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Abstract

When a curved mirror-like surface moves relative to its
environment, it induces a motion field—or specular flow—
on the image plane that observes it. This specular flow is
related to the mirror’s shape through a non-linear partial
differential equation, and there is interest in understand-
ing when and how this equation can be solved for sur-
face shape. Existing analyses of this ‘shape from specular
flow equation’ have focused on closed-form solutions, and
while they have yielded insight, their critical reliance on
externally-provided initial conditions and/or specific mo-
tions makes them difficult to apply in practice. This paper
resolves these issues. We show that a suitable reparameteri-
zation leads to a linear formulation of the shape from specu-
lar flow equation. This formulation radically simplifies the
reconstruction process and allows, for example, both mo-
tion and shape to be recovered from as few as two specular
flows even when no externally-provided initial conditions
are available. Our analysis moves us closer to a practical
method for recovering shape from specular flow that oper-
ates under arbitrary, unknown motions in unknown illumi-
nation environments and does not require additional shape
information from other sources.

1. Introduction
An image of a curved, mirror-like surface presents an ob-
server with a distortion of its surrounding environment, and
there is interest in understanding when and how a mirror’s
shape can be recovered from these distortions. Of particu-
lar interest are cases like those in Fig. 1, where the surface
is viewed in a natural lighting environment, and little or no
information about the environment is available from other
image cues. This reconstruction problem is difficult for two
reasons: 1) it is ill-posed, and 2) the relationship between a
mirror’s shape and its image is quite complex.

One promising approach for coping with these difficul-
ties is to exploit motion [16, 19, 1, 18]. When a specu-
lar surface moves relative to its environment, it induces a
motion field on the image plane, and this motion field—

Figure 1. Specular surfaces under natural lighting present the ob-
server with a distortion of the surrounding lighting environment.
We explore when and how surface shape can be recovered from
these observed distortions. (Image credits: Flickr users *spud*
and R©DS.

termed specular flow [16]—provides valuable information
about surface shape. In particular, it allows one to avoid
reasoning about the content of the unknown environment by
reasoning about the (simpler) relative motion instead. Such
reasoning is facilitated by the basic relationship between a
moving specular surface and the specular flow it induces, as
has been recently derived by Adato et al. [1]. According to
their formulation, when the surface and the observer move
as a fixed pair relative to a distant environment, the observed
specular flow field and the object motion yield a non-linear
partial differential equation (PDE) in terms of the surface
shape. This equation has been referred to as the shape from
specular flow (SFSF) equation, and previous analyses have
explored closed-form solutions for shape when one or more
observed flows are available [1, 18].

Despite the insight it affords, reconstruction according
to the existing formulation of the SFSF equation has two
severe limitations. First, due to the complexity of the non-
linear PDE, solutions thus far have only been determined
for a very specific class of motions [1]. Second, even in
these restricted cases, the solution cannot be obtained unless
significant initial conditions (e.g., multiple known surface
curves) are provided by an external source [1, 18].

This paper resolves both of these limitations. We develop
an alternative formulation of the shape from specular flow
problem that produces a linear differential equation instead
of a non-linear one. This linear formulation is intuitive and
provides additional insights regarding the qualitative struc-
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ture of specular flow fields. It also radically simplifies the
reconstruction problem, providing a foundation for deeper
studies as well as practical slutions for shape from specular
flow.

Using this new formulation we prove two main results:

1. Specular shape can be recontructued from a single flow
under general known motion with adequate externally-
provided initial conditions; and

2. Specular shape can be recontructued from two or more
specular flows under general unknown motions with no
externally-provided initial conditions.

The latter result is particularly powerful because it means
that reconstruction can succeed even when no additional
shape information is available from other image cues.

2. Background and related work
While there have been numerous studies of specular sur-
faces under point-source lighting (e.g., [3, 14, 20]) and cal-
ibrated and/or active lighting environments (e.g., [4, 10, 12,
17]), there have been comparatively fewer studies involv-
ing complex natural lighting. Most notable is the work of
Waldon and Dyer [19], who analyze the qualitative struc-
ture of specular flow fields; Roth and Black [16], who study
parametric surfaces; and the aforementioned [1, 18] which
consider general surfaces.

