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Abstract

A set of images of a Lambertian surface under varying
lighting directions defines its shape up to a three-parameter
Generalized Bas-Relief (GBR) ambiguity. In this paper,
we examine this ambiguity in the context of surfaces hav-
ing an additive non-Lambertian reflectance component, and
we show that the GBR ambiguity is resolved by any non-
Lambertian reflectance function that is isotropic and spa-
tially invariant. The key observation is that each point on
a curved surface under directional illumination is a mem-
ber of a family of points that are in isotropic or reciprocal
configurations. We show that the GBR can be resolved in
closed form by identifying members of these families in two
or more images. Based on this idea, we present an algo-
rithm for recovering full Euclidean geometry from a set of
uncalibrated photometric stereo images, and we evaluate it
empirically on a number of examples.

1. Introduction
Most problems in computer vision are simplified in the pres-
ence of perfectly diffuse, or Lambertian, surfaces. Accord-
ing to the Lambertian model, the bidirectional reflectance
distribution function (BRDF) is a constant function of the
viewing and illumination directions. By assuming that sur-
faces are well-represented by this model, one can build
powerful tools for stereo reconstruction, shape from shad-
ing, motion estimation, segmentation, photometric stereo,
and a variety of other visual tasks.

Most surfaces are not Lambertian, however, so we of-
ten seek ways of generalizing these powerful Lambertian-
based tools. One common approach is to assume that non-
Lambertian phenomena occur only in small regions of an
image, and to treat these regions as outliers or ‘missing
data’. Another approach is to model these phenomena using
parametric representations of reflectance that are more com-
plex than the Lambertian model. The latter approach has the
∗Much of this work was completed while P. Tan was visiting Harvard

University.

important advantage of using all of the available image data,
but it also has a significant limitation. Even relatively sim-
ple reflectance models (such as the Phong or Cook-Torrance
models) severely complicate the image analysis problem,
and since they are only applicable for limited classes of
surfaces, this approach generally requires new and complex
analysis for each application and each material class.

Recently, we have witnessed acceleration in the devel-
opment of a third approach to handling non-Lambertian
scenes—one that is based on exploiting more general prop-
erties of surface reflectance. This approach stems from the
observation that even though there is a wide variety of mate-
rials in the world, there are common reflectance phenomena
that are exhibited by broad classes of these materials. By
building tools that exploit these properties, one can build vi-
sion systems that are more likely to succeed in real-world,
non-Lambertian environments. One early example of this
approach is Shafer’s development of the dichromatic model,
which exploits the fact that additive diffuse and specular
components of reflectance often differ in color [15].

Two important reflectance phenomena are isotropy and
Helmholtz reciprocity. On a small surface patch, the BRDF
is defined as the ratio of the reflected radiance in direc-
tion (θo, φo) to the received irradiance from direction (θi, φi).
It is typically denoted f (θi, φi, θo, φo), where the parame-
ters are spherical coordinates in the local coordinate sys-
tem of the patch. Helmholtz reciprocity tells us that the
BRDF is symmetric in its incoming and outgoing directions
( f (θi, φi, θo, φo) = f (θo, φo, θi, φi)), and isotropy implies that
there is no preferred azimuthal orientation or ‘grain’ to the
surface (( f (θi, φi, θo, φo) = f (θo, θi, |φo − φi|)). In computer
vision, these properties have been exploited for surface re-
construction [11, 18], and since they effectively reduce the
BRDF domain, they have also been used extensively for
image-based rendering in computer graphics (e.g., [7, 14]).

In this paper, we seek to exploit isotropy and reciprocity
more broadly. We show that an image of a curved surface
(convex or not) under parallel projection and distant illumi-
nation contains observations of distinct surface points that



have equivalent local view and illumination geometry under
isotropy and reciprocity. By studying the structure of these
equivalence classes, we derive intensity-based constraints
on the field of surface normals. As an application, we show
that these constraints are sufficient to resolve the general-
ized bas-relief (GBR) ambiguity that is inherent to uncali-
brated photometric stereo.

