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Abstract

This paper presents a technique for acquiring the shape of real-
world objects with complex isotropic and anisotropic reflectance.
Our method estimates the local normal and tangent vectors at each
pixel in a reference view from a sequence of images taken under
varying point lighting. We show that for many real-world ma-
terials and a restricted set of light positions, the 2D slice of the
BRDF obtained by fixing the local view direction is symmetric un-
der reflections of the halfway vector across the normal-tangent and
normal-binormal planes. Based on this analysis, we develop an
optimization that estimates the local surface frame by identifying
these planes of symmetry in the measured BRDF. As with other
photometric methods, a key benefit of our approach is that the in-
put is easy to acquire and is less sensitive to calibration errors than
stereo or multi-view techniques. Unlike prior work, our approach
allows estimating the surface tangent in the case of anisotropic re-
flectance. We confirm the accuracy and reliability of our approach
with analytic and measured data, present several normal and tangent
fields acquired with our technique, and demonstrate applications to
appearance editing.

Keywords: Photometric Stereo, BRDF, Symmetry, Anisotropic,
Normal Map, Tangent Map

1 Introduction

Measuring the shape and appearance of physical objects remains
one of the most challenging problems at the boundary of computer
vision and computer graphics. Photometric methods for estimat-
ing shape have proved useful for this task because they directly
measure surface normals, which are critical for rendering applica-
tions or recovering reflectance. While there has been significant
progress toward developing “general-purpose” techniques, existing
approaches still rely on strong assumptions about the surface prop-
erties of the target object that are not always true in practice.

This paper presents a new photometric technique for recovering the
shape of opaque objects. As with existing approaches, the input to
our algorithm consists of a sequence of images taken under varying
point lighting, and the output includes an estimate of the surface
normal for each pixel in a reference view. Unlike previous tech-
niques, however, our approach does not require estimating a model
of the surface reflectance and performs well for diffuse, glossy,
shiny, metallic, dielectric, isotropic, anisotropic materials and for
surfaces with homogeneous or spatially-varying reflectance.

Our strategy is to identify symmetries in the 2D slice of the Bidirec-
tional Reflectance Distribution Function (BRDF) [Nicodemus et al.
1977] obtained by fixing the local view direction. In particular, we
consider the reflective symmetry of the halfway vector (the bisec-
tor of the local view and light directions) across the normal-tangent
and normal-binormal planes. Although these symmetries are not
guaranteed to be satisfied exactly for all physically-valid BRDFs,
we show that when light positions are properly restricted during
acquisition, one can reliably estimate normals for a wide range of
BRDFs by localizing their planes of symmetry.

In addition to providing a means for recovering surface normals,
our symmetry-based approach has the advantage of delivering per-
pixel tangent vectors as well. For anisotropic surfaces, the tangent
field rivals the normal field in its importance for reflectometry and
rendering, but to date, its recovery has received very little attention.

This paper presents empirical data for analytic and measured
BRDFs demonstrating that our approach produces normals and tan-
gents that are accurate to within a few degrees. We also show
normal and tangent fields measured from real-world objects and
demonstrate appearance editing applications.

2 Previous Work

Techniques for measuring the shape of real-world objects can be
broadly classified as relying either on geometric cues (e.g., identi-
fying a common point seen from different lines of sight) or pho-
tometric cues (e.g., observing (n · l) at multiple light positions).
Because our approach relies on a photometric cue (symmetries in
the surface BRDF) we review existing photometric methods in this
section. To the best of our knowledge, ours is the first approach
that allows direct estimation of both the surface orientation and the
principal directions of light scattering for anisotropic materials.

Classical photometric stereo technique [Woodham 1980] estimates
the surface normal and albedo of a perfectly diffuse (Lambertian)
object as seen from each pixel in a fixed view using a set of input
images under varying point lighting. Although real-world materials
are never perfectly diffuse, the simplicity and stability of the result-
ing linear optimization are undeniable, and this simple technique
can be made more robust using outlier rejection. Additionally,
color-based analysis [Mallick et al. 2005] and/or intensity-based
analysis [Coleman and Jain 1982] can be used to isolate the diffuse
component of more complex reflections provided that a significant
diffuse component exists.