Following Adato et al. [1], and as shown in Fig. 2, the
problem of shape from specular flow is formulated as fol-
lows. A specular surface is viewed from direction v̂ by
an orthographic observer, and this surface is illuminated
by a far-field illumination environment (an environment
map). The surface is assumed to be the graph of a twice-
differentiable function f(x) defined on a region U of the
image plane, and we define the reflection vector r̂(x) at
each image point x to be the mirror-reflection of the view di-
rection v̂ about the surface normal n̂(x) at the point’s back-
projection. Image formation can be imagined as shooting a
ray in direction v̂ through each image point x, computing
the corresponding reflection vector r̂(x), and then sampling
the illumination environment in that direction. Note that
self-reflections of the surface are not allowed.

When the surface and observer move as a fixed pair rel-
ative to the environment, the motion induces a motion field
u(x) on the image plane. This observed specular flow pro-
vides access to surface shape information through the shape
from specular flow equation [1]:

w(fx, fy) = J(fx, fy, fxx, fxy, fyy)u(x), (1)

where w is a spherical vector field on the environment
sphere that describes the relative motion, and J is a 2 × 2
matrix with non-linear entries in the first and second deriva-
tives of the unknown height field f . This equation repre-
sents a coupled pair of non-linear second-order PDEs in

v̂

r̂

n̂

x

p

U

Figure 2. A mirror-like surface is illuminated by a far-field environment
and viewed orthographically to produce an image.

terms of the unknown surface; and given an observed spec-
ular flow u and known motion field w, one can theoretically
reconstruct the surface by solving these equations.

As stated earlier, what makes this approach attractive is
that it provides shape information in terms of the environ-
ment motion instead of environment content, hence facilitat-
ing reconstruction in uncontrolled settings. Due to the com-
plexity of the non-linear PDE, however, solutions have only
been determined for the very specific class of motions in
which the environment rotates about the view direction [1].
(In this case, Eq. 1 reduces to a pair of linear first-order
PDEs.) Additionally, a solution cannot be obtained unless
significant initial conditions are provided as input. This usu-
ally includes knowledge of the surface gradient (fx, fy)
along one or more surface curves [1, 18].

3. Linear shape from specular flow
To begin, we depart from the original formulation [1] and
derive the shape from specular flow equation in terms of
the reflection vector field defined on the surface. Similar to
the previous section, the surface we seek is assumed to be
a smooth closed manifold surface M , and we assume that
we observe a closed connected region U ⊂ R2 that is the
orthogonal projection of M in view direction v̂ and onto
the image plane. (See Fig. 2.) We denote by U̇ and ∂U the
interior and (occluding) boundary of U , respectively. We
further assume the following:

Assumption 1.
a) M does not self-reflect
b) M contains no developable regions
c) M contains no flat points

Note that (b) and (c) are true for generic smooth surfaces.
Consider a lighting direction ĉ(0) ∈ S2 as a point on

the environment sphere. Environment motion can be con-
sidered a time-varying rotation of this sphere, and such a
rotation induces an angular trajectory ĉ(t) of the lighting



direction, written

ĉ(t) = R(t)ĉ(0).

As this environment point moves, it is reflected from the
surface onto the image plane, and assuming the Gaussian
curvature of the surface does not vanish (to be relaxed mo-
mentarily), this reflection induces a smooth trajectory x(t)
on this plane. Corresponding to the trajectory on the image
plane is a surface curve p(t), and if we denote the surface
normal and reflection vectors along this curve by n̂(t) and
r̂(t), respectively, then the law of specular reflection guar-
antees that r̂(t) = ĉ(t) for all t.