1.1. The GBR Ambiguity
It is well established that a set of images of a Lamber-
tian surface under varying, distant lighting do not com-
pletely determine its Euclidean shape. Given any such set
of images, the surface can only be recovered up to a three-
parameter ambiguity—the GBR ambiguity [1, 10]. Signif-
icant effort has been devoted to understanding when and
how this ambiguity can be resolved. It is known, for ex-
ample, that when a surface is Lambertian, the GBR ambi-
guity can be resolved in the presence of interreflections [2],
or when relative albedo values and/or source strengths are
known [1, 8]. It is also known that the GBR can be re-
solved when surface reflectance can be represented using
one of two specific non-Lambertian reflectance models: the
Torrance-Sparrow model [6] or the ‘Lambertian plus spec-
ular spike’ model [4, 5].

In this paper, we investigate the relationship between the
GBR and surfaces with more general non-Lambertian re-
flectance. We study reflectance that is a linear combination
of a Lambertian diffuse components and an isotropic1 (but
otherwise arbitrary) specular component:

f (x, θi, φi, θo, φo) = ρ(x) + fs(θi, θo, |φi − φo|). (1)
Here, x denotes a point on the surface, so that the diffuse
component varies spatially (i.e., the surface has ‘texture’),
while the specular component is spatially invariant. This
model is quite generic, and it generalizes all existing analy-
sis of the GBR ambiguity in the context of non-Lambertian
reflectance [4, 5, 6], since all of these consider special cases
of Eq. 1. Given a surface with reflectance of this form,
one can obtain a reconstruction of the surface (up to an un-
known GBR transformation) using existing techniques for
diffuse/specular image separation (e.g., [16, 13]) and by ap-
plying uncalibrated Lambertian photometric stereo [8, 17]
to the diffuse component. The specular component then
provides additional information that can be used to resolve
the GBR ambiguity.

One of the key results of this paper is that two images
(with sources in general positions) are sufficient to resolve
the GBR for any surface with reflectance as shown in Eq. 1.

1There seems to be some confusion in the use of the term isotropy in
the vision and graphics communities. In some cases (e.g. [9]) it implies
dependence on the absolute difference of azimuthal angles |φi − φo|, but in
others it only implies dependence on the signed difference (φi − φo), with
the additional absolute value being a separate property termed ‘bilateral
symmetry’ (e.g. [12]). In this paper, we use the former interpretation.
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Figure 1. On the visible hemisphere of Gauss sphere, two normals
form an isotropic pair if they lie at the intersections of two circles
centered at source direction s and view direction v. If the BRDF is
isotropic (but otherwise arbitrary) the observed intensity at these
points will be equal.
Isotropy and reciprocity are sufficient to resolve the GBR,
and no additional assumptions are required.

The remainder of the paper is organized as follows.
Sect. 2 describes the general structure that isotropy and
reciprocity induce on the Gauss sphere for surfaces with
isotropic, spatially-invariant reflectance. Sect. 3 discusses
how these structures are affected by a GBR transformation
and how they can be exploited to resolve the GBR ambigu-
ity. Finally, Sect. 4 describes a complete system for photo-
metric stereo auto-calibration and evaluates it empirically.

2. Isotropic and Reciprocal Image Structure
We begin by exploring the geometric structure of surface
points that are in isotropic and reciprocal configurations un-
der a distant point light source and an orthographic view.
We assume that the Gauss map is known (e.g., we are given
the output of a photometric stereo algorithm), so that all
analysis can be performed on the Gauss sphere. A fixed
orthographic observer is located in direction v, and a global
coordinate system is chosen so that the z-axis is aligned with
this direction. A distant point source is located in direction
s. Both v and s are vectors of unit length, as are all vectors
in the remainder of this paper unless stated otherwise. We
use the phrase principal meridian to refer to the great circle
through v and s.
Definition 1. Two surface normals n and n′ form an
isotropic pair under source s if they satisfy

n′>s = n>s and n′>v = n>v.
A geometric interpretation is shown in Fig. 1. Two nor-

