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Abstract. This paper addresses the recovery of face models from stereo
pairs of images in the presence of foreign-body occlusions. In the pro-
posed approach, a 3D morphable model (3DMM) for faces is augmented
by an occlusion map defined on the model shape, and occlusion is de-
tected with minimal computational overhead by incorporating robust es-
timators in the fitting process. Additionally, the method uses an explicit
model for texture (or reflectance) in addition to shape, which is in contrast
to most existing multi-view methods that use a shape model alone. We ar-
gue that both model components are required to handle certain classes of
occluders, and we present empirical results to support this claim. In fact,
the empirical results in this paper suggest that even in the absence of oc-
clusions, stereo reconstruction using existing shape-only face models can
perform poorly by some measures, and that the inclusion of an explicit
texture model may be worth its computational expense.

1 Introduction

Being able to automatically recognize faces, track them, and estimate their ex-
pression and pose are important for many applications. Performing these tasks
reliably requires the ability to represent the appearance of faces over large vari-
ations in illumination and viewpoint. It also requires the ability to model the
effects of occlusions—both self-occlusions caused by the face itself and occlu-
sions caused by “foreign bodies” (eye glasses, long facial hair, clothing, hands
and limbs, etc.) in the environment.

Illumination effects can often be well-represented using purely image-based
methods (e.g. [1–4]), but to effectively handle extreme changes in 3D pose, one
typically requires a mechanism for “warping” 2D images. 3D morphable mod-
els (3DMMs), which are parametric models of shape and reflectance, are useful
for this purpose because they explicitly represent 3D shape and therefore han-
dle self-occlusions in a natural way.

In a 3D model-based approach, one is faced with the problem of finding the
parameters of the model that best explain the input data. The estimated model
parameters can then be used to perform recognition, track the face, detect ex-
pressions, synthesize new images, etc. The fitting problem is complicated in the
presence of foreign-body occluders, because unlike self-occlusions, the image
effects induced by foreign bodies cannot be explained by the face model.



In this paper we present a 3D model-based method for face reconstruction
and recognition that exploits stereo imaging to handle foreign body occlusions.
In the proposed approach, occlusion is represented using a single occlusion
map defined on the 3D shape model, and this occlusion map is recovered effi-
ciently by incorporating robust estimators in the fitting process.

In addition to including an occlusion map, we differentiate between two
types of constraints for fitting a model to multiple views. According to the first
constraint, each image should agree with a given model’s shape and reflectance;
and according to the second, the images should agree with each other given the
model’s shape. We find that the importance of these two constraints (roughly
speaking, the “texture match” and the “stereo match”) varies depending on the
type of foreign body occluders that are present. We also find that even in the
absence of occluders, explicitly enforcing the texture match constraint signif-
icantly improves fitting accuracy in comparison to an approach that uses the
stereo match constraint alone (suggested in [5]).

1.1 Related Work

3D Morphable Models (3DMMs) [6] use high resolution linear 3D shape and
texture models to represent faces. Typically, this model is fit to an input image
by minimizing an energy function that measures the difference between inten-
sities in the observed image and those predicted by the model. Recognition can
be performed based on the model parameters [7] or by using the model to syn-
thesize new views of the face in a canonical pose and lighting configuration [8].

Using a stereo pair for the fitting of a 3DMM imposes additional geometric
constraints on the face shape, which can improve the quality of results. Also,
by imposing a stereo matching constraint, the fitting of the shape and texture
parameters can be decoupled [5]. According to this approach, the shape pa-
rameters are recovered by minimizing the per vertex intensity differences be-
tween two calibrated views, and the texture is estimated separately using this
shape. While the decoupling of shape and texture is appealing from an effi-
ciency standpoint, the results we show here suggest that there are significant
benefits to estimating both components jointly.