Numerous improvements to this basic idea have been proposed,
most of which extend to non-Lambertian materials by fitting mea-
surements to low-dimensional BRDF models. Tagare et al. [1991]
extended the Lambertian case to a simplified multi-lobe reflectance
model. Georghiades [2003] estimates surface orientation and re-
flectance (as well as light source positions) by assuming the surface
can be represented by a simplified Torrance-Sparrow BRDF [1967]
with a constant specular component over the surface. Goldman
et al. [2005] allow more variation over the surface by simultane-
ously estimating a set of basis materials modeled as isotropic Ward
BRDFs [1992]. A similar method was recently proposed by Chung
et al. [2008] which focuses on materials with wide specular lobes.
While these approaches apply to a wider class of materials, their



(a · b) scalar dot product of vectors a and b

n surface normal
t surface tangent
b surface binormal b = n × t

v ∼ (θv, φv) view vector
l ∼ (θl, φl) light vector
h ∼ (θh, φh) halfway vector h = (l + v)/‖l + v‖
fr(v, l) surface BRDF where v, l are expressed

in the local coordinate system
β(θh, φh) 2D slice of the BRDF for a fixed

view parameterized with respect to the
halfway vector

Table 1: Notation used in this paper. All vectors are normalized.

dependence on parametric models limits their generality. Natural
materials can differ substantially from analytic models [Ngan et al.
2005; Stark et al. 2005], resulting in errors in the deduced shape
that can be difficult to characterize. In addition, a single object
may exhibit different reflectance at different regions which cannot
be expressed by a small linear basis defined over one parametric
model. Our approach does not impose any parametric model on the
measured reflectance data.

A few techniques also avoid relying on parametric models. Hertz-
mann and Seitz [2003] place reference objects of known shape and
material in the scene to allow modeling a target object as a spatially-
varying mixture of these materials. Unfortunately, such reference
objects are not practical to create for many scenes. Another exam-
ple is the work of Alldrin et al. [2008], which represents isotropic
reflectance using a linear basis of general non-parametric bivariate
functions. Although such an approach holds promise, jointly esti-
mating the component materials and per-pixel surface orientation
leads to a fragile optimization that must integrate reflectance across
the entire object. On the other hand, our approach processes each
pixel independently and can seamlessly handle anisotropic effects.

For shiny objects, a number of methods have been designed to mea-
sure surface orientation under the assumption that the point of max-
imum reflectance occurs when the halfway vector is coincident to
the normal [Wang and Dana 2006; Chen et al. 2006; Ma et al. 2007;
Francken et al. 2008]. While these systems have generated impres-
sive results for a notoriously difficult class of objects, they are not
without limitations. First, observing the specular highlight at ev-
ery pixel requires a very high sampling rate (or a more complex
acquisition system [Nayar et al. 1990; Ma et al. 2007]) and can
be physically impossible in concave regions. In contrast, our ap-
proach of identifying planes of symmetry is more robust to noisy
and sparse data; similar results have been reported in the area of
3D shape analysis where points of symmetry have been shown to
be more stable than other statistics [Podolak et al. 2006]. Second,
the assumption that the maximum reflectance occurs at (n ·h) = 1
is only valid for mirror-like surfaces. Glossy surfaces exhibit off-
specular peaks [Torrance and Sparrow 1967] which bias this esti-
mate. Francken et al. [2008] showed that these methods give sys-
tematic errors of up to 5 degrees for glossy materials.