mals form an isotropic pair if they lie at the intersections
of two circles centered at v and s on the Gauss sphere. If
we consider the local coordinate system for the BRDF do-
main at each of two such surface normals, it is clear that the
incoming and outgoing elevation angles (θi and θo) are the
same in both cases. This is because the tetrahedron formed
by unit vectors (n,s,v) is equivalent under reflection to that
formed by (n’,s,v). Also, if we were to project v and s onto
the plane orthogonal to each normal, it is clear that the mag-
nitude of the angular difference between these projections
(i.e., |φi−φo|) would also be the same. This remark follows.
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Figure 2. On the visible hemisphere of Gauss sphere, two normals
form a reciprocal pair if they lie at the intersections of circles
that are centered at s and v and whose radii are exchanged. In
this example, there are four reciprocal pairs: m ↔ n, m′ ↔ n′,
m↔ n′, and m′ ↔ n. If the BRDF is isotropic and reciprocal, the
observed BRDF value (but not necessarily the radiance) at these
points will be equal.

Remark 1. Assuming an isotropic and spatially invariant
BRDF, the emitted radiance from two points whose surface
normals form an isotropic pair will be equal.

Definition 2. Two surface normals n and m form a recip-
rocal pair under light source s if they satisfy

m>s = n>v and m>v = n>s.
This condition can similarly be interpreted in terms of

the intersections of circles centered at s and v. The impor-
tant difference is that the radii of the two circles are swapped
for the two normals. As depicted in Fig. 2, there are four
possible intersections derived from all combinations of cir-
cles with centers at s or v and having two different radii.
This family of four normals comprises two isotropic pairs
(m ↔ m′ and n ↔ n′) and four reciprocal pairs (m ↔ n,
m′ ↔ n′, m′ ↔ n and m↔ n′). Using an argument similar
to that above, it is clear that the local light and view direc-
tions at any two normals of a reciprocal pair are such that
the following is true.

Remark 2. Assuming an isotropic and reciprocal BRDF,
the observed BRDF value (but not the emitted radiance,
which is the BRDF multiplied by n>s) at two points whose
surface normals form a reciprocal pair will be equal.

The conditions in Def. 1 induce an equivalence relation
(i.e., they satisfy reflexivity, transitivity and symmetry) so
we can say that two normals are ‘isotropically equivalent’
if they form an isotropic pair. The conditions for a recip-
rocal pair do not induce an equivalence relation, however,
as a normal is generally not reciprocal to itself. To form
an equivalence relation that exploits reciprocity, the condi-
tions for isotropic and reciprocal pairs must be combined;
we can say that two normals are ‘equivalent under combined
isotropy and reciprocity’ if they form either an isotropic pair
or a reciprocal pair. These equivalence relations partition
the Gauss sphere into equivalence classes of normals. To
further investigate the geometric structure of these equiv-
alence classes, it will be helpful to define two families of

curves on the Gauss sphere that, among other things, have
the nice property of being unions of equivalence classes.

Definition 3. An isotropic curve under s is a great circle on
the Gauss sphere that satisfies

(x>s) + α(x>v) = 0
where x is a point on the Gauss sphere and α is a constant.

An isotropic curve has the following properties. First, if
a normal is on an isotropic curve, its isotropic correspond-
ing normal is also on the curve. (This can be easily verified
by substituting Def. 1 into the isotropic curve equation.)
In other words, an isotropic curve is a union of isotropic
equivalence classes. Second, the one-parameter family of
isotropic curves partitions the Gauss sphere. Third and fi-
nally, the emitted radiance along the curve is symmetric
due to the symmetric arrangement of isotropic pairs along
it (e.g., Fig. 3). This last property plays an important role in
subsequent analysis, so we present it as a formal Remark.

Remark 3. For any isotropic BRDF, the emitted radiance
along an isotropic curve is a symmetric function when the
curve is parameterized by the signed angle (ψ, say) to the
principal meridian.

Definition 4. A reciprocal curve under s is a conical curve
on the Gauss sphere that satisfies

(x>v)(x>s) + α(v, s, x)2 = 0
where x is a point on the Gauss sphere and α is a constant.

