N(j) and j∈N(i).

Since we use the Delaunay triangulation on the result-
ing 2D parameterization of the point set, we must be
careful of the degeneracies which might arise in these
types of parameterizations, namely co-linearities and
co-circularities. The former can cause triangles to “dis-
appear” and the latter can cause the Delaunay triangu-
lation to be non-unique, possibly inconsistent between
triangulations of overlapping patches. We have found
that simulation of simplicity - adding a small amount of
noise to the 2D parameterization - is a good remedy.

7. Discussion and Conclusion

We have presented a method to mesh a point cloud
sampled from a closed manifold of genus 1. Under
very mild conditions on the sampling density, the algo-
rithm will generate a closed manifold of genus 1. We
believe that under the same conditions, it is possible to
prove a bound on the geometric approximation quality
of the manifold relative to the underlying surface.

Seemingly the main drawback of this algorithm is that
it is global, namely it solves simultaneously for the
solution on the entire mesh. This requires manipulation
and computation of very large structures, and may po-
tentially not scale well. However, the globality is also a
distinct advantage. It guarantees that the result is a per-
fect manifold, containing no artifacts that might arise
from seams, were the point cloud partitioned and
meshed in pieces. In practice, meshing point clouds of
up to 20,000 points did not require more than a few
minutes on a state-of-the-art PC. Our sampling density

condition is also a global condition, and this is possibly
why it is so mild.

The most intriguing question is how to generalize our
method to surfaces of genus g>1. It is possible to as-
semble the same set of equations as described here to
generate the space of harmonic one-forms, which may
be integrated to form a 2D parameterization. However,
this space has dimension 2g, and will contain 2g-2 sin-
gularities [20,16], which will lead to artifacts in the
parameterization. This is the subject of current investi-
gation.

References

[1] N. Amenta, M. Bern, and M. Kamvysselis. A new

Voronoi-based surface reconstruction algorithm.
Proceedings of SIGGRAPH 1998, pp. 415-421,
1998.

[2] N. Amenta, S. Choi and R. Kolluri. The power

crust, Proceedings of 6th ACM Symposium on
Solid Modeling, pp. 249-260, 2001.

[3] B. Bollobas. Modern graph theory. Graduate

Texts in Mathematics, Springer Verlag, 1998.

[4] J.-D. Boissonnat. Geometric structures for three-

dimensional shape representation. ACM Transac-
tions on Graphics, 3(4):266-286, 1984.

[5] J.-D. Boissonnat and F. Cazals. Smooth surface

reconstruction via natural neighbour interpola-
tion of distance functions. Proc. 16th Annual
ACM Sympos. Comput. Geom., pp. 223-232,
2000.

[6] J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J.

Mitchell, W.R. Fright, B.C. McCallum, and T.R.
Evans. Reconstruction and representation of 3D
objects with radial basis functions. Proceedings of
SIGGRAPH, pp. 67-76, 2001.

[7] K. Clarkson. Fast algorithms for the all nearest

neighbors problem. Proceedings of 24th IEEE
FOCS, 226-232, 1983.

[8] B. Curless and M. Levoy. A volumetric method

for building complex models from range images.
Proceedings of ACM SIGGRAPH 1996, pp. 303-
312, 1996.

[9] T. K. Dey and S. Goswami. Tight cocone: A wa-

ter-tight surface reconstructor. Journal of Com-

 9

puting and Information Science in Engineering,
3:302-307, 2003.

[10] T. K. Dey. Curve and surface reconstruction. In J.

E. Goodman and J. O'Rourke, editors, Handbook
of Discrete and Computational Geometry. CRC
Press, 2004.

[11] A. N. Hirani. Discrete Exterior Calculus. Ph.D.

Thesis, California Institute of Technology, 2003.

[12] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,

and W. Stuetzle. Surface reconstruction from un-
organized points. Proceedings of SIGGRAPH
1992, pages 71-78, 1992.

[13] M.S. Floater. Parameterization and smooth ap-

proximation of surface triangulations. Computer
Aided Geometric Design, 14:231–250, 1997.