Explicit handling of foreign-body occlusions has been addressed for the case
of monocular fitting of 3DMMs in [9], where a generalized EM algorithm is
used to alternate between the estimation of a visibility map given the model and
the model parameters given the visibility map. To account for spatial coherence
of occluders the visibility map is modeled by a Markov random field (MRF) on
the image plane. In contrast, we model occlusions using a visibility map on the
surface, and approximate the occlusion process using a robust estimator. While
it gives up the preference for spatial coherence, the proposed approach can be
implemented with little computational overhead. In addition, it can be easily
extended to more views, since the occlusion map is on the surface.

Also related to this work are 2D active appearance models (AAMs), which
trade precision for speed and are often used for tracking. 2D AAMs [10] typi-
cally use low-resolution 2D deformable shapes along with linear texture mod-



els. The fitting is done by matching a warped face image (with the warping be-
ing given by the linear shape model) against the linear texture model, and solv-
ing for the shape and texture parameters that give the best fit. Performance can
be improved using an extension to the inverse compositional image alignment
algorithm [11], by including 3D constraints [12], or by using multiple views
[13, 14]. Fitting AAMs in the presence of occlusions can also be approached us-
ing robust estimators [15]. The main advantages of the 3D approach over 2D
AAMs are the ability to directly model lighting effects because it has access to
surface normals and to more easily handle self-occlusions.

2 Background

2.1 3D Morphable Models for Faces

As a 3D morphable model for faces, we use the shape and texture bases (3DFS-
100) made available by the University of Freiburg [6]. These bases were ob-
tained by first concatenating the N vertices (or RGB color values in the case of
texture) of each scan i of a large set of high resolution 3D face scans into vectors
(FSi for shape, and FTi for texture), and putting them into correspondence. That
is, the vectors are made such that the same entry in each vector corresponds to
the same facial feature [16–18]. These vectors are denoted:

FSi = [[X i
1Y i

1Zi
1]...[X

i
NY i

NZi
N ]], FTi = [[Ri

1Gi
1Bi

1]...[R
i
NGi

NBi
N ]]

Principal component analysis (PCA) is performed on this set of vectors, and
the most significant eigenvectors are used as bases for shape and texture. Shape
and texture are then expressed as linear combinations of these basis elements:

S = S0 +
m

∑
i=1

αiSi, T = T0 +
m

∑
i=1

βiTi,

where S0 and T0 are the average face shape and texture and (S1,...,Sm) and (T1,
..., Tm) are the eigenvectors of shape and texture respectively. Here, Si,Ti ∈ R3N .
Thus, in this model, faces are represented by the set of coefficients α =(α1, ...,αm)
and β = (β1, ...,βm) that correspond to their shape and texture.

If one assumes the coefficients are drawn from independent normal distri-
butions, PCA also gives an estimate of their probability distributions;

P(α) ∝ exp(−1
2

m

∑
i=1

α2
i

σ2
i
), P(β ) ∝ exp(−1

2

m

∑
i=1

β 2
i

γ2
i

), (1)

where σi and γi are determined by the respective eigenvalues of the covariance
matrices of {FSi} and {FTi}.

2.2 Image Formation Model

We assume faces to be in or close to the space spanned by the shape and texture
bases of Sect. 2.1. Then, given a face’s shape parameters α and a suitable rigid



body transformation (rotation R and translation t, that align the face model with
the actual face), the true color value (γ(k)) of the face at the position correspond-
ing to the face model’s vertex k will equal that predicted by the model:

γ(k)≈ Im(k), (2)

where Im(k) is the RGB value of the texture at vk as given by the texture param-
eters β , and a suitable set of lighting parameters.

For a lighting model, we assume the surface is Lambertian, and use (Ramb,
Gamb, Bamb) for the ambient light color, (Rdir, Gdir, Bdir) for the directional light
color, (Roffset, Goffset, Boffset) for the color channels offsets, and l for the directional
light direction. Then we have:

Im(k)R = Roffset + tkR · (Ramb +Rdir · (nk · l)), (3)

with similar definitions for the G,B channels. The symbol tk represents the kth

RGB value in the face model’s texture vector representation given the texture
coefficients β , and nk represents the surface normal at vk.