Having the environment trajectory ĉ(t), its derivative at
time t = 0 is

ĉ′(0) = ω × ĉ(0), (2)

where ω is the angular velocity vector at that initial time
(ω̂ ! ω/‖ω‖ is the rotation axis and ‖ω‖ is the angular
speed). At the same time, the chain rule tells us

r̂′(0) = (Dr̂(0))u (x(0)) , (3)

where u(x) ! dx/dt denotes the specular flow field, and
Dr̂ ! ∂r̂/∂x is the 2 × 3 Jacobian of the reflection map
r̂ : U → S2 that assigns a reflection vector to each image
point. Equations 2 and 3 are equal by the law of specular
reflection, and clearly this is true for all initial environment
points ĉ(0) and thus all x ∈ U̇ . This leads us our desired
relation,

(Dr̂(x))u(x) = ω × r̂(x), (4)

which is valid for all non-parabolic x ∈ U̇ .
Equation 4 is an alternative expression for the shape from

specular flow equation derived previously [1], and it ex-
presses the relation in terms of the surface’s reflection vec-
tor field r̂(x) instead of the surface itself. This has the im-
portant advantage of producing a linear PDE instead of a
non-linear one, and since the reflection field uniquely de-
termines the surface when the view vector is known (i.e.,
n̂ ∝ v̂ + r̂), it provides equivalent shape information.

The remainder of this paper analyzes the linear SFSF
PDE (Eq. 4) to understand when and how it can be solved
for r̂(x) and surface shape. We begin with the case in which
we observe a single flow u under a known environment mo-
tion ω, and we study the uniqueness of solutions by gener-
alizing the equation to handle parabolic surface points in a
natural way. We then move on to consider two flows under
motions that may or may not be known. For brevity, results
are stated without proof in this document. The proofs can
be found in an associated technical report [6].

4. Shape from one specular flow: uniqueness
Suppose we are given as input a specular flow field u(x)
captured under known environment rotation ω and from

Figure 3. !-curves (right) induced by a smooth closed specular
surface observed from direction v̂ under a far-field illumination
environment (left) rotating about axis ω. (This “blob” surface
(from [18]) is shown with gray iso-height contours and black
parabolic curves.) !-curves on the image plane (in blue) generi-
cally form smooth closed curves, corresponding to the “reflection
images” of concentric circles on the environment sphere. An ex-
ception is the reflection image of the concentric circle that passes
through the anti-view −v̂; this curve intersects the boundary (at
red points). Zeros of flow (in magenta) occur at surface points
where the surface reflection vector is aligned with ±ω.

known viewpoint v̂. Throughout this document, we will
assume that this flow field has been estimated by an
“ideal” optical flow algorithm and is identical to the true
two-dimensional motion field. As has been noted previ-
ously [1, 19], specular flow fields exhibit unique structure
at parabolic surface points. In particular, as one approaches
the parabolic line, the flow magnitude grows unbounded,
the orientation is aligned with the flat direction on the sur-
face, and as one crosses the parabolic line the orientation
undergoes a 180◦ jump (see, for example, Fig. 5c). It is thus
safe to assume that if the flow u is known, the parabolic
points are known, and the flat direction at each parabolic
point is also known.

Our immediate goal is to understand uniqueness of so-
lutions for shape, particularly in the presence of parabolic
surface points. Doing so requires generalizing Eq. 4, and
to this end, we define the "-curves: {x | ω̂#r̂(x) = C} for
each constant C ∈ [−1, 1]. As depicted in Fig. 3, these are
curves on the image plane where we observe, in reflection,
an “ω-centered latitude” circle of the environment.