Here (x, y, z) = (x × y)>z denotes the scalar triple prod-
uct. A reciprocal curve has properties that are analogous
to its isotropic counterpart. If a normal is on a given re-
ciprocal curve, its isotropic/reciprocal corresponding nor-
mals are on the same curve. Thus, it is a union of ‘com-
bined isotropic/reciprocal equivalence classes’. Also, like
isotropic curves, the one-parameter family of reciprocal
curves (parameterized by α) partitions the Gauss sphere mi-
nus points on the principal meridian. Finally, the symmetric
arrangement of reciprocal and isotropic pairs within a recip-
rocal curve induces symmetry in the BRDF along it.

Remark 4. For any isotropic and reciprocal BRDF, we can
choose a parameterization of a reciprocal curve such that
the BRDF value (emitted radiance divided by n>s) along the
curve is a symmetric function. One such parameterization
is given by the azimuthal angle between a normal on the
curve and the plane that contains the bisector of s and v and
is perpendicular to the principal meridian.

An example of a reciprocal curve is shown in Fig. 4.
To provide a geometric interpretation of isotropic and re-
ciprocal curves, it is useful to interpret the Gauss sphere
as being mapped to a plane. An elliptic plane is obtained
by a gnomonic (or central) projection that maps a point of



the sphere from the center of the sphere onto the tangent
plane at v. It maps a point to a point, a great circle to a
line, and a conical curve to a conic. The elliptic plane is a
real projective plane with an elliptic metric [3]. The three
great circles c1 = {x : v>x = 0}, c2 = {x : s>x = 0}, and
c3 = {x : (v × s)>x = 0} are mapped into three lines in the
elliptic plane: l1 is the line at infinity, l2 = s, and l3 = v × s.

On the elliptic plane, isotropic curves form a pencil (lin-
ear family) of lines by l1 and l2. Reciprocal curves form a
pencil of conics going through the double points p = l1 × l3
(the intersection of l1 and l2) and q = l2× l3 (the intersection
of l1 and l2). The conic pencil is a linear family of parabola
directed by the light source direction s, and it touches the
point at infinity q.

3. Behavior under GBR Transformations
The isotropic and reciprocal structures described in the pre-
vious section exist whenever a curved surface is illuminated
from a distant point-source and viewed orthographically.
They provide constraints between the intensities observed
at distinct surface points and the orientation of the surface
normals at these points. Since these constraints are valid for
any isotropic and reciprocal BRDF, they may find use for a
variety of tasks.

In this section, we analyze the behavior of these struc-
tures when a GBR transformation is applied. We show
that, somewhat surprisingly, a GBR transformation gen-
erally maps isotropic/reciprocal curves ‘as sets’ to other
isotropic/reciprocal curves. At the same time, normals
within each curve generally move relative to one another,
thereby breaking the symmetry in the radiance functions
along the curve (see Figs. 3 and 4). As a result, given an
initial reconstruction up to an arbitrary GBR ambiguity, we
can establish the Euclidean reconstruction by finding the
GBR transformation that restores this symmetry structure.

3.1. GBR Transformations
Given three or more uncalibrated images of a Lambertian
surface, the field of surface normals n(x) (defined over the
image plane parameterized by x ∈ R2) and the source di-
rections si can only be recovered up to an invertible linear
transformation of R3 [8]. It has been shown that by impos-
ing integrability on the surface, this general linear transfor-
mation is restricted to lie in the group of GBR transforma-
tions, which are 3 × 3 matrices of the form [1]

G =





















1 0 0
0 1 0
µ ν λ





















,

with µ, ν, λ ∈ R. A GBR transformation affects the normal
field and source directions according to

n̄ = G−>n/||G−>n||, s̄ = Gs/||Gs||, (2)
and

n = G>n̄/||G>n̄||, s = G−1s̄/||G−1s̄|| (3)
is the effect of the inverse transformation.

It is easy to verify that a GBR transformation affects nei-
ther view direction v nor the principal meridian. Isotropy
and reciprocity, however, are in general destroyed by the
GBR since n>s , n̄> s̄. As a result, if we are given a recon-
struction up to an unknown GBR transformation and we are
able to find the pairs of transformed isotropic and reciprocal
normals, we expect that the GBR can be solved.