More similar to our approach are methods that exploit symme-
tries present in real-world BRDFs. Zickler et al. [2002] exploit
Helmholtz reciprocity by capturing images in which the position
of the camera and light source are interchanged. This enables
the recovery of both depth and surface normals independent of re-
flectance but requires finding corresponding points in images taken
from different viewpoints. In contrast, our single-view approach
permits a simpler acquisition and allows the direct recovery of sur-
face normals at the resolution of the camera. Isotropy is another
form of symmetry that has been exploited for photometric stereo
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Figure 1: Orthographic projection of the hemisphere surrounding
the surface normal n annotated with the tangent t and binormal b
along with the three types of symmetry explored in this paper. For
a fixed view v, we expect the value of the BRDF at light position
l to be equal to that at light positions corresponding to reflections
of the halfway vector h across the nt plane, the nb plane, and the
surface normal.

by Alldrin and Kriegman [2007]. For isotropic BRDFs, they show
that one component of the surface normal can be recovered by ex-
ploiting the reflective symmetry across the view-normal plane. In
contrast, the symmetries we consider apply to both isotropic and
anisotropic materials and allow measuring the complete surface
normal and tangent directions.

3 Theoretical Framework

Our goal is to estimate per-pixel normal and tangent vectors (n, t)
from a sequence of images recorded at different light positions. For
a fixed view vector v, let βv(θh, φh) denote the 2D slice of the
BRDF sampled at each pixel, parameterized by the elevation and
azimuthal angles of the halfway vector expressed in the local co-
ordinate system defined by (n, t). As illustrated in Figure 1, we
explore the following symmetries in these functions:

• Reflection of the halfway vector across the nt plane:
βv(θh, φh) = βv(θh,−φh)

• Reflection of the halfway vector across the nb plane:
βv(θh, φh) = βv(θh,−φh + π)

• Together, these two symmetries imply reflection across the
surface normal:
βv(θh, φh) = βv(θh, φh + π)

These symmetries are different from those typically associated with
BRDFs such as isotropy, which implies rotation of the light and
view around the surface normal; we are considering BRDF values at
light/view positions corresponding to reflections of their associated
halfway vectors. Although such symmetries are not necessary for
a physically valid BRDF, we will show that they are present for a
wide range of materials and under certain light/view configurations.

Although many simple analytic BRDFs (e.g. Blinn-Phong [1977])
exhibit these symmetries perfectly, it is more informative to con-
sider physically-based models that apply to a much wider class of
materials. In particular, microfacet models treat the surface as a



collection of microscopic Fresnel mirrors and have been shown to
accurately represent a wide variety of both isotropic and anisotropic
materials [Cook and Torrance 1982; Ashikhmin et al. 2000; Ngan
et al. 2005]. The specular component of a microfacet-based BRDF
has the form [Torrance and Sparrow 1967; Ashikhmin et al. 2000]

fr(v, l) ∝ p(h)F (l · h)
S(v, l,h)

(v · n)(l · n)
, (1)

where p(h) captures the distribution of microfacet orientations, F
is the Fresnel term, and S(v, l,h) models shadowing and masking
effects at the micro scale. The distribution p(h) is commonly mod-
eled with an analytic function such as an elliptical Gaussian [Ward
1992] or the Beckmann distribution [Cook and Torrance 1982]. Al-
ternatively, Ngan et al. [2005] have shown that it can be fit to mea-
sured data using Ashikhmin et al.’s [2000] approximation to Equa-
tion 1.

In the context of the symmetries described above, one can make two
observations regarding the microfacet model: 1) the distribution
term p(h) has a dominating influence on appearance for a broad
range of view and light directions; and 2) it generally exhibits the
symmetries that we seek to exploit. The latter observation comes
from existing analytical and measured distributions, almost all of
which satisfy the symmetry conditions. While exceptions do exist
(see Section 6), we assume they are rare. The first observation is
based on both physical and empirical evidence. Empirically, while
the right-most term in Equation 1 can be quite complex, it is typ-
ically smooth and can be simplified tremendously without signif-
icant loss of visual accuracy [Ashikhmin et al. 2000; Ngan et al.
2005]. Physically, the other term to consider—the Fresnel term—is
approximately proportional to (1 − (l · h))5 [Schlick 1994], and
is substantial only at grazing angles. By restricting the set of light
positions to a limited cone of directions about the view vector, the
influence of this term can be made small as well.