Assume we are given a stereo pair (I1, I2) of face images captured from a
pair of calibrated cameras. Letting P1 and P2 denote the two camera projection
matrices, and assuming we are given the shape parameters α and rigid body
transformation parameters (R, t), we have two available measurements of γ(k).
These can be written I1(P1(R(vk− c)+ c + t)) and I2(P2(R(vk− c)+ c + t)), where
c is the centroid of the average face shape. Assuming that the cameras are ra-
diometrically calibrated (i.e., have the same exposure, white balance, etc.) with
additive Gaussian noise, a reasonable estimator for γ(k) is:

γ̂(k) = Ī(vk,R, t)
4
=

I1(P1(R(vk− c)+ c+ t))+ I2(P2(R(vk− c)+ c+ t))
2

. (4)

Thus a simple approximation for the distribution of Im(k), given I1, I2,α,R, t is a
normal distribution with mean Ī and standard deviation σt (say):

Im(k)∼ N(Ī(vk,R, t),σt). (5)

In addition, when α, I2,R, t are given, and again assuming that the cameras
are radiometrically calibrated, we can use the following model for the noisy
observation in I1 of a vertex vk that is visible in both images:

I1(P1(R(vk− c)+ c+ t))∼ N(I2(P2(R(vk− c)+ c+ t)),σs). (6)

Note that if the cameras are not radiometrically calibrated, this can be general-
ized by incorporating camera-dependent gains and offsets into I1 and I2.

For simplicity, we make use of the following notation in the next section:

ρ - the 6 parameters of the rigid body transformation (3 for R, 3 for t).
τ - the 11 lighting parameters (3 for iamb, 3 for idir, 3 for io f f set , i={R,G,B}, and 2

for l).
sk - the position of the kth model vertex given pose parameters (R, t) and shape

parameters α ; sk = R(vk− c)+ c+ t.



3 Robust Stereo Fitting of 3DMMs

3.1 Joint shape and texture stereo fitting

We use an energy function that incorporates both a shape model and a texture
model by combining terms derived from Eqs. 5 and 6, with regularization:

E = ∑
k|vk∈V

||I1(P1sk)− I2(P2sk)||2
σ 2

s
︸ ︷︷ ︸

Stereo Match

+
m

∑
i=1

α2
i

σ2
i︸ ︷︷ ︸

Shape Prior

+ (7)

∑
k|vk∈V

||Im(k)− Ī(sk)||2
σ 2

t︸ ︷︷ ︸
Texture Model Match

+
m

∑
i=1

β 2
i

γ2
i︸ ︷︷ ︸

Texture Prior

.

Here, the symbol V is used to denote the set of vertices vk of the face model with
parameters (α,ρ) that are visible in both I1 and I2.

Model-fitting is performed by finding parameters α ,β ,ρ,τ that minimize
E. This can be interpreted in a MAP framework as a search for parameters
(α ,β ,ρ,τ) for which the posterior P(α,β ,ρ ,τ|I1, I2) is maximal, and such an in-
terpretation highlights the assumptions underlying our approach. First, we ex-
pand the posterior as P(α,β ,ρ,τ|I1,I2)= P(α,ρ|I1,I2)· P(β ,τ|I1,I2,α,ρ). The first
term is then rewritten P(α,ρ|I1, I2) ∝ P(I1|α,ρ , I2) ·P(α), which by Bayes’ rule,
assumes that α,ρ , I2 are mutually independent and that the distribution of face
poses (ρ) is uniform. The assumption that shape (α) and pose (ρ) are indepen-
dent from I2 may seem non-trivial. But without knowledge of face texture (β ),
little can be inferred about I2, because any image I2 can be explained by a suit-
ably selected texture.