A comment on terminology: in the subsequent discus-
sion, we will be interested in describing the manner in
which two normals n ↔ m of an isotropic or reciprocal
pair under s are affected by a GBR transformation. Since
a GBR transformation does not preserve isotropy and reci-
procity, we are generally uninterested in normals that form
isotropic/reciprocal pairs under s̄ in the sense of Defs. 1 and
2. Instead, we say that transformed normal n̄ corresponds
to transformed normal m̄ if the pre-images of these normals
n and m form an isotropic/reciprocal pair under s. The story
is different, however, for isotropic and reciprocal curves.
Since these curves are preserved as sets under a GBR trans-
formation, it does make sense to consider isotropic and re-
ciprocal curves under s̄ in the sense of Defs. 3 and 4.

3.2. Isotropy and GBR Transformations
We first look at the action of a GBR transformation on
isotropic pairs and isotropic curves.
Proposition 1. A GBR transformation maps each isotropic
curve under s ‘as a set’ to an isotropic curve under s̄.

To prove this, we first look at how a pair of isotropic nor-
mals is transformed by G. Suppose n̄ is a GBR-transformed
normal and x̄ is its unknown isotropic correspondence.
Since the pre-images of n̄ and x̄ form an isotropic pair un-
der s, we know x>v = n>v and x>s = n>s. By substituting
Eq. 3 into these equations, we obtain the following linear
constraint for the position of x̄ corresponding to n̄:

(x̄> s̄) + α(x̄>v̄) = 0,
with

α = −(n̄>s̄)/(n̄>v̄).
Thus, if n and x form an isotropic pair under s, then n̄ and x̄
lie on an isotropic curve under s̄.

To complete the proof, we can explicitly derive a map-
ping between the pre-GBR and post-GBR isotropic curves
by substituting the inverse transformation equations (Eq. 3)
into the expression above. The yields the following equa-
tion for the pre-image of the isotropic curve:

(x>s) + β(x>v) = 0,
where β = α||Gs||/λ. This is also an isotropic curve, which
proves Proposition 1.

A GBR transformation maps isotropic curves to isotropic
curves, but as demonstrated in Fig. 3, since it does not pre-
serve isotropy, it destroys the symmetry of the intensity



  

Figure 3. (Left) Top view of the Gauss sphere. Green points rep-
resent isotropic pairs, which are arranged symmetrically about the
principal meridian on an isotropic curve prior to a GBR transfor-
mation. These points are mapped to the yellow points by a GBR
transformation, and are no longer symmetrically arranged within
the curve. (Right) Emitted radiance as a function of signed angle
from the principal meridian along the isotropic curves before and
after the GBR. Since isotropy is not preserved by the GBR, the
symmetry in the radiance function is lost.

function along the curve. Thus, assuming that we can iden-
tify corresponding normals n̄ and n̄′ on an isotropic curve
in the GBR-transformed system, we can obtain a constraint
on the unknown GBR transformation by imposing the con-
dition that their pre-images n and n′ form an isotropic pair
under s. To formulate this constraint, we substitute Eq. 3
into the equations in Def. 1. These equations are homoge-
neous in λ, which is therefore eliminated, and they provide
a linear equation in µ and ν:

s̄yµ − s̄xν + c = 0, (4)
where c = (v̄, s̄, n̄ + n̄′)/(n̄>v̄ + n̄′>v̄).

There are two important observations to make regard-
ing this equation. First, it is independent of λ. This means
that isotropy is preserved by a classical bas-relief transfor-
mation (G = diag(1, 1, λ)), and λ cannot be resolved using
isotropic constraints alone. Second, the coefficients of µ and
ν are independent of n̄ and n̄′ and depend only on the source
direction s̄. As a result, each image provides only one inde-
pendent linear constraint on µ and ν. This constraint can be
geometrically interpreted as a requirement for symmetry of
isotropic pairs n ↔ n′ about the principal meridian charac-
terized by (v, s, n + n′) = 0. To recover µ and ν, we need
at least one additional independent equation, which requires
a second image under source s̄′ whose projection onto the
xy-plane is different from that of s̄. Since the GBR transfor-
mation does not affect the xy-plane projection of a source
direction (nor the principal meridian as mentioned earlier),
this leads to the following proposition.
Proposition 2. For any isotropic, spatially-invariant BRDF,
the GBR parameters µ and ν can be uniquely determined
from any two images under source directions that are not
coplanar with the view direction.