For generic smooth surfaces, almost all of such "-curves
are smooth closed curves (blue in Fig. 3). The Inverse
Function Theorem tells us that a point x is a smooth point
of an "-curve if and only if the derivative D(ω̂#r̂(x)) =
ω̂#(Dr̂(x)) exists and is non-zero. “Exceptional points”
appear where this derivative vanishes. This happens at iso-
lated points where we see the reflection of the rotation axis:
ω̂#r̂(x) = ±1 (magenta points in Fig. 3). It also happens



at isolated parabolic points where the one-dimensional col-
umn span of D(r̂(x)) happens to be orthogonal to ω (green
in Fig. 3). (While space prohibits a detailed discussion,
one can show that the structure of the "-curves near these
points is similar to the structure of isophotes near illumi-
nance critical points of diffusely shaded surfaces [11].) Ad-
ditional isolated non-smooth points occur at the boundary.
Since r̂(x) = −v̂,∀x ∈ ∂U , the boundary is the pre-image
of a single point on the environment sphere, and "-curves
with C = −ω̂#v̂ can intersect this boundary (red points
in Fig. 3). Since all of these exceptional points are isolated
points, we ignore them for the remainder of this section.

The following lemma relates the flow field u to the "-
curves, and shows that a globally smooth orientation can be
assigned to this data.

Lemma 1. Given a flow field u(x) corresponding to rota-
tion ω, there exists a unit-length vector field d̂(x) that has
the following four properties.

1. d̂(x) is smooth away from the isolated exceptional
points.

2. The field lines of d̂(x) are the "-curves.
3. For all non-parabolic x, d̂(x) = sgn(x)u(x)/||u(x)||

where sgn(x) is the sign of Gaussian curvature func-
tion.

4. For all parabolic x, d̂(x) is aligned with the flat direc-
tion at x.

With this Lemma in hand, one can show that the reflec-
tion field r̂(x) is a solution to the PDE

(Dr̂(x))d̂(x) = (ω × r̂(x)) sgn(x)||u(x)||−1, (5)

which naturally extends Eq. 4 to handle parabolic points.
In particular, at non-parabolic points the two equations are
equivalent by Property 3 in Lemma 1. At parabolic points,
||u||−1 = 0 and Eq. 5 becomes (Dr̂(x))d̂(x) = 0, which is
true by Property 4. Moreover, the right hand side of Eq. 5 is
continuous because the discontinuities in sgn(x) only occur
at parabolic points, where ||u||−1 = 0.

Let us now select a connected smooth segment of an "-
curve, say γ(s), that is arc-length parameterized by s. We
can plug this curve into equation 5 to obtain:

(Dr̂(γ(s)))γ′(s) = ω × r̂(γ(s)) sgn(s)||u(γ(s))||−1.

This is a continuous ordinary differential equation in s, and
we can thus conclude that knowledge of the reflection vec-
tor r̂ at any single point on an "-curve constrains r̂ along
the entire connected component of that "-curve in any solu-
tion to Eq. 5. We summarize this with the following corol-
lary, which simply follows from the fact that two "-curves
L(C), L(C ′) are disjoint for C )= C ′:

Corollary 1. Given a closed, connected subset U ⊂ R2 of
the image plane that is the orthogonal projection in direc-
tion v̂ of a manifold surface M (satisfying Assumptions 1a–
c), away from exceptional points, the solution r̂(x) to Eq. 5
is unique if and only if we are given at least one constraint
point r̂(xi) on each connected smooth component of each
"-curve.

This result, which shows that the surface can be recov-
ered under arbitrary rotations ω, represents a significant ad-
vance over the existing single-flow approach [1], which is
restricted to the special case in which ω ∝ v̂. Our analysis
does not, however, alleviate the need for initial conditions.
On the contrary, it shows that with a single flow, the need
for externally-provided initial conditions is unavoidable.

5. Shape from two specular flows
We have shown that a complete surface cannot be recon-
structed from a single flow without additional input. That
said, there are isolated exceptional points at which the shape
is known. These are the points where one observes the ro-
tation axis in reflection (magenta points in Fig. 3), and at
these points the reflection vector—and therefore the surface
normal—is known up to sign: r̂ = ±ω̂. These points are
detectable because they are points of zero flow, but since
there are no continuous "-curves that pass through them,
we cannot propagate their shape information to reconstruct
larger regions.