Using Eq. 6 we write:

P(I1|α,ρ, I2) ∝ ∏
k|vk∈V

exp
(
−1

2
||I1(P1sk)− I2(P2sk)||2

σ2
s

)
. (8)

and using Eq. 5 (assuming the texture (β ) and scene lighting (τ) independent,
and τ uniformly distributed), we write:

P(β ,τ|I1, I2,α,ρ) ∝ P(β ) · ∏
k|vk∈V

exp
(
−1

2
||Im(k)− Ī(sk)||2

σ2
t

)
. (9)

Finally, we obtain the energy E by substituting Eqs. 1,8 and 9 into our expres-
sion for the posterior, taking the logarithm, negating it and ignoring constant
factors.

One can make the following observations about this energy function. First,
suppose one were to include only the last three terms in Eq. 7, which would
correspond to maximizing P(I1|α,β ,ρ,τ)·P(I2|α,β ,ρ ,τ)·P(α,β ). This approach



would not account for the correlation between I1 and I2. The two images are
not independent given (α ,β ,ρ,τ) because the true appearance of the face de-
viates from that given by the face model, and consequently, the two prediction
errors are correlated.

Second, suppose we were to ignore the third and the fourth terms in Eq. 7.
This is the approach taken in [5], and it corresponds to maximizing P(α,ρ |I1, I2)
without including a texture model. As we will show experimentally in Sect. 4,
this approach can perform poorly because it does not necessarily ensure that
important features (eyes, eyebrows, lips) are properly aligned.

Finally, we can compare our approach to an uncalibrated case in which one
has no information about the stereo cameras. In this case, separate pose param-
eters (ρ1,ρ2) could be used for each image, and one might seek to maximize
P(α,β ,τ,ρ1,ρ2|I1, I2). In this case, by the same argument as in the first observa-
tion, I1 and I2 are still not independent given α,β ,τ,ρ1,ρ2, therefore maximiz-
ing P(I1|α,β ,τ,ρ1)· P(I2|α ,β ,τ,ρ2)·P(α,β ) (which would be the trivial extension
of the monocular fitting case to two images [6]) does not necessarily maximize
P(α,β ,τ,ρ1,ρ2|I1,I2).

3.2 Handling Occlusion

While the approach in the previous section correctly handles cases of self-oc
clusion (where one part of the face occludes another), it does not account for
the possibility of foreign-body occlusions. To handle such situations, we use a
modified version of the energy function in Eq. 7, introducing a robust estimator
ha:

E ′ = ∑
k|vk∈V

ha

( ||I1(P1sk)− I2(P2sk)||2
σ 2

s
+
||Im(k)− Ī(sk)||2

σ2
t

)
+

m

∑
i=1

α2
i

σ2
i

+
m

∑
i=1

β 2
i

γ2
i

(10)

This modification requires little change in the optimization procedure, and
allows the fitting to be significantly more robust to foreign-body occlusions (see
Sect. 4.2). Intuitively, by introducing the robust estimator we are limiting the
impact in the energy function of vertices whose stereo matching term or tex-
ture matching term are high. More formally, this approach can be justified by
introducing a binary occlusion map O : {1, ..,N} → {0,1}N , defined on the set
of all vertices of the face model. This map dictates whether a vertex of the face
model is occluded by a foreign-body in at least one of the images (O(k) = 1) or
not occluded in either (O(k) = 0). Thus, the image formation model is altered
so that the visible parts of the face present in the images are generated only by
vertices vk for which O(k) = 0.

