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Abstract
Helmholtz stereopsis is a surface reconstruction method
that exploits reciprocity for the recovery of 3D shape with-
out an assumed BRDF model, and it has been shown to yield
high quality results when the cameras and light sources
are carefully calibrated. In many practical cases, how-
ever, accurate off-line calibration is difficult (or impossi-
ble) to achieve. We address this issue by exploring wide-
baseline matching in Helmholtz stereo images. We identify
two classes of local image interest regions (‘features’) that
can be reliably detected and matched between views in a
Helmholtz stereo dataset; and by exploiting reciprocity, we
show how these regions can be used to recover both geomet-
ric and radiometric calibration information. When used in
conjunction with existing methods for dense reconstruction,
this provides an automated shape recovery pipeline that op-
erates independent of reflectance and does not require the
acquisition of additional calibration images off-line.

1. Introduction

Image-based modeling systems are designed to accurately
recover the shape (and often reflectance) of a scene for tasks
such as visual inspection, reverse engineering, digital object
archival, virtual reality and enrollment for 3D face/object
recognition systems. A large variety of suitable shape-
recovery techniques exist, including view-based methods
such as stereo and structure-from-motion and lighting-
based methods such as photometric stereo. Helmholtz stere-
opsis [6, 16] is an image-based shape recovery method
that combines the benefits of photometric reconstruction—
direct estimation of surface normals—with those of tradi-
tional geometric methods like stereo and structure-from-
motion (e.g., identification of depth discontinuities.) The
advantage of Helmholtz stereopsis is that it decouples
the shape and reflectance information in images, enabling
the recovery of surface shape without an assumed BRDF
model. As a result, it can be used to recover accurate sur-
face shape for a very broad class of surfaces.

Helmholtz stereopsis is based on the analysis of recipro-
cal image pairs (Fig. 2), and it has been shown to yield high

Figure 1. Induced image features for robust matching. Due to reci-
procity, specular highlights are fixed to the surface and serve as
stable image features in a Helmholtz stereo pair. They provide a
means to recover the epipolar geometry from textureless surfaces
which are void of ‘intrinsic’ features.

quality results from two [13, 18] or more [2, 16] such pairs
when the cameras and light sources are carefully calibrated.
But for many modeling applications, it is impossible—or at
least impractical—to maintain a controlled acquisition en-
vironment. When digitizing cultural artifacts, for example,
or for large-scale enrollment in face recognition systems,
images often need to be acquired on-site. For Helmholtz
stereopsis to be a practical modeling tool in these condi-
tions, the need for off-line calibration must be addressed,
and auto-calibration techniques must be developed.

Helmholtz stereo reconstruction with only partial
calibration information has been explored in previous
work [17], but it has been assumed that the epipolar geome-
try of the system is known. The pre-requisite step of finding
the epipolar geometry has not yet been investigated. In this
paper, we move closer to a complete auto-calibration system
by investigating the use of interest regions—regions that can
be reliably identified and matched across wide baselines—
for recovering the epipolar geometry and radiometric cali-
bration of a reciprocal pair of images.

We show that two types of interest regions can be dis-
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tinguished. First, for surfaces with significant spatial re-
flectance variation (‘texture’), we can detect and match
affine covariant regions using techniques similar to those
used in conventional stereo (e.g., [7, 14]). An important
difference, however, is that due to reciprocity, intensities
in corresponding regions are equal up to a scale factor—a
property that does not hold in conventional stereo images
unless the surface is Lambertian. (See Fig. 3.)

The second type of interest region is not texture-based,
and is unique to reciprocal image pairs. For specular sur-
faces without texture, the specular highlights themselves
provide stable interest regions, since these highlights re-
main fixed to the surface and can be used for matching. (See
Fig. 1.) In addition to providing information for geometric
calibration, this second type of interest region provides par-
tial radiometric calibration information in the form of the
relative light source strengths1 This radiometric information
is needed for dense matching [17], but until now, obtaining
it has required an off-line calibration procedure [3].

When used in conjunction with existing methods for
dense reconstruction [2, 13, 16–18], the techniques devel-
oped in this paper provide an automated system for image-
based shape recovery using Helmholtz stereopsis.