The key idea exploited in the remainder of this paper is
that shape information at these “zero-flow points” can be
propagated when two or more distinct flows are observed.
In fact, in Sect. 6 we will show that the surface can be re-
covered even when the environment motions (the ω’s) are
not known a priori.

A depiction of two distinct specular flows is shown in
Fig. 4. Here, the red and blue curves represent "-curves of
two linearly independent flow fields induced by the rota-
tions ω1 and ω2 under view v̂. As in the single-flow case
of the previous section, the "-curves are reflection-images of
“latitude” circles on the environment sphere. Another sig-
nificant landmark in this figure is the green circle on the en-
vironment sphere, which represents the great circle spanned
by ω1 and ω2. This circle has the special property that at ev-
ery point on its reflection image (green curves in U ), the red
and blue flow directions are co-linear. These image points
are rare, however, and the two flow directions are distinct
over most of the surface.

To begin our analysis, we first show that one will always
observe within U̇ at least one zero-flow point where the re-
flection vector is known and collinear with the rotation axis
ω. Doing so requires additional assumptions about surface
M , so we supplement Assumptions 1a–c, by further assum-
ing that the surface does not self-occlude, that points of zero
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Figure 4. !-curves induced by distinct rotations ω1, ω2 (red and
blue). As in the one-flow case, !-curves are reflection-images of
concentric circles on the environment sphere. The reflection vector
r̂ is known at a point of zero flow (blue point), and as depicted by
the black curve, this can be used as a seed to recover the entire
surface by integrating along segments of !-curves.

flow are not parabolic points, and that there are no closed
cusp curves (i.e., parabolic curves where the flat direction
is everywhere tangent to the parabolic curve).

Assumption 2.
a) ∀x ∈ U̇ , n̂(x)#v̂ > 0
b) r̂(x) = ±ωi/‖ωi‖ ⇒ |Dr̂(x)| )= 0
c) There are no closed cusp curves

Note that (c) is true for generic smooth surfaces. With these
assumptions in hand, one can show the following.

Lemma 2. Given a closed, connected subset U ⊂ R2 of
the image plane that is the orthogonal projection of a man-
ifold surface M (smooth, closed, with no flat points), and
a rotation ω with associated specular flow field u(x) de-
fined over U , we can compute a single constrained point
r̂(x) = ±ω, x ∈ U̇ .

Our goal now is to use a second flow field to propagate
this shape information and reconstruct the entire surface.

Definition 1. We say that two points x1,x2 ∈ U̇ are "-
connected under flows {ui} if there is a piecewise-smooth
path between them in U̇ composed of a sequence of pieces
of "-curves of the SFSF equations (Eq. 5) from any of the
input flows {ui} and their corresponding {ωi}. We call one
such path an "-path of the two points under {ui}. We say
that an open set U̇ is "-connected under {ui} if ∀x1,x2 ∈
U̇ , x1,x2 are "-connected under {ui}.

In Fig. 4, one "-path is shown in black, and it connects a
point at which the reflection vector is known (a blue point
of zero flow) to another point on the surface. As one might
imagine, this connection can be exploited to recover the re-
flection vector at the second point:

Lemma 3. Given two "-connected points x1,x2 ∈ U̇ , if
r̂(x1) is known, then r̂(x2) is uniquely determined in any
solution to a pair of SFSF equations Eq. 5 using the two
flows.

Finally, we can prove that the set U̇ is "-connected, and this
yields the following.

Theorem 1. Given a closed, connected subset U ⊂ R2 of
the image plane that is the orthogonal projection in direc-
tion v̂ of a manifold surface M (satisfying Assumptions 1a–
c and 2a–c), along with one constrained point r̂(x),x ∈ U̇ ,
and two linearly independent rotations ω1,ω2 with associ-
ated specular flow fields u1(x),u2(x) defined over U , there
is a unique solution to the associated pairs of SFSF equa-
tions Eq. 5.