In this setting, it can be shown that minimizing E ′ corresponds to search-
ing for α ,β ,ρ ,τ ,O for which P(α,β ,ρ,τ,O|I1, I2) is maximal. Again, we can write
P(α,β ,ρ ,τ,O|I1, I2) = P(α,ρ,O|I1, I2) · P(β ,τ|I1, I2,α,ρ ,O). We expand the first
term by making the same assumptions as those used in the previous section,
obtaining P(α,ρ,O|I1, I2) ∝ P(I1|α,ρ ,O, I2) ·P(α,O). The term P(I1|α,ρ,O, I2) is
then approximated as in Eq. 8, where the product is now over {k|vk ∈V,O(k) =



0}. In favor of simplicity and efficiency, we ignore spatial coherence of occlu-
sions, and assume O(k)∼ i.i.d. Bernoulli, obtaining the following prior on O:

P(O) ∝ ∏
k|vk∈V

exp(−ηo ·O(k)). (11)

Using this prior avoids the trivial labeling of all vertices being occluded during
the optimization process.

Combining these terms and assuming the shape (α) and occlusion map (O)
to be independent, we obtain an expression for P(α,ρ,O|I1, I2). Substituting this
expression into the posterior along with an expression for the posterior’s sec-
ond term similar to Eq. 9 (but with the product over {k|vk ∈ V,O(k) = 0}, one
sees that maximizing the posterior corresponds to minimizing:

E ′′ = ∑
k|vk∈V

f (α,β ,ρ ,τ,O,k)+
m

∑
i=1

α2
i

σ2
i

+
m

∑
i=1

β 2
i

γ2
i

, (12)

where
f (α,β ,ρ ,τ,O,k) = g(α,β ,ρ ,τ,k) · (1−O(k))+2ηo ·O(k), (13)

and

g(α,β ,ρ,τ,k) =
||I1(P1sk)− I2(P2sk)||2

σ2
s

+
||Im(k)− Ī(sk)||2

σ2
t

. (14)

The minimization of E ′′ can be rearranged as:

min
α,β ,ρ,τ,O

E ′′ = min
α,β ,ρ,τ

{min
O
{ ∑

k|vk∈V
f (α,β ,ρ,τ,O,k)}+

m

∑
i=1

α2
i

σ2
i

+
m

∑
i=1

β 2
i

γ2
i
} (15)

= min
α ,β ,ρ,τ

{ ∑
k|vk∈V

h(g(α,β ,ρ,τ,k),k)+
m

∑
i=1

α2
i

σ2
i

+
m

∑
i=1

β 2
i

γ2
i
} (16)

where

h(g(α,β ,ρ ,τ,k),k) = min
O(k)

{g(α,β ,ρ,τ,k) · (1−O(k))+2ηo ·O(k)}. (17)

Relaxing the binary process O(k) to an outlier process that varies continuously
0≤ Oa(k)≤ 1, we can approximate h(g,k) by a robust function ha,

ha(g) =−σo · ln((1− exp(− eo

σo
)) · exp(− g

σo
)+ exp(− eo

σo
)) (18)

with suitable parameters eo and σo. These parameters are determined empiri-
cally to provide a smooth approximation of the min function (see Fig. 1). This
leads to E ′ as in Eq. 10, where the minimization is over α ,β ,ρ ,τ .

Following optimization, the occlusion map is recovered from (for vk ∈V ):

O∗(k) = 1, if ha(g(α∗,β ∗,ρ∗,τ∗,k))≥ 2ηo− ε
O∗(k) = 0, if ha(g(α∗,β ∗,ρ∗,τ∗,k)) < 2ηo− ε,

where
(α∗,β ∗,ρ∗,τ∗) = arg min

α ,β ,ρ,τ
E ′. (19)
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Fig. 1. Robust estimator ha(g) (Eq. 18) used to handle foreign-body occlusions in the
fitting process: (a) eo = 300,σo = 1 (b) eo = 300,σo = 50

3.3 On Foreign Body Occlusions

In a stereo setup, there can be several cases of foreign-body occlusion of a vertex
of the face model. We can classify these cases with respect to the positioning of
the occluder in (see Fig. 2): half-occlusion (HO), where the vertex is occluded in
one of I1 or I2; full-occlusion-near (FOn), where the vertex is occluded in both I1
and I2 and the occluding object is close to the face; and full-occlusion-far (FO f ),
where the occluder is far from the face relative to the face size. We can also
classify occluders with respect to their texture, which can be one of: texture-less
(non-skincolor); texture-less (skincolor); and textured.