2. Background
To review Helmholtz stereopsis, we follow [6,16] and write
the reciprocity constraint relating radiance observations at
corresponding image points in a reciprocal pair of images:
(
el(x)

slv̂l(x)

|ol − x|2 − er(x)
srv̂r(x)

|or − x|2
)
· n̂(x) = 0. (1)

Here, el(x) and er(x) are the scene radiance values mea-
sured at the left- and right-image projections of a surface
point x ∈ R3. (These are abbreviations for the composite
functions ei(πi(x)) where πi: R3 → R2 is the projection of
the ith camera, and ei: Ei ⊂ R2 → R+ is the scene radi-
ance measured on the finite domainEi of the image plane.)
As shown in Fig. 2, n̂(x) is the surface normal at x, and
the unit vectors v̂l and v̂r are the directions from x to the
camera/source positions ol and or. The scalar values sr and
sl are the strengths of the two isotropic point light sources.
(Anisotropic illumination can also be modeled [3].)

The two main observations regarding Eq. 1 are: 1) due
to Helmholtz reciprocity, it does not depend on the surface
BRDF, and 2) it provides direct information about the sur-
face normal in addition to the depth at each surface point.

When the distance from the scene to the cameras/sources
is large relative to the relief of the scene, the illumina-
tion approaches that of directional sources, and the cam-
eras can be represented using a parallel-projection model.

1Complete radiometric calibration includes the radiometric response
functions of the cameras. Here, we assume these functions to be either
linear or known.

Under these conditions, the values slv̂l(x)/|ol − x|2 and
srv̂r(x)/|or − x|2 are independent of x, and Eq. 1 reduces
to the far-field reciprocity constraint [17, 18],

(el(x)slv̂l − er(x)srv̂r) · n̂(x) = 0. (2)

(We have abused our notation slightly by appropriately re-
defining sl and sr.)

Since they relate the observed intensities to surface in-
formation, Eqs. 1 and 2 can be used for surface reconstruc-
tion [2,6,13,16,18]. But all of these methods require that the
cameras are geometrically and radiometrically calibrated a
priori. Geometric calibration provides the intrinsic and ex-
trinsic camera parameters, and radiometric calibration pro-
vides: 1) the radiometric response functions of the cameras
(not required if they are linear and equal), 2) the optical
fall-off and vignetting effects in the cameras, 3) the rela-
tive strength of the light sources, and 4) the light source
anisotropy. Techniques for target-based geometric calibra-
tion are generally the same as those used for conventional
stereo systems (e.g., [15]), and an elegant technique for ra-
diometric calibration is presented by Janko et al. [3]; but
these methods require precise calibration targets and the
careful acquisition of additional calibration images off-line.

Zickler et al. [17] show that the constraints in Eqs. 1
and 2 can be adapted so that dense correspondence can
be achieved with limited radiometric calibration provided
that the epipolar geometry is known. (The pre-requisite re-
covery of the epipolar geometry was not explored.) In the
far-field case, this approach yields a dense reconstruction—
including surface normals and relative source strengths—
that is defined up to an affine transformation of the world.

2.1. Regions of Local Interest

Most methods for recovering the epipolar geometry from a
set of two or more images of a static scene are based on
the detection and matching of local interest regions or ‘fea-
tures’. In addition to robust matching across large varia-
tions in viewpoint, these techniques can be useful for object
recognition, image databases, and a variety of other appli-
cations. There is a large body of work in this area, only a
small portion of which is discussed here. For more infor-
mation, the reader is referred to a recent article by Lowe [5]
and the survey articles by Mikolajczyk et al. [9, 11].

There are typically three stages in estimating epipolar
geometry from interest regions. The first step is to detect
these regions in a manner that is invariant under similar-
ity (or affine) transformations, for example, by locating ex-
trema of a derivative-based operator in scale-space [4, 5].
The output of this detection stage is typically the location of
the region center as well as its ‘characteristic scale’. Once
candidate regions have been detected, the second stage con-
sists of establishing correspondence between regions in one



image and those in another. This is accomplished by com-
puting a descriptor that summarizes the region in a similar-
ity or affine invariant manner. In experiments conducted
by Mikolajczyk and Schmid [9], the SIFT descriptor [5]
has been shown to outperform a number of others. It is a
128-element vector computed from the spatial distribution
of image gradients in the region of interest. (To make this
descriptor invariant under rotations, the region is first ro-
tated according to its dominant rotation.)