Taken together, Lemma 2 and Theorem 1 tell us that we
can reconstruct the reflection field r̂ (and hence the surface)
over U given two rotations ω1,ω2 and flows u1,u2. Im-
portantly, externally-provided initial conditions are not re-
quired for this reconstruction, because there are sufficient
constraints that are “intrinsic” to the observed flows.

5.1. A reconstruction algorithm
Theorem 1 suggests that when two linearly independent
flows are available, we can use a relatively simple recon-
struction algorithm. Given two flows u1(x) and u2(x) cap-
tured under known rotations ω1 and ω2, we build an over-
constrained linear system

Ar = b, (6)

where r is a vector that contains the three components of all
of the reflection vectors in the domain of interest. The rows
of A result from discretizing the linear SFSF PDE using a
first-order finite differences scheme for both {u1,ω1} and
{u2,ω2}, and the corresponding entries in b are zero. Since
a discrete image does not generically include exact samples
of parabolic surface points, it is sufficient to discretize

(Dr̂(x))û(x) = (ω × r̂(x)) ||u(x)||−1, (7)

which is numerically stable and equivalent to Eq. 5 at non-
parabolic points. In addition, we augment these linear con-
straints on r by including constraints from one or more
points at which the reflection vectors are known. As shown
in Lemma 2, under the given conditions, it is always possi-
ble to find a constraint using the zeros of flow. At the points
where the flow ui vanishes, we know that r̂ = ±ωi/‖ωi‖.
By Assumption 2b, we know that these points are isolated
and, in practice, we find them as the local minima of the
flow magnitude. Once we choose a sign for r at the con-
strained point, the resulting linear system is overconstrained
and can be solved in the least squares sense to obtain a re-
flection vector field r̂(x) (and a surface). Note that this re-
construction is up to a binary choice.



6. Motion and shape from two specular flows
The previous section showed that two distinct specular
flows carry enough information to recover the surface (up
to a binary choice) when the environment motions ω1, ω2

are known. Here we show that these motions can also be
recovered from the specular flow fields. The result is an
‘auto-calibrating’ reconstruction procedure that simultane-
ously recovers shape and motion from two (or more) flows.

We show that shape and motion can be recovered from
two specular flows in three stages. First, borrowing results
from a related problem, we show that the unknown environ-
ment motions ω1 and ω2 can be recovered up to an orthog-
onal transform. Second, using the ‘calibrated’ reconstruc-
tion results from the previous section, we show that these
motion estimates determine the reflection field r̂ up to this
same orthogonal transform. Finally, we show that enforcing
integrability of the specular surface resolves the orthogonal
ambiguity, and thus that shape can be uniquely recovered.

6.1. Recovering environment motions
When the SFSF equation is expressed in terms of the re-
flection field, the resulting equation (Eq. 4) is the same
as that arising in flow-based calibration of generic central-
projection cameras [13, 15, 7]. In that problem, one seeks
to recover a map g : U ∈ R2 → S2 that assigns a camera ray
to each image point. The only difference in the present case
is that the rays being assigned to each image point are inter-
preted as reflection vectors on a surface (i.e., g(x) = r̂(x)).

The similarity between the two problems allows us to
borrow the following result related to recovering the un-
known motions ω1 and ω2.

Result 1. [Espuny] Given two linearly independent flows
u1,u2 induced by unknown but linearly independent angu-
lar velocities ω1,ω2, the angular velocities can be deter-
mined up to an orthogonal transformation of R3.

Espuny’s result [7] comes in the form of a clever linear
solution for the unknown motions. The algorithm translates
to our problem as follows. Up to a per-point sign choice,
the reflection field r̂ can be conveniently represented in a
coordinate system formed by (the unknown) ω1,ω2:

r̂ ∝ r̄ = α1ω1 + α2ω2 + (ω1 × ω2),

where the coefficients αi depend only on the components of
the two flows and their first derivatives. Specifically, denot-
ing the components of each flow as ui = (ui, vi); letting
V(x) = [u1(x) | u2(x)] be the 2 × 2 matrix formed by
stacking two flow vectors column-wise; and letting Vx, Vy

be derivatives of V with respect to the the image coordi-
nates, these coefficients can be written [7]:



α1
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∂u2
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detVx
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detV u1 + detVy

detV v1



 .