Depending on the type of occlusion, we expect either the stereo match term
or the texture match term to play a more prominent role in the fitting process
(see Table 1). For example, in the case of half-occlusion (HO) by a non-skinlike
surface, one can expect the stereo match term to provide an important cue as
to whether a vertex is occluded. This is because the observed intensities at the
projections of a half-occluded vertex correspond to observations of two very
different surfaces. When the occlusion is of type full-occlusion-near (FOn) on
the other hand, the stereo match term will not provide much help in determin-
ing an occlusion because the two observed intensities will come from nearby
locations on the occluder and will be very similar. In this case, provided that
the occluder has non-skinlike color, the texture match will be the most help-
ful in determining its presence. Of course, when the occluder lacks texture and
is skinlike, there is little visual information to discriminate between it and the
face.

Experimental results are shown in Sect. 4.2.

Occluder classification HO FOn FO f
texture-less (non-skincolor) S T T
texture-less (skincolor) X X X
textured S T S+T

Table 1. Most relevant terms in the energy function for each of the occlusion cases: S for
stereo match term and T for texture match term (see Fig. 2).



Fig. 2. Categories of foreign-body occlusions. From left to right, occlusions can be one of:
half-occlusion (HO), full-occlusion-near (FOn), full-occlusion-far (FO f ). The stereo and
texture terms play different roles in each case (see Table 1).

3.4 Optimization Procedure

Initial Fit Like previous approaches [5, 17], we assume that either by user se-
lection, or by means of an automated detection process, image coordinates of a
subset of specific feature points of the face (e.g. corners of the eyes, corners of
the mouth, tip of the nose, corners of the ears) in both I1 and I2 are available.
(Some of the feature points may be occluded in one or both images).

Let j1, .., jp denote the indices of the vertices in the face model correspond-
ing to these feature points. Starting from the average shape parameters (α = 0),
we use a quasi-newton gradient descent method to minimize

E f = ∑
i=1,..,p

δ1i||P1s ji − p1i||2 +δ2i||P2s ji − p2i||2, (20)

and obtain a rough initial estimate of the shape and rigid body transformation
parameters. Here, δ1i = 1 if the ith feature is visible in image I1 and 0 otherwise
(and similarly for δ2i and I2), p1i is the image coordinate of the ith feature in
image I1, and p2i is the image coordinate of the ith feature in image I2.

Optimization For comparison purposes we evaluate the fitting performance
of E and E ′ with and without the texture model terms. In experiments where
we utilize only the stereo terms in E (or E ′), we start with model parameters
α,ρ from the initial fit. In experiments that include texture we also start with
the average texture parameters (β = 0), and lighting parameters τ such that
iamb = 1, idir = 1 (i.e., white ambient and directional lights), and ioffset = 0 (zero
offset), where i = R,G,B. The lighting direction l is initialized to be the bisector
of the two cameras viewing directions.

We minimize:
E +λ ·E f (21)

with respect to the suitable parameters, using a stochastic quasi-newton gradi-
ent descent method.

To avoid local minima, we use a coarse-to-fine approach, with 3 levels of res-
olution. At the coarsest resolution, we use versions of I1 and I2 that are down-
sampled by a factor of four, together with a corresponding low resolution ver-
sion of the 3D face model. As we progress toward the finest level of resolution,
we use smaller and smaller values for λ , σs and σt , which gives smaller weights



to the feature term and the shape and texture priors. At regular intervals (more
frequently at coarser levels), we recompute the self-occluded vertices (and thus
V ) as well as the normals (nk). Instead of computing the energy using all the
vertices vk ∈ V , at each iteration we randomly select a sub-set of these vertices
on which to compute the energy (we use 1000, 2000 and 3000, at each level of
resolution). In this selection process, we select vertices with probability pro-
portional to the average (over the stereo pair) foreshortened area of the patch
around them. When we utilize the complete E or E ′, we sample at the baricen-
ters of the triangles of the mesh instead of the vertices because that allows for
easier computation of the gradient of the energy. In this case, both V and the
occlusion map are defined over the set of triangles, and k indexes the triangles
that compose the model.