In the following, we design our acquisition system to include the
cone of light directions for which cos−1(l · h) < θdmax

(the no-
tation θd is due to Rusinkiewicz [1998]; it refers to the elevation
angle of the difference vector). Since θd depends only on the light
and view directions, this bound can be achieved by simply restrict-
ing the light source positions during acquisition without any prior
knowledge of the surface normal. By bounding the light directions
in this way, we ensure the dominance of the microfacet distribu-
tion. Our results show that it is then possible to robustly identify the
planes of reflective symmetry from the partial slice of the BRDF for
a wide range of surface orientations.

3.1 A Measure of BRDF Symmetry

In this section, we define a precise measure of the symmetry previ-
ously discussed. For a fixed view, let l and l

′ be two light positions
with corresponding halfway vectors at symmetric positions across
some plane. The measured intensities at these positions will be
Il ∝ fr(v, l)(n · l) and Il′ ∝ fr(v, l′)(n · l′). We ignore the inten-
sity of the light which is the same in all measurements and therefore
does not affect our analysis. Note that even if the BRDF is equal at
these positions, the product of the BRDF and the cosine term need
not be. This can easily be corrected by cross-multiplying the cosine
terms. In other words, if the BRDF is indeed symmetric across the
chosen plane then (n · l′)Il = (n · l)Il′ .

Now let τ (l) be an arbitrary transformation on lighting positions.
For some hypothesized normal n and tangent t, we define the sym-
metry distance of the BRDF under this transformation as:

SDτ (n, t) =

∫
Ωτ

||(n · τ (l))Il − (n · l)Iτ(l)||
2 dωl

∫
Ωτ

||(n · τ (l))Il||2 dωl

,

‘

Figure 2: Integration regions for the three different transformations
we consider shown over halfway vectors. These are defined as the
intersection of the sets of halfway vectors for which (n · l) > 0 and
(n·l′) > 0 that also have cos−1(v ·h) within θdmax

. These regions
can form complex shapes and can even become empty for normals
that lie beyond θdmax

.

where the domain of integration Ωτ is constrained to include only
light positions l and τ (l) that lie in the upper hemisphere with re-
spect to n and correspond to halfway vectors between 0 and θdmax

.
As shown in Figure 1, we define τnt(l) to reflect the halfway vector
associated with l across the nt plane, τnb(l) to reflect the halfway
vector across the nb plane, and τn to reflect the halfway vector
across the normal. Note that the transformation τn is independent
of the chosen tangent direction. Finally, we define a combined sym-
metry measure as

SD(n, t) = SDτnt
(n, t) + SDτnb

(n, t) + SDτn(n). (2)

When n and t coincide with the true surface frame, we expect SD
to be minimized.

As illustrated in Figure 2, the integration regions Ωnt, Ωnb and Ωn

typically form complex shapes and are even empty for certain com-
binations of n, t, and θdmax

. Therefore, care must be taken when
evaluating these integrals as discussed in the following section.

3.2 Validation

We performed numerous simulations designed to verify our key as-
sumption that the symmetry distance is minimized at the correct
surface frame and to evaluate the effect of θdmax

. This was done
using a standard Monte Carlo algorithm to estimate Equation 2 at a
dense set of normal and tangent vectors. We compared the normal
that maximized symmetry to the ground truth normal for a number
of analytic and measured BRDFs as well as for different values of
θdmax

and surface orientations.

We first considered anisotropic materials using the elliptical
Gaussian Ward model [Ward 1992] along with three of the
measured anisotropic samples acquired by Ngan et al. [2005].
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For the measured data, we followed their
reported procedure for fitting the tab-
ulated microfacet distribution, Fresnel
parameter, and shadowing and masking
terms of the Ashikhmin model [2000],
and these fits were used for our experi-
ments. For our simulations, we fixed the
view vector to be the z-axis, chose a nor-
mal vector within the zx plane, and fixed
the tangent at an angle φt = 25◦ off this
plane. We estimated the normal and tangent vectors that minimize
Equation 2 and compared these to the correct surface frame.