In the third stage, incorrect matches are discarded using a
robust estimation scheme such as RANSAC, using a seven-
point computation of the fundamental matrix [12].

3. Reciprocal Image Interest Regions
As discussed in Sect. 2, the relation between intensities at
corresponding points in a reciprocal pair of images is inde-
pendent of the surface reflectance. In this section, we show
how this property can be exploited to reliably detect and
accurately match interest regions. We distinguish between
two types of regions and discuss each separately.

3.1. Spatial Variation (Type I)

Consider a planar region Ω ⊂ R2 on a surface, and sup-
pose we acquire a reciprocal image pair of this surface as
shown in Fig. 2. When it is sufficiently small, the rela-
tion between the left and right projections of this region
is well represented by an affinity. That is, there exists an
affine transformation A: R2 → R2 satisfying A(πl(u)) =
πr(u) ∀ u ∈ Ω. Letting ωl ⊂ El = {πl(u), u ∈ Ω} and
ωr ⊂ Er = {πr(u), u ∈ Ω} represent the left and right
projections of Ω, we write this geometric relationship as

ωl ↔ A(ωr). (3)

Since Ω is small, the directions (v̂l and v̂r) from the sur-
face to the camera/source positions are constant over the
region, and from Eq. 1 we have

el(ωl) = β1er(ωr), (4)

where

β1 =
srv̂
>
r n̂

slv̂>l n̂
or β1 =

srv̂
>
r n̂

slv̂>l n̂

|ol − x|2
|or − x|2 ,

for the far-field or near-field case, respectively. Here, n̂ is
the normal to the planar region Ω.

Equation 4 states that the radiance measured at each
point in the region ωr of the right image is equal to the
corresponding point in the left image up to a common
scale factor. By reciprocity, this is true for any planar re-
gion, even those with arbitrary BRDFs that vary—perhaps
discontinuously—from point to point. Note that this is not

v̂l

n̂

v̂r

ol

or

Ω

x

Figure 2. A reciprocal pair of images of a small planar region.
Radiance measured at the left and right projections of the planar
region Ω are related by an affine transformation and a single scale
factor. (See Eq. 4.) This relationship is independent of the BRDF.

true for a conventional stereo pair unless the BRDF at each
point is constant (i.e., the surface is Lambertian.)

The distinction between reciprocal and conventional
stereo images is demonstrated by an extreme example in
Fig. 3, which shows images of a planar surface with a
spatially-varying BRDF. The top-left shows a conventional
(fixed-illumination) stereo pair, and the top-right shows a
reciprocal image pair captured from the same two view-
points. For each pair, the bottom row shows the difference
el(ωl) − β1er(A(ωr)). (Here, the affine transformation A
is computed from manually identified correspondences, and
β1 is chosen to minimize the difference.)

In the conventional stereo pair in the left of Fig. 3, we
see that the painted regions of the surface are nearly Lam-
bertian, and their emitted radiance does not change sig-
nificantly with viewpoint. The unpainted regions, how-
ever, are highly specular, and extreme variation is ob-
served between views. Detecting and matching regions in
cases of such extreme spatial variation is difficult—if not
impossible—under the fixed illumination conditions of con-
ventional stereo, even when using methods that are invariant
to uniform changes in brightness and contrast.

The right of Fig. 3 demonstrates that reciprocal images
do not suffer from this same limitation, since the radi-
ance values observed in corresponding regions ωl and ωr
are related by Eq. 4, regardless of the reflectance. For
this reason, most existing region detectors and descrip-
tors that have been developed for conventional stereo and
SFM (e.g., [5, 7, 10, 14]) can be used directly on reciprocal
images without change. Indeed, as this example suggests,
we can only expect their performance to improve relative to
that under fixed-illumination conditions. All that is required
is that they be invariant to changes in contrast (i.e., a global
scaling of illumination), which is generally the case.