4 Experimental Results

We evaluated the procedure of Sect. 3.4 using the original energy (E) and the
robust energy (E ′), along with modifications of these energies obtained by ex-
cluding the texture terms. Throughout this section, we refer to these as stereo+
texture, stereo, robust stereo+texture, and robust stereo, respectively. To ensure
a valid comparison between the different cases, we used equivalent parameters
for the feature match weight (λ ) and the model priors (σs and σt ) in each ex-
periment. Only the first 40 shape and texture basis vectors were used, since this
was found to provide adequate results.

4.1 Accuracy in the Absence of Occlusions

To evaluate the benefits of incorporating a texture model in the absence of oc-
clusions, testing was performed on a subset of sixty individuals from the K.U.
Leuven stereo face database [5], which contains stereo pairs of each individual
in eight different positions. We obtained fitting results using the stereo and the
stereo+texture methods for all eight poses in each of the sixty people, for a total
of 480 model fits. Note that the stereo fitting approach is that proposed in [5].

Figures 3 and 4 exemplify the differences between the fits obtained using
stereo (first two terms of E) and stereo+texture (E). At first glance, the results in
Fig. 3 suggest that the shape estimates using both methods are quite similar. The

stereo matching cost (∑k|vk∈V
||I1(P1sk)−I2(P2sk)||2

|V | ) was computed to be 280.77 for the
stereo method and 340.17 for the stereo+texture method, so the shape obtained
using only the stereo term is better in terms of the per-vertex stereo intensity
match. However, from Fig. 4 it is clear that the eye, eyebrow and mouth align-
ment between the model and the images is significantly more accurate when
the texture model is included.

These results suggest that either approach may be sufficient if the desired
output is a depth map or 3D model for image synthesis. For recognition, how-
ever, where one links shape parameters to identity, it is important for features in



the fitted model to be aligned with the features in the database models. Our ex-
periments suggest that one way to ensure this alignment is to include a texture
model in the fitting procedure.

The same effect can be observed by studying the distribution of the 480 re-
covered shape models (60 individuals under 8 poses) in the forty-dimensional
whitened shape parameter space. Two statistics relate to the quality of the fit-
ting procedure from a recognition standpoint. First, for a single individual, we
would like the difference between the fits for different poses to be small. Sec-
ond, we would like the difference between fits for distinct individuals to be
large. These can be measured based on the within-class (within-subject) scat-
ter matrix (Sw) and the between-class scatter matrix (Sb). Roughly speaking, the
larger the determinant and trace of (S−1

w Sb) are, the more accurate a classifier
based on these fits will be. Using results from the 480 fits we found the de-
terminants of S−1

w Sb to be 2.9640e−5 and 1.3418e−11 and the traces of S−1
w Sb to

be 104.0478 and 69.4101 for the stereo+texture method and the stereo method,
respectively. These quantitative results support the qualitative observations in
Figs. 3 and 4 and suggest that fits obtained with the inclusion of the texture
model are significantly more robust to pose changes.

Fig. 3. Comparison of a fit using both stereo and texture to that obtained using stereo
alone. Rows indicate left and right images of the stereo pair. First column: shape estimate
using stereo, second column: input images, third column: shape estimate using stereo
and texture.