Figure 3 reports the errors in these estimates for each material over
a range of values of θdmax

(varying along the columns in each
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Figure 3: Error analysis using the Ward anisotropic BRDF and
three measured samples [Ngan et al. 2005]. The errors in the es-
timated normal and tangent vectors are reported in degrees over
a range of reflectance angles θn (the angle formed by the view and
normal) which vary across the rows and values of θdmax

which vary
across the columns. The materials include (a) an elliptical Ward
with parameters kd = 0.5, ks = 0.5, αx = 0.1, and αy = 0.5.;
(b) measured purple satin; (c) measured yellow satin; and (d) mea-
sured brushed aluminum.

false-color error visualization) and a range of surface orientations
(varying along the rows). These visualizations show two important
trends. First, our ability to identify the correct normal and tangent
diminishes as θdmax

diminishes. For very restrictive sets of light
positions, most candidate normals result in a very small region of
integration (see Figure 2), making it difficult to reliably identify the
minimum. Therefore, we disregard estimates at pixels where we
identify any of these domains to be empty. This limits the range
of recovered normals to those less than θdmax

since Ωn is always
empty beyond this point.

The second important trend is that the accuracy of our approach
steadily increases as θdmax

approaches 70◦ degrees and then falls
off for larger values. We attribute this to the presence of Fresnel
effects and the influence of shadowing and masking components in
these regions of the BRDF as previously discussed. Based on this
analysis, we chose θdmax

= 65◦ as the “sweet spot” (indicated by
the white boundary in Figure 3) and used this for all the datasets
we captured. Note that for these materials our approach typically
identified the correct normal and tangent to within a single degree
and only at extreme orientations did we observe errors of up to four
degrees. These results are representative of those we observed at
different tangent vectors and we chose to present those for φt =
25◦ only for the sake of clarity.
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Error Analysis for Torrance-Sparrow BRDF

our approach
photometric stereo
specularity stereo

Figure 4: Average error computed for Lambertian photometric
stereo with outlier rejection, our approach, and a method that as-
sociates the direction of maximum reflectance with the normal for
different materials ranging from perfectly diffuse to dark and shiny
modeled with the Torrance-Sparrow BRDF [1967].

We also experimented with isotropic materials using the Torrance-
Sparrow BRDF [Torrance and Sparrow 1967] with parameters
ranging from perfectly diffuse to dark and shiny. The results are
shown in Figure 4, where the average error was computed over nor-
mal orientations ranging from 0◦ to 60◦ and for θdmax

= 65◦

(recall that the value of θdmax
places a restriction on the range

of normals that our method can reliably estimate). As a baseline
comparison, we also report the average error for Lambertian pho-
tometric stereo [Woodham 1980] and specularity stereo [Wang and
Dana 2006; Chen et al. 2006; Ma et al. 2007; Francken et al. 2008],
which assumes the maximum reflectance occurs when the halfway
vector is coincident to the normal. We applied photometric stereo
to a simulated dataset consisting of 90 × 90 light positions sam-
pled uniformly over the sphere and rejected data greater than two
standard deviations away from the mean in order to remove areas
in shadow or highlight. For the specularity method, we found the
maximum of the product of the BRDF and cosine term using a non-
linear search; this gives an upper-bound on the performance of these
techniques since the angular sampling rate of any practical acqui-
sition device would further reduce accuracy. For all parameter val-
ues, our method performs well, and the surface normal is recovered
to within a few degrees. Better performance is achieved for very
specular surfaces, in which case the distribution term clearly domi-
nates, and for very diffuse surfaces, in which case the (n · l) terms
cancel out only at the correct surface frame. While traditional pho-
tometric stereo and specularity-based methods perform well for dif-
fuse and shiny materials respectively, our approach performs well
in both cases. We found these trends and absolute errors to be con-
sistent with other analytic models including Cook-Torrance [1982],
Ward [1992], and He-Torrance-Sillion-Greenberg [1991].

4 Implementation

Our acquisition setup consists of a QImaging Retiga 4000R digital
camera and a tungsten-halogen light source mounted to a computer-
controlled spherical gantry [Stanford 2002]. The light positions re-
turned by the gantry are accurate to within one tenth of a degree. We
assume distant lighting and an orthographic camera model. Note
that a less precise setup would be possible if used in conjunction
with scene fiducials that allow estimating the position of a light
source [Masselus et al. 2002; Chen et al. 2006; Toler-Franklin et al.
2007].