Then, provided that the flows u1 and u2 are linearly inde-
pendent, the Gram matrix of the two rotation vectors can be
determined using
0
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ω!2 ω1 ω!2 ω2

1

A =

0

@ α2

−α1

1

A (−α2, α1)−

0

@ (Dα2)
!

−(Dα1)
!

1

A V,

(8)
where Dαi is the spatial gradient of the coefficient function.

Given two flow fields u1 and u2, we can write a linear
constraint on the Gram matrix (Eq. 8) for each image point
x at which u1(x) and u2(x) are not collinear. As described
in Sect. 5, while points with collinear flows always exist,
the flow directions at most points are distinct. Thus, from a
typical pair of flows, we can reliably estimate the Gram ma-
trix by combining a large number of independent estimates
(see discussion in [8]). This is important because individual
instances of Eq. 8 requires computing second derivatives of
the flow field and are likely to be noisy.

Once the Gram matrix is determined, the rotation vectors
ω1 and ω2 are determined up to an orthogonal transform.

6.2. Recovering the reflection field
The results of Sect. 5 tell us that surface shape can be recov-
ered from as few as two known rotations ω1 and ω2. Since
D(Tr̂) = Tω × Tr̂ for any orthogonal matrix T, similar
results will hold when the rotations are modified by an or-
thogonal transform. The only difference is that the surface
will be determined up to the same orthogonal transform,
with an additional binary choice.

So, given two flow fields u1(x) and u2(x), we can use
the results above to recover initial estimates of the rotation
vectors ω1 and ω2, and the algorithm described in Sect. 5.1
to recover initial estimates of the reflection field r̂(x). This
initial estimate, r̂∗(x) say, will differ from the true reflec-
tion field by an orthogonal transform.

6.3. Recovering the surface
Since the surface we seek is a smooth manifold, its normal
field n̂(x) must be integrable [9], and this places constraints
on the reflection field r̂(x). Here we show that these con-
straints are sufficient to resolve the orthogonal ambiguity
and uniquely determine the surface.

Let the components of a surface normal vector be written
n̂ = (n1, n2, n3). The normal field corresponding to an
integrable surface must satisfy [2]

(
n1

n3

)

y

=
(

n2

n3

)

x

.

The law of specular reflection implies n̂ ∝ r̂ + v̂, and by
assuming that the view direction is v̂ = (0, 0, 1)#, we can
write this constraint in terms of the components of the unit
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Figure 5. Results with synthetic data. (a): Image of a specular surface rendered with the St. Peter’s environment map. (b): Specular flow induced by an
environment rotation. Flow magnitude is color coded while orientation is shown by the superimposed unit-length vector field. The green circle indicates a
constraint point (a vanishing point of flow). (c): Ground-truth surface normal field, with xyz-components color in RGB. (d): Surface normal field estimated
from two distinct specular flows. (e): Absolute angular error in the surface normal estimates, measured in degrees.

reflection field, r̂ = (r1, r2, r3):
(

r1

r3 + 1

)

y

=
(

r2

r3 + 1

)

x

⇔ (r3 + 1)(r2x − r1y) + r1r3y − r2r3x = 0. (9)

Theorem 2. If r̂(x) is the unit-length field of reflection vec-
tors from a smooth (integrable) surface under view v̂ =
(0, 0, 1)#, the set of orthogonal transformations r̂∗(x) =
Tr̂(x) that satisfy the integrability constraint of Eq. 9 are
the identity matrix and the diagonal matrix with diagonal
entries (−1,−1, 1).