As mentioned in Sect. 2, there is a vast body of existing
work in this area, and we refer the reader to those references
for further details. The next section discusses a second type
of interest region that is unique to reciprocal images.



CONVENTIONAL RECIPROCAL

Figure 3. Top row: conventional (left) and reciprocal (right) stereo pairs of a planar surface with spatially-varying BRDF. Bottom: Differ-
ence images after a global scaling of intensity and geometrical alignment by an affine transformation. In the reciprocal case, the aligned
images are equal up to scale. This is not true in the conventional case unless the surface is Lambertian.

3.2. Specular Highlights (Type II)

It has been observed that highlights due to specular re-
flection appear ‘fixed to the surface’ in a reciprocal image
pair [16]. This section explores this idea, showing that spec-
ular highlights are indeed stable interest regions.

In reciprocal images of a curved, specular surface, high-
lights are observed near points at which the surface normal
bisects the view and illumination directions v̂l and v̂r. In
the neighborhood of such a point, a smooth surface can be
locally approximated by a patch x: Ω ⊂ R2 → R3 of the
form x(x, y) = (x, y, z(x, y)), where

z(x, y) = −a
2
x2 − b

2
y2. (5)

As shown in Fig. 4, we can choose the coordinate system
such that the origin is at the point with bisecting surface
normal, the plane z = 0 is aligned with the tangent plane
at that point, and the x- and y-axes are aligned with the
directions of principal curvature.

As in the previous section, the region Ω is assumed to
be small so that the far-field approximation can be made
locally, even if the cameras are perspective. In this case, the
reciprocal directions are constant over the patch, and in the
coordinate system of Fig. 4, they can be expressed as

v̂l = (cos θ sinφ, sin θ sinφ, cosφ) (6)
v̂r = (− cos θ sinφ,− sin θ sinφ, cosφ),

where 2φ is the vergence angle of the reciprocal pair.
Unlike the Type I case of the previous section, the sur-

face is not planar, and there is no simple geometric relation-
ship between corresponding sets of image points analogous
to Eq. 3. As shown on the right of Fig. 4, however, a sym-
metry does exists because the imaging configurations are
equivalent up to a 180◦ rotation about the z-axis. The sur-
face point x, for example, when illuminated from v̂l and
viewed from v̂r emits the same radiance—assuming equal
source strengths and an isotropic BRDF—as the point x′

in the reciprocal case. As a result, when the reflectance is
spatially-invariant and isotropic2 over the patch, the two im-

2In fact, anisotropic BRDFs are allowed provided that the orientations
of the tangent vectors are consistent at symmetric surface points.

ages of this patch will ‘look the same’, even though points
of equal radiance in the two images are not projections of
the same surface point. This is true for arbitrary BRDFs, in-
cluding those with ‘off-specular peaks’ for which the max-
imum intensity does not occur at the bisecting normal.

To state this relationship more precisely, let

ωl ⊂ El = {πl(x(x, y)), (x, y) ∈ Ω},
ωr ⊂ Er = {πr(x(x, y)), (x, y) ∈ Ω}

represent the left and right projections of the surface patch.
Then there exists a similarity transformation S : R2 → R2

such that
el(ωl) = β2er(S(ωr)), (7)

where

β2 =
sr
sl

or β2 =
sr|ol − x|2
sl|or − x|2 ,

is the ratio of the (distance-weighted) source strengths for
the far-field or near-field case, respectively. Note that in the
strict sense, for a similarity transformation to be sufficient
in Eq. 7, the cameras must be well-approximated locally by
scaled-orthographic cameras as opposed to arbitrary affine
cameras. But when this is true (as it typically is), the trans-
formation S allows for changes in scale (e.g., due to zoom)
and for rotations of the two cameras about their optical axes.