3.3. Reciprocity and Bas-relief Transformations
Once µ, ν are known, we can apply the appropriate inverse
transform that corrects for the additive plane and reduces

the GBR ambiguity to a classic bas-relief ambiguity, which
is represented by the diagonal matrix G′ = diag(1, 1, λ).
Here, we examine the effects of a bas-relief transformation
on reciprocal pairs and reciprocal curves.
Proposition 3. A bas-relief transformation maps each re-
ciprocal curve under s ‘as a set’ to a reciprocal curve under
s̄.

The proof is similar to the isotropic case, consider n̄↔ x̄
whose pre-images form a reciprocal pair under s. The def-
inition for a reciprocal pair states that x>v = n>s and
x>s = n>v. Substituting the expressions from Eq. 3 into
these equations (with G reduced to a bas-relief transforma-
tion) and eliminating variable λ, one obtains

(x̄>v)(x̄> s̄) + α(v, s̄, x̄)2 = 0,
with

α = −(n̄>v)(n̄>s̄)/(v, s̄, n̄)2.
Thus, if n and x form a reciprocal pair under s, then n̄ and x̄
lie on a reciprocal curve under s̄.

Next, to derive the relationship between reciprocal
curves related by bas-relief transformations, we apply the
inverse transformation to the reciprocal curve equation
above to obtain the pre-image of this curve:

(x>v)(x>s) + β(v, s, x)2 = 0,
where β = αλ/||Gs||. This is also a reciprocal curve, which
completes the proof of Proposition 3.

Since reciprocity is not preserved by a bas-relief trans-
formation, two corresponding normals n̄ and m̄ in the trans-
formed system can be used to obtain a constraint on λ by
imposing the condition that the pre-images of these nor-
mals form a reciprocal pair under source s. Substituting
Eq. 3 (again with G = diag(1, 1, λ)) into the conditions for
a reciprocal curve and solving for λ, we obtain:

(1 − s2
z )λ2 = (m̄> s̄)(n̄> s̄)/(m̄>v̄)(n̄>v̄) − s2

z . (5)
Geometrically, this equation for λ derives from the symme-
try of reciprocal pairs m↔ n under s. The bisector of these
normals must lie in the plane containing the bisector of v
and s (characterized by (s + v, s × v,m + n) = 0) that is
perpendicular to the principal meridian. See Fig. 4.

Equation 5 provides the magnitude of the parameter
λ, and its sign can be determined as that of m̄> s̄/n̄>v or
m̄>v/n̄>s̄. Thus we have:
Proposition 4. For a spatially-invariant, isotropic, and re-
ciprocal BRDF, the bas-relief parameter λ can be uniquely
determined from any image whose source direction is not
collinear with the view direction.

4. Application
The results of the previous section tell us that the auto-
calibration of photometric stereo can be performed from as
few as two images by exploiting isotropy and reciprocity.



  

Figure 4. (Left) Green points represent reciprocal and isotropic
pairs, which are symmetrically arranged on a reciprocal curve
prior to a bas-relief transformation. These are mapped to the yel-
low points by a bas-relief transform and are no longer symmetri-
cally located. (Right) The BRDF as a function of position along
the reciprocal curves before and after the transformation. This
function is initially symmetric, but the symmetry is destroyed by
the bas-relief transformation.

Given an initial reconstruction of normals and sources, the
GBR ambiguity can be recovered from Eqs. 4 and 5. All
that is required is to identify at least one isotropic pair in
each of two images (with sources in general position), and
at least one reciprocal pair in any single image.

In order to test these results, we conducted experiments
with both real and synthetic data. Each set of images was
captured/rendered using directional illumination and an or-
thographic camera. In the case of real data, the cam-
era was radiometrically calibrated so that image intensity
could be directly related to emitted scene radiance. Dif-
fuse and specular reflection components of the input im-
ages were separated using a color-based technique [13],
and an initial reconstruction was obtained by applying an
existing method for uncalibrated Lambertian photometric
stereo [17] to the diffuse images. Then, by identifying re-
ciprocal and isotropic pairs in the specular images we were
able to resolve the GBR ambiguity.