In Sects. 6.1 and 6.2 we showed how to estimate the re-
flection vector field up to an orthogonal transform. The-
orem 2 implies that there are only two unit-length reflec-
tion fields that correspond to integrable surfaces, and it is
unlikely that the estimated reflection field r̂∗(x) is one of
them. Furthermore, it implies that we can find the two “cor-
rect” surfaces by searching for an orthogonal transform that
maps r̂∗(x) to a reflection field that satisfies the integrabil-
ity constraint of Eq. 9.

7. Experimental Results
As proof of concept, we first test our approach on synthetic
data obtained by placing a virtual specular surface in a cap-
tured far-field illumination environment and rendering an
image for a far-field observer (Fig. 5a). Two specular flows,
u1,u2, corresponding to scene rotations about two indepen-
dent axes, ω1,ω2 are computed by a generative equation for
specular flow [1] (one of these flows is shown in Fig. 5c).
The angular velocity vectors are first estimated up to an or-
thogonal transformation by computing the Gram matrix as
an average of the values computed from Eq. 8 at every pixel.
At this point, we are free to choose any rotation vectors ω∗

1

and ω∗
2 that are consistent with the Gram matrix, so we se-

lect them to be along the x-axis, and in the xy-plane, re-
spectively, in the image coordinate system.

The given flows u1,u2 and the initial angular velocity
vectors ω∗

1,ω
∗
2 are then used as input to the algorithm of

Sect. 5.1, whose output is a reflection vector field r̂∗(x).
From Sect. 6.2, we know that this reflection vector field is
correct up to an unknown orthogonal transformation. We
find this transformation, T, by finding a (local) minima of
a constrained non-linear system of equation based on Eq. 9.
The constraints guarantee the solution T to be orthogonal,
and in all cases we have considered, we have succeeded by
using the 3× 3 identity matrix as initialization.

Applying transformation T to the estimated reflection
field resolves the orthogonal ambiguity and allows us to
compute the normal vector field. Figures 5c and 5d show
the x, y, z components of the actual and estimated normal
fields, respectively, represented as RGB colors. Except near
the boundary, where the flow becomes degenerate, the an-
gular error in our estimate is smaller than 0.1◦ (Fig. 5e).
Even near the boundary the error is less than one degree.

In addition to these synthetic results, we have evaluated
our approach using data acquired with a custom device that
replicates the imaging process of Fig. 2. This device, shown
in the left of Fig. 6, provides an object-camera distance of
approximately 1m and allows them to be rotated as a fixed
pair about an arbitrary axis. We acquired two image se-
quences for the object shown in the middle of Fig. 6, with
one rotation axis approximately aligned with the view direc-
tion and the other approximately orthogonal to it. Specular
flow fields were estimated from the image data using [5],
and these flows were used to recover the normal field as de-
scribed above. The right of Fig. 6 shows the surface that
was recovered by integrating this normal field as well as a
comparable view of the actual object.

8. Conclusion
This paper shows that the shape from specular flow equa-
tion, which is non-linear in the unknown surface, can be
re-formulated as a linear PDE. The enabling idea is to repre-
sent the surface by its field of reflection vectors. The result-
ing linear PDE provides insight into the qualitative structure
of specular flow fields and produces some powerful recon-
struction algorithms.
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Figure 6. Results with captured data. Left: Acquisition system that enables camera/object rotation about arbitrary axes. Middle: Object under study.
Right: Shape recovered from two specular flows, shown with a comparable view of the object.

As in previous work, this paper focusses on the task of
recovering shape when specular flow is known, and it does
not address the problem of estimating specular flow from
image data. Accurately recovering specular flow in the pres-
ence of singularities induced by parabolic surface points is
an interesting open problem, and it is one that is likely to
benefit from the linear formulation presented here.

In fact, our linear formulation of shape from specular
flow should enable deeper studies of the problem in gen-
eral. Directions to consider include an expanded use of the
integrability constraint, which yields significant power and
may even be sufficient to allow single-flow reconstructions.
Another is the case in which a specular object moves rela-
tive to the observer, which is more natural for a human or
robotic observer.
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