3.2.1 Region Correspondence

Figure 5 provides an example of how this relationship
can be used to determine correspondence between detected
highlight regions in a reciprocal image pair. The left-most
panel in the figure shows highlights that are detected using
a generic interest point detector [5]. For many of these re-
gions, the surface behaves locally like the quadratic patch
in Fig. 4, and as a result, corresponding regions in the two
images will be similar in appearance as described by Eq. 7.

To determine the correct correspondence between re-
gions, we can use any existing method that is invariant to
similarity transformations and contrast variation. Here, we
use the SIFT descriptor [5]. For each detected region, a
128-dimensional SIFT descriptor is computed using the ap-
propriate orientation and scale, and for each descriptor, the
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Figure 4. Side and top views of a surface patch in the neighborhood
of a specular highlight. Reciprocal images of this patch are ac-
quired from directions v̂l and v̂r , and due to symmetry and BRDF
isotropy, the two images are equal up to similarity transformation.

nearest neighbor (in term of Euclidean distance in descrip-
tor space) in the other image is determined through an ex-
haustive search. Regions that do not yield a symmetric
match are discarded, and the results of this procedure are
shown in the center panel of Fig. 5. False matches are rare
because the images of each highlight region depend on the
local curvature of the surface which is often quite distinct.

3.2.2 Radiometric Calibration

Since the relationship between corresponding Type II re-
gions (Eq. 7) is independent of the surface normal and cam-
era/source directions, it provides a constraint for recover-
ing the relative strengths of the light sources for radiometric
calibration. In the general case, this relationship depends
on the relative distances to the cameras/sources, and source
strengths must be recovered iteratively in conjunction with
the surface depth. In the far-field case, however, this depen-
dence disappears, and each pair of matched Type II features
provides a direct constraint on the source strengths.

For far-field cameras and sources, Eq. 7 states that the
ratio of the source strengths is simply the inverse of the ratio
of the radiance measurements of the two aligned regions.
In practice, given a region correspondence as described in
Sect. 3.2.1, the value of β2 can be recovered by minimizing

C(p, β2) =
∑

u∈ωl
(el(u)− β2er(S(u; p)))

2
, (8)

where p is a vector of four parameters defining a similarity
transformation. This optimization can be computed very
efficiently using established methods for alignment [1].

Each matched Type II region provides an estimate of the
relative source strength, and if the sources are assumed to
be isotropic (or uniform directional sources), one can sim-
ply take the average of these estimates. More general mod-
els of source variation are possible, however, and by choos-
ing a basis for the source anisotropy, more accurate radio-
metric calibration information can be recovered. Janko et
al. [3] show that both anisotropic sources and optical fall-off
in the cameras can be modeled using functions sl(ul) and
sr(ur) defined on the image planes. Based on this obser-
vation, if these functions are chosen to be suitably smooth
(e.g., polynomials of low order), they could be uniquely re-
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Figure 6. Error in point matches for synthetic quadratic patches
(Eq. 5) rendered with the measured metallic-blue BRDF [8]. Top:
Three of the reciprocal pairs (a/b = 3, θ = 0◦, 45◦, 90◦) used
as input. Left: reprojection and epipolar errors (normalized by
feature scale) for patch with a/b = 3 at different orientations rel-
ative to the epipolar plane. Right: epipolar error for patches with
θ = 45◦ and increasing surface anisotropy a/b.

covered from the relative source strength measurements ob-
tained from a small number of matched highlight regions.

For the data used in this paper, we found constant source
strengths to be sufficiently accurate, and leave the analysis
of more general bases for source anisotropy for future work.

4. Evaluation
The previous section introduced two types of interest re-
gions, one that is similar to regions used for conventional
stereo and another that is unique to Helmholtz stereopsis.
Since Type I regions have been well-studied in the context
of conventional stereo, we restrict the evaluation in this pa-
per to Type II regions, and we examine their utility for both
geometric and radiometric calibration.

4.1. Synthetic Data

As shown in Sect. 3.2.1, for matched Type II regions, left
and right image points of equal radiance do not necessarily
correspond to projections of the same surface point. These
‘region correspondences’ are sufficient for the purpose of
radiometric calibration, but in order to estimate epipolar ge-
ometry, we are forced to select a unique pair of correspond-
ing points within matched regions. A correct choice can-
not be made without additional knowledge about the surface
BRDF, but such knowledge is rarely available. Instead, we
investigated the efficacy of one particular choice that does
not require this knowledge.