[14] M. S. Floater and M. Reimers. Meshless parame-

terization and surface reconstruction, Computer
Aided Geometric Design 18:77-92, 2001.

[15] M.S. Floater and K. Hormann. Surface Parame-

terization: a Tutorial and Survey. In Advances in
Multiresolution for Geometric Modelling, N. A.
Dodgson, M. S. Floater, and M. A. Sabin (eds.),
Springer-Verlag, pp. 157-186, 2004.

[16] S.J. Gortler, C. Gotsman and D. Thurston, D. Dis-

crete one-forms on meshes and applications to 3D
mesh parameterization. Computer Aided Geomet-
ric Design, 23(2):83-112, 2006.

[17] C. Gotsman, X. Gu and A. Sheffer. Fundamentals

of spherical parameterization for 3D meshes.
ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2003), 2003.

[18] C. Gotsman, K. Kaligosi, K.Melhorn, D. Michail

and E. Pyrga. On the minimal cycle basis of sam-
pled surface manifolds. Preprint, 2005.

[19] C. Gotsman and S. Toledo. On the computation of

the nullspace of a sparse non-normal matrix. To
appear in SIAM J. Matrix Analysis and Applica-
tions, 2006.

[20] X. Gu and S.-T. Yau. Computing conformal struc-

tures of surfaces. Communications in Information
and Systems 2(2):121-146, 2002.

[21] K. Hormann and M. Reimers. Triangulating point
clouds with spherical topology. Proceedings of
Curve and Surface Design, Saint Malo, 2002.

[22] T. Kavitha, K. Mehlhorn, D. Michail, and K.

Paluch. A faster algorithm for minimum cycle ba-
sis of graphs. Proceedings of the 31st Interna-
tional Colloquium on Automata, Languages and
Programming (ICALP), 2004.

[23] R. Kolluri, J.R. Shewchuk and J.F. O'Brien, Spec-

tral surface reconstruction from noisy point
clouds. Proc. Symposium on Geometry Process-
ing, pp. 11-21, 2004.

[24] K. Mehlhorn and D. Michail. Implementing mini-

mum cycle basis algorithms. Proceedings of the
4th International Workshop on Efficient and Ex-
perimental Algorithms (WEA), 2005.

[25] C. Mercat. Discrete Riemann surfaces. Communi-

cations of Mathematical Physics, 218(1):77-216,
2001.

[26] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and

H.-P. Seidel. Multi-level partition of unity implic-
its. ACM Transactions on Graphics, 22(3):463-
470, 2003. Proceedings of SIGGRAPH.

[27] S. Skiena. The algorithm design manual. Telos,

1997.

[28] V. Surazhsky and C. Gotsman. Explicit surface

remeshing. Proceedings of the
ACM/Eurographics Symposium on Mesh Proc-
essing, 2003.

[29] V. Surazhsky, P. Alliez and C. Gotsman. Isotropic

remeshing of surfaces: A local parametrization
approach. Proceedings of the International Mesh-
ing Roundtable, 2003.

[30] W.T. Tutte. How to draw a graph. Proceedings of

the London Mathematical Society, 13(3):743-768,
1963.

[31] M. Zwicker and C. Gotsman. Meshing point

clouds using spherical parameterization. Proceed-
ings of the Eurographics Symposium on Point-
Based Graphics, 2004.

 10

Figure 5: Meshing of the 7,634 point “rocker arm” model. Top left: Input point cloud. Bottom left: Mesh out-
put of our algorithm using k=7, t=10, d=15 and no simulation of simplicity (no addition of noise). Top right:
Improvement by edge flips only (points not moved). Bottom Right: Improvement by edge flips and point slid-
ing. Latter two using algorithm of Surazhsky et al [29].

Figure 6: Reconstruction of the 5,044 point “gear” model. Parameters used were k=7, t=10, d=10 and
no simulation of simplicity.

 11

Figure 7: Same as Figure 5 for the 5,982 point “trim star” model. Parameters used were k=7, t=10,
d=10 and random noise with variance 0.001 for simulation of simplicity.

Figure 8: Reconstruction of the 7,371 point “bumpy torus” model. Parameters used were k=7, t=10,
d=10 and no simulation of simplicity.