4.1. Isotropic and Reciprocal Correspondence
To obtain isotropic correspondence for a given normal n̄, we
search along the isotropic curve containing n̄ until we locate
another normal with the same intensity. By establishing at
least one such correspondence in two or more images, we
can recover GBR parameters µ and ν using Eq. 4 and reduce
the GBR ambiguity to a classic bas-relief ambiguity.

Once we correct for µ and ν, we use a similar procedure
to establish reciprocal correspondence. The reciprocal cor-
respondence for a given normal n̄ can be located by search-
ing along the reciprocal curve until we locate another nor-
mal with the same BRDF value. The process is complicated
by the fact that we do not have direct access to the BRDF
value along the curve. We only know the radiance (image
intensity) I(n̄) = f (n̄)(n · s). We note that

I(m̄) = I(n̄)(m>s)/(n>s) = I(n̄)λ||G−1(λ)s̄||(n̄>v)/(n̄> s̄),
which allows us to assess the accuracy of any estimate λ1
by: 1) using this equation to estimate the radiance I(m̄);

 

Figure 5. The accuracy of an estimate of the the bas-relief parame-
ter λ can be assessed by searching a reciprocal curve for reciprocal
correspondence and computing an error measure based on this cor-
respondence (see text for details). Here, the error reaches its global
minimum at the ground truth value of λ = 1.3.

2) searching the reciprocal curve for a correspondence m̄
that has this intensity; 3) using n̄ and this estimate of m̄ to
compute λ2 using the Eq. 5; and 4) computing the error
||λ1 − λ2||

2. Based on this procedure, we do an exhaustive
one-dimensional search over a wide interval λ ∈ [−10, 10].
Figure 5 shows a typical profile of the error computed over
this interval, which generally reaches a global minimum at
the ground truth value of λ.

As an aside, we note that previous work using the ‘spec-
ular spike’ model of reflectance [4, 5] can be derived as a
special case of this method. In that case, the correspondence
problem is trivial because each specular normal is its own
isotropic and reciprocal corresponding normal. The result
is the same, however, and the GBR ambiguity can be fully
resolved from two images [4].

4.2. Results
Figure 6 shows results on a synthetic example consisting

of thirty-six rendered input images of a Venus model using
a Cook-Torrance BRDF. The top row of this figure shows a
linearly coded normal map, where the RGB channels repre-
sent x, y, and z components, respectively. The second row
shows the corresponding surface height fields obtained by
integrating the normal fields. From left to right, the columns
show results of calibrated photometric stereo (i.e., ‘ground
truth’); uncalibrated photometric stereo [17]; and our auto-
calibrated photometric stereo. These results demonstrate
that the proposed approach successfully resolves the GBR
ambiguity that remains after the traditional uncalibrated re-
sult [17], and gives results that are very close to the cali-
brated case. The GBR parameters recovered by our method
are (µ, ν, λ) = (1.2, 0.9, 1.3).

Figures 7 and 8 show results for experiments on real im-
ages. In these figures, the top row shows one of the input
images along with the separated diffuse and specular com-
ponents. The middle and bottom rows show normal maps
and surface height fields as before, with columns from left
to right representing: 1) calibrated Lambertian photometric
stereo applied to the diffuse images; 2) uncalibrated Lam-
bertian photometric stereo [17] applied to the diffuse im-



   

   

Figure 6. Results from thirty-six synthetic images rendered with
a Cook-Torrance BRDF. Top row: linearly coded normal maps,
where r, g, b channels represent x, y, z components. Bottom
row: surface height fields. Results in columns from left to right:
calibrated lighting directions; traditional uncalibrated photomet-
ric stereo [17]; our auto-calibrated photometric stereo algorithm,
which successfully resolves the GBR ambiguity and obtains re-
sults comparable to the calibrated case.