We choose points within each Type II region using the
extremum of the difference-of-Gaussian function in scale
space, and as suggested by Lowe [5], we localize the ex-
trema by fitting a 3D quadratic function. To assess the ge-
ometric calibration error induced by this choice, we per-
formed a synthetic experiment with rendered far-field re-
ciprocal pairs of quadratic patches using the metallic-blue
BRDF from the MIT/MERL database [8] and a vergence
angle (2ψ) of 40◦. Three example pairs are in the top of
Fig. 4 with the extrema points (base of the arrows),extrema
scales (one-sixth of arrow lengths), and epipolar lines all



Figure 5. Specular highlight matching. Left: Initial interest regions detected as extrema in scale space. Middle: Region correspondence
obtained using SIFT descriptors. Right: Inlier point matches obtained following local maxima detection and RANSAC.

shown.

The graphs in Fig. 6 are errors that show the ef-
fects of orientation (θ in Eq. 6 and Fig. 4) and sur-
face anisotropy (a/b, with a and b as in Eq. 5). For
each rendered pair, left and right image points (ul and
ur) corresponding to scale space extrema were found,
and two measures of geometric error for the match
ul ↔ ur were computed. Symmetric epipolar error(
d(ur,Ful)

2 + d(ul,F
>ur)

2
)1/2, where F is the known

fundamental matrix and d(·, ·) is the image-plane dis-
tance between a point and a line, measures deviation from
the epipolar constraint; and symmetric reprojection error(
d(ul, πl(π

−1
r (ur)))

2 + d(ur, πr(π
−1
l (ul)))

2
)1/2

, where
π−1(·) is the back-projection of an image point onto the
known quadratic patch, measures ‘total error’. These two
errors are scale-normalized by dividing by the scale of the
extremum, making them independent of both the image res-
olution and the absolute magnitudes of a and b.

The left graph in Fig. 6 shows the error for a quadratic
patch with a/b = 3 at a range of orientations. At θ = 0◦

and 90◦, one of the directions of principal surface curva-
ture is contained in the epipolar plane, and even though the
match is inaccurate (as evidenced by the reprojection error),
the error is confined to the epipolar plane. As a result, cor-
respondences ul ↔ ur from these patches can be used to
estimate the fundamental matrix without negatively affect-
ing the result. Note that the maximum epipolar error occurs
when the directions of principal surface curvature are ori-
ented at 45◦ angles to the epipolar plane.

The right graph in Fig. 6 shows epipolar error for a patch
with ‘worst case’ orientation (θ = 45◦) and increasing sur-
face anisotropy. When a = b, the error is confined to the
epipolar plane, and as above, a correspondence from the
patch satisfies the epipolar constraint almost exactly. The
epipolar error increases linearly with the surface anisotropy.

To provide a sense of how these scale-normalized errors
translate to pixel errors, consider the example in the left of
Fig. 7. The average scale of the inlying Type II features for
this pair was found to be 3.54. A scale-normalized error of
0.05 translates to 0.18 pixels at this scale.

4.2. Real Data

For evaluation with real data, reciprocal pairs were acquired
using a 12-bit Canon D10 camera (with linear radiomet-
ric response function) and multiple Lowel Pro 250W halo-
gen light sources. The camera and sources were placed at
a distance of 2m from the object and were approximately
swapped to simulate reciprocal imaging conditions. Differ-
ent light sources (of the same make and model) were used
for the left and right images of each reciprocal pair, and the
source strengths were seen to differ by as much as 25%.

Figure 5 illustrates the stages of the matching process.
As described in Sect. 3.2.1, the first and second panels show
the regions initially detected as extrema in scale space and
those surviving the SIFT-based symmetric nearest-neighbor
matching process. In the final stage of geometric calibra-
tion, symmetric SIFT matches are used as input to a 7-point
RANSAC procedure (10 000 iterations; inlier threshold =
0.01 pixels) for estimation of the fundamental matrix [12].
The results are shown in the third panel of Fig. 5. To ob-
tain radiometric calibration information, each of these fi-
nal matches is used to compute an estimate of the relative
source strengths (Sect. 3.2.2), and these estimates are aver-
aged to obtain global relative source strength values.