4.2 Accuracy with Occlusions

We also tested the occlusion cases described in Sect. 3.3 by applying the robust
fitting process to captured data. For these fitting results, a value of no = 250 was



Fig. 4. Same comparison as that in Fig. 3, but mapped with estimated textures and ren-
dered semi-transparently over input images. While both the shape obtained using stereo
(top) and that obtained using stereo and texture (bottom) provide reasonable depth
maps for the input stereo pair (Fig. 3), only the joint use of stereo and texture ensures
feature alignment.

used for the robust stereo method, and a value of no = 800 was used for the
robust stereo+texture method.

Figure 5 shows results obtained using the robust stereo and robust stereo+
texture method in the case of half-occlusion (case HO) by a textureless foreign
body. As described in Sect. 3.3, in this case we expect the results for both meth-
ods to be similar because the stereo cue is sufficient to detect the occluder.
As shown in the figure, this is indeed the case. Notice that the occlusion map
captures not only the occluder, but also artifacts that are not predicted by the
model, including specular highlights and cast shadows.

Figure 6 shows similar results for the case of a textured occluder that is close
to the surface (case FOn). In this case, the stereo constraint is insufficient for
detecting the occluder, and the addition of a texture term provides substantial
improvement.

The results from the two occlusion cases are compared to the ‘ground truth’
shape obtained in the absence of occlusion in Fig. 7. The results obtained by
the robust stereo+texture method are relatively consistent over all cases, but
the same cannot be said for those obtained using the stereo match alone. Notice
that in all cases, the recovered models deviate from the unoccluded model in
the unobserved regions of the face. This is to be expected, since there is no shape
or texture information available in these regions.

5 Conclusions

We have presented a method for the recovery of face models from stereo pairs
of images in the presence of foreign-body occlusions. In this approach, a face
model (a 3DMM) is augmented by an occlusion map defined on the model
shape, and foreign-body occlusions are detected efficiently using robust esti-



Fig. 5. Models are fit to an input stereo pair (top row) using robust stereo (left columns)
and robust stereo and texture (right columns). Here, the face is half-occluded (occluder
type HO) by a textureless object. The results from the two methods are very similar,
showing that the stereo match term alone suffices for detecting the occluder. The bottom
row shows the estimated occlusion map with black indicating foreign-body occlusion
(O(k) = 1), white indicating visible vertices (O(k) = 0 and vk ∈ V ), and red indicating
self-occlusion (vk 6∈V ).

mators. The approach uses an explicit model for texture in addition to shape in
an energy-based stereo fitting process.

Experimental results demonstrate robustness to occlusions, and they high-
light the relative importance of the stereo match term and the texture match
term in the energy. They suggest that both shape and texture components of a
3DMM should be incorporated if one seeks to detect general classes of occlud-
ers. The results also suggest that even in the absence of foreign-body occlu-
sions, an explicit texture model can significantly improve stereo fitting results.
The texture model provides one way of ensuring proper alignment of features
(eyes, eyebrows, lips, etc) in the fitted model.

Another possible approach to achieve alignment, and one we plan to ex-
plore in the future, is to use only shape in the stereo fitting process and to in-
corporate a stereo matching term that is more sophisticated than simple per-
vertex intensity differences. This is the approach taken in [19], for example,
where window-based matching is employed. One may also look at other fea-
ture spaces for fitting (e.g. [20]), as well as better models for the distribution of
the error in the modeling of texture (Eq. 5).

Finally, if one is to perform recognition based on models obtained in the
presence of occlusions, one would likely want a second model refinement step



Fig. 6. Same as in Fig. 5, but for the case of a textured foreign-body occluder that is close
to the face (occluder of type FOn). In this case, as evidenced by the occlusion map on
the bottom left, the stereo match term alone is not enough to detect the occluder, and the
recovered model is inaccurate. Including the texture model (bottom right) significantly
improves the result.

in which one breaks the initial model into segments [6] in a way that respects
the occlusion boundaries. The goal would then be to infer identity using only
the unoccluded segments of the model.
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