At each pixel in the reference view we reconstruct the BRDF slice
βv(θh, φh) using spherical barycentric interpolation over the mea-
surements [Cabral et al. 1999]. As a pre-process, we compute
the Delaunay triangulation [Shewchuk 1996] of the halfway vec-
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Figure 5: Typical reconstructions of the BRDF slice shown for two
anisotropic datasets along with a visualization of the symmetry dis-
tance at a dense set of normal vectors. The BRDF slices and the
symmetry values are functions defined over the hemisphere which
are shown here using a parabolic projection onto the plane [Hei-
drich and Seidel 1999]. Symmetry distances are normalized to oc-
cupy the range [0, 100].

tors corresponding to measurement locations projected onto the unit
disc. Figure 5 (middle) visualizes the reconstructed BRDF slices at
a single pixel in two anisotropic datasets. These slices are functions
defined over the hemisphere shown here using a parabolic projec-
tion [Heidrich and Seidel 1999] onto the plane.

In practice, the accuracy of this reconstruction is dependent on the
frequency content of the underlying BRDF, the density and pat-
tern of light source positions, and the interpolation method. Each
of the four datasets we acquired consists of approximately 1, 500
high dynamic range images recorded at light positions sampled uni-
formly over the cone of directions surrounding the view for which
θd < 65◦. This acquisition process requires approximately 45 min-
utes. The impact of lower sampling densities is examined further in
section 6.

Given βv(θh, φh), we compute the normal and tangent vectors in
two steps. First, we find the normal vector that minimizes SDτn .
Recall that this distance is independent of the choice of tangent di-
rection even for anisotropic materials. This involves performing
a non-linear optimization over a 2D domain for which we use the
Nelder-Mead simplex algorithm [1965]. We initialize this search
at the direction where we observed the maximum reflectance. Fig-
ure 5 (right) visualizes our estimate of SDτn over a dense range of
possible normal directions. The distance at each candidate normal
n is computed as a discrete sum over the sampled light positions.
For each light position, we reflect its halfway vector across n and
evaluate our reconstructed βv(θh, φh) at that position. Reflected
positions that fall outside Ωn are discounted. In cases where all of
the light positions are reflected to areas without data, we assign an
arbitrarily large error value (visible as the constant red area along
the boundary in Figure 5). These visualizations clearly illustrate
the stability of our optimization; the correct minimum is clearly de-
fined and the error space is largely free of poor local minima. These
properties result in a robust search that converges quickly, requiring
only 60 evaluations of the error function on average.

In the second step, we hold the normal vector fixed and search for
the tangent vector that minimizes SDτnt

+ SDτnb
. Again, we use

the Nelder-Mead algorithm to perform this 1D search. Because

there exists a natural ambiguity between the binormal and tangent,
we use a simple heuristic that assigns the tangent to the direction
along which the specular highlight is widest.

We also found it was important to assign a confidence to each pixel
based on the residual error and the magnitude of the denominator
in Equation 2 at the computed frame. We consistently observed
low confidence values in areas where the normal either lies beyond
60◦ from the view or where the reflectance data is corrupted by in-
terreflections or large cast shadows. We cull any estimate whose
confidence is below a user-set threshold, which is determined man-
ually for each dataset. Since each pixel may be processed indepen-
dently, we distributed this optimization over a cluster of forty-two
machines with Dual 1.6 GHz Opteron252 CPUs and 2GB of mem-
ory. Each dataset consists of 1, 500 images with 1024×1024 reso-
lution and requires 2.3 GB of disk space. The optimization required
approximately 10 minutes to complete or the equivalent of 7 hours
on a single machine.