Ground truth s Results from [17] Auto-calibrated s Error
(0.34, 0.26, 0.90) (0.13, 0.20, -0.97) (0.33, 0.52, 0.79) 16
(0.35, -0.30, 0.89) (0.20, -0.07, -0.98) (0.39, -0.15, 0.90) 8
(-0.27, -0.34, 0.90) (-0.02, 0.05, -0.99) (-0.07, 0.19, 0.98) 33
(-0.23, 0.11, 0.97) (-0.02, 0.03, -0.99) (-0.05, 0.11, 0.99) 10

Table 1. Accuracy of recovered source directions for four images
of the pear dataset. Right-most column shows angular error.

ages; and 3) our auto-calibrated results that use the specular
images to resolve the GBR ambiguity. For the calibrated
case, we use source directions that were measured from
mirrored spheres during acquisition. The GBR parameters
(µ, ν, λ) recovered by our method are (2.1,−1.2,−3.3) and
(−2,−1.2, 3.1) for the pear and fish, respectively.

Table 1 and Figure 9 provide quantitative evaluation re-
sults. For the pear data, Table 1 compares the source direc-
tions recovered by our method to the ground-truth source di-
rections measured during acquisition. Here, the right-most
column provides angular error in degrees. Figure 9 shows
average angular errors between the normals recovered using
our approach and those recovered using calibrated photo-
metric stereo with the measured source directions. For the
Venus, pear and fish examples, our method achieves aver-
age angular errors of 2.8, 4 and 6.7 degrees and maximum
angular errors of 44, 32 and 26.3 degrees, respectively. The
sources of error include: 1) inaccuracies in isotropic and
reciprocal correspondence; 2) imaging noise; and 3) inac-
curate diffuse/specular separation.

Finally, Fig. 10 shows surfaces obtained by integrat-
ing the recovered normal fields from the calibrated, uncali-
brated, and auto-calibrated methods. In each case, our auto-
calibrated procedure significantly improves the uncalibrated

  
 

  
 

  
 

  
 

  
 

  
 

   

Figure 7. Results from four input images of a pear. Top row:
one input image with separated diffuse and specular components.
Middle row: linearly encoded normal map. Bottom row: surface
height fields. Columns from left to right show photometric stereo
results using: calibrated lighting directions; an uncalibrated ap-
proach [17]; and our auto-calibrated approach that resolves the
GBR and provides results comparable to the calibrated case.

  
  
 

   

   

Figure 8. Results from seven input images of a plastic toy fish. Top
row: one input image with separated diffuse and specular compo-
nents. Middle row: linearly encoded normal map. Bottom row:
surface height fields. Columns from left to right show photometric
stereo results using: calibrated lighting directions; an uncalibrated
approach [17]; and our auto-calibrated approach that resolves the
GBR and provides results comparable to the calibrated case.

results by resolving the GBR ambiguity.



 

Figure 9. Surface normal angular error between the results of our
auto-calibrated method and calibrated photometric stereo results.

   

  
 

   
 

  
 

  
  

Figure 10. Surfaces recovered from integrating estimated normal
fields. Rendering of the recovered surfaced from a novel view
point. Columns from left to right show photometric stereo re-
sults using: calibrated lighting directions; an uncalibrated ap-
proach [17]; and our auto-calibrated approach.

5. Conclusion

This paper demonstrates that the generalized bas-relief
ambiguity can be resolved for any surface that has an
additive specular reflectance component that is spatially-
invariant, isotropic and reciprocal. It shows that two images
are sufficient to resolve the GBR, and presents a practical
algorithm for doing so. The result is an auto-calibrating
system for photometric stereo that can be applied to a very
wide variety of surfaces.

More broadly, this paper demonstrates the utility of
two very general reflectance properties: isotropy and reci-
procity. It shows that any image of a surface (convex or
not) under directional illumination and orthographic view
contains observations of distinct surface points that are in
isotropic and reciprocal configurations. By analyzing these
equivalence classes, it reveals patterns of intensity on the
Gauss sphere that can be used as constraints on surface ge-
ometry. In the future, these constraints could potentially be
used in other ways for the analysis of scenes with complex,
non-Lambertian surfaces.
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