5 Results

Figure 6 shows the normal fields we estimated for two isotropic
datasets. The first dataset is of a vase with an intricate spatially-
varying design and a shiny surface finish. The second is of a small
wooden figurine in the shape of a frog also with a spatially-varying
appearance, but a more matte finish. We have masked out regions
with confidence values below our chosen threshold (shown as a dot-
ted line in the reference image). The few errors we observe are
primarily caused by scene interreflections (e.g., near the top of the
vase in Figure 6). Despite these errors, our algorithm is able to
capture the overall shape of these objects even though they exhibit
significantly different material properties. Furthermore, our tech-
nique recovers fine geometric details such as the embossed pattern
on the vase and small indentations in the frog figurine as seen in the
cutouts.

Figure 7 shows normal and tangent fields computed from two ob-
jects with anisotropic reflectance. The first dataset is of the top
of a french press coffeemaker which shows aluminum brushed in
a circular pattern. The second dataset is a bronze vase which has
been brushed in a constant direction around its axis of symmetry.
The tangent fields computed with our algorithm correctly capture
these patterns, although there are regions where the material is not
brushed and therefore the tangent direction is undefined (e.g., near
the ridges in the middle of the vase). Additionally, errors in the nor-
mals often lead to errors in the tangents as seen near the bottom of
the bronze vase.

5.1 Application: Appearance Editing

Our method provides separate estimates of the 3D shape of an ob-
ject and its surface reflectance, allowing for independent manipula-
tion of either component. Figure 8 shows an example in which the
surface reflectance is edited to enhance surface gloss. In this exam-
ple, we enable control over the reflectance by independently fitting
an analytic Ward BRDF to the reflectance measurements available
at each surface position. A comparison of this fit to a reference im-
age suggests that the Ward model provides a reasonable description
of this surface’s reflectance, at least for this particular slice of the
BRDF domain. The right of this figure shows an editing example in
which we have scaled the specular and diffuse components at each
pixel to give the finish a glossier appearance.

Since we use a parametric BRDF model for editing, this approach
is conceptually similar to what could be achieved using the method
of Goldman et al. [2005]. An important difference, however, is
that our approach recovers geometry in a manner that is separate



Figure 6: Normals computed from two objects with complex spatially-varying isotropic reflectance. Normals are visualized according to

(r, g, b) = (nx+1
2

,
ny+1

2
, nz). The dashed line in each reference image indicates the region shown at right.

Reference Image Normal Field Tangent Field

Figure 7: Normals and tangents computed from two objects with complex anisotropic reflectance. Tangent directions are visualized according
to (h, s, v) = (2φ, 1, 1) where the angle φ is defined with respect to the x-axis.



Reference Image Ward Fits Edited Fits

Figure 8: Edited surface reflectance combined with measured ge-
ometry. Left: original HDR image not included in training set.
Middle: reconstruction from fits of the Ward BRDF model com-
puted at each pixel. Right: result of editing the specular component
to give the surface a glossier appearance.

Original Edited Tangents

Figure 9: Edited tangent field combined with measured reflectance.
Left: original HDR image not included in training set. Right: im-
age generated by editing the tangent field to display the SIGGRAPH
logo.

from reflectance. This provides the ability to choose editing tools
that are most appropriate for the reflectance of a particular object.
These tools can be based on a parametric model appropriate to the
object—as we have demonstrated here—or on data-driven repre-
sentations similar to those described by Lawrence et al. [2006].

It is also possible to manipulate the underlying normal and tan-
gent fields of a surface while keeping the original reflectance in-
tact. Figure 9 shows a relighting result that uses an edited version
of the bronze vase’s tangent field to display the SIGGRAPH logo.
This edit was accomplished by rotating each tangent vector within
the edited region by 90◦ about its corresponding surface normal;
Fisher et al. [2007] have recently introduced tools that enable more
sophisticated manipulations of tangent fields.

6 Discussion and Future Work

While we have shown that our strategy of associating planes of
symmetry in the BRDF with the correct surface frame is valid for
many different materials, we did observe cases where this approach
fails. A good example is the red velvet sample acquired by Ngan et
al. [2005]. The deduced microfacet distribution does not exhibit the
expected symmetries and we calculated that our technique would
produce errors of up to ten degrees. Intuitively, materials with

microgeometries symmetric around the surface normal (grooves in
brushed metal, threads in satin) satisfy our underlying assumption,
whereas materials with asymmetric microgeometries such as velvet
(composed of tiny cylinders systematically brushed to a fixed angle
off the normal) do not. Retroreflective materials would also present
challenges for our approach. These BRDFs exhibit backscattering
lobes that are substantial when the light and view directions are
close to one another. However, we expect it would be possible to
handle these cases by placing a lower-bound on θdmax

during ac-
quisition to avoid sampling these regions.

Accurately identifying the planes of symmetry in βv(θh, φh) de-
pends strongly on our ability to reconstruct this function from our
sampled data. Figure 10 shows the effect on the resulting normal
field of using a decreasing number of light source positions. As
expected, with fewer source positions the quality of these recon-
structions decrease and the resulting normal field exhibits a faceted
appearance as the optimization more often returns a poor local min-
imum. Using a more sophisticated interpolation technique such as
radial basis functions would result in better reconstructions and is
an interesting direction of future work.

1,512 743 380 172

Figure 10: Normal maps of a porcelain vase computed using differ-
ent numbers of light positions. The images along the bottom visual-
ize the source positions showing the corresponding half-way vector
projected onto the x-y plane of a view-centered coordinate system.

Another limitation of our technique is that it does not account for
scene interreflections or subsurface scattering. Figure 11 visual-
izes the normal and tangent map of a silk necktie computed using
our approach. Note that this scene exhibits strong discontinuities in
the tangent field and many depth boundaries. The majority of er-
rors are caused by interreflections which occur near the overlapping
regions. Future research might consider combining our approach
with techniques for isolating light that is directly scattered from
the object surface such as that presented by Nayar et al. [2006].
We should also note that in some places our heuristic for choos-
ing between the tangent and the binormal is unreliable (e.g., the
abrupt blue-to-yellow transition in the tangent map visualization in
the bullseye pattern near the bottom left). This is due to the fact
that the highlights for this material are relatively wide and sparsely
sampled near grazing angles. Despite these few inconsistencies,
however, the majority of this challenging scene is accurately cap-
tured by our method.

It is also worth emphasizing that there are a number of other pho-
tometric stereo methods that could be used in conjunction with our
approach. For example, in the isotropic case, symmetries along
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Figure 11: A folded necktie with complex reflectance, depth boundaries and discontinuities in the tangent field presents a particularly
challenging case.

intensity profiles from view-centered circles of light directions pro-
vide an additional constraint on the surface normal [Alldrin and
Kriegman 2007]. Rather than explore the benefits of combining
complimentary approaches with our symmetry-based technique, we
instead explored what can be recovered using these symmetries
alone. This allows us to consider isotropic, anisotropic, diffuse,
specular and hybrid surfaces in a unified manner.

Finally, there are many applications for which partial and even im-
precise surface geometry is sufficient. A good example is the sys-
tem recently proposed by Toler-Franklin et al. [2007] for generating
stylized illustrations of objects using color images augmented with
per-pixel surface normals obtained with Lambertian photometric
stereo. The applications described in Section 5 are other examples.
We believe that the simplicity of the acquisition required for our
technique along with its applicability to a wide range of materials
will have broad applicability in similar systems.

7 Conclusion

This paper introduced a new photometric approach for estimating
the surface normals and, for anisotropic materials, the tangent vec-
tors over an object’s surface as seen from a fixed viewpoint. The
input to our algorithm is a set of images taken under variable point
lighting constrained to lie within a cone of directions centered at
the view. We show that the size of this cone can be chosen to allow
reliable detection of the planes of reflective symmetry in the mi-
crofacet distribution of the measured BRDF. We demonstrated an
optimization that computes the surface frame at each pixel by iden-
tifying these planes of symmetry and showed that our approach is
accurate to within a few degrees over a range of analytic and mea-
sured BRDF data. Finally, we presented normal and tangent fields
computed with our technique from four real-world objects that en-
compassed a range of complex isotropic, anisotropic, and spatially-
varying reflectance.
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