Reciprocal
Pair

Detected
L/R

Symmetric
Matches

Inliers RMS Epi.
Error

Source
L:R

Fig. 7 (left) 573/361 276 139 0.093 1.21:1
Fig. 7 (right) 513/322 231 132 0.083 1.30:1

Table 1. Columns 2–5: Number of detected interest regions and
error with respect to estimated epipolar geometry. Column 6: Es-
timated relative strengths of the two light sources.

Figure 7 shows the recovered epipolar lines and inlying
matches for two reciprocal image pairs, and summaries of
the detection numbers and source strengths are shown in
Table 1. For both reciprocal pairs, the accuracy is quite
high, with the RMS symmetric epipolar distance being less
than one-tenth of a pixel.

5. Application to Dense Reconstruction

While a typical object or scene includes both Type I and
Type II features, in this section we consider the problem of
dense reconstruction in the extreme case where only Type



Figure 7. Epipolar geometry recovered using specular highlights as
stable interest points. Superimposed on each of the two reciprocal
pairs are representative epipolar lines (yellow) and corresponding
specular feature points deemed as inliers (green). In each case, the
RMS epipolar error is below one-tenth of a pixel.

II features are available. For a multi-camera reciprocal sys-
tem, calibration using only Type II features requires special
consideration. While specular highlights remain fixed to the
surface in a single reciprocal image pair and can be used to
estimate a fundamental matrix, they generally shift across
the surface from one reciprocal pair to the next. As a result,
for the purposes of geometric calibration, we are limited by
the fact that there are generally no detected surface points
observed by more than two views.

To solve this problem, we make use of the fact that there
is a four-parameter family of camera matrix pairs {P1,P2}
corresponding to a given fundamental matrix F12, and that
we can fix a projective coordinate system (and obtain a pro-
jective reconstruction) simply by choosing a member of this
family. Then, to recover a third camera P3 in the same pro-
jective coordinate frame, we can solve the system of lin-
ear equations resulting from the constraint that the matrices
P>3 F13P1 and P>3 F23P2 must be skew-symmetric. The
only restriction in using this procedure is that the three cam-
era centers cannot be collinear. In this way, a three-camera
projective reconstruction can be obtained even though none
of the world points are explicitly identified.

In a multi-camera reciprocal acquisition system, one can
obtain fundamental matrices for all possible camera/source
pairs using only Type II features as described in the previous
section. By selecting an initial pair of cameras, the proce-
dure outlined above can be used to successively recover all
of the cameras in the system. The collinearity constraint is
generally not a severe restriction, since the camera/source
positions can be chosen appropriately.

An example of an object reconstructed using this ap-
proach is shown in Fig. 8. This surface was obtained from
ten reciprocal pairs (one of which are shown in the left of
Fig. 7) obtained from five camera/source positions using the
same equipment as described in Sect. 4.

Type II features were detected and matched between
pairs, and they were used to estimate the fundamental matri-
ces and the pair-wise relative source strengths as described
in Sect. 3.2. The ‘global’ relative strengths s1 . . . s5 of the
five light sources were recovered from the pair-wise rela-
tions by solving a homogeneous linear system (the ratio of
source strengths from each reciprocal pair give one linear

constraint on these five values), and these were found to be
0.74, 0.89, 0.89, 0.92 and 1.

The five cameras P1 . . .P5 were recovered from the col-
lection of fundamental matrices using the procedure out-
lined above. Unlike Sect. 4, for the result in Fig. 8, the cali-
bration problem was simplified by assuming affine cameras
(and affine fundamental matrices), and the affine ambigu-
ity in the reconstruction was resolved using so-called ‘met-
ric constraints’ on the cameras (i.e., that they have unit as-
pect ratio and zero pixel skew). Finally, a dense reconstruc-
tion was obtained using the method described by Zickler et
al. [16] adapted for variable source strengths.

The importance of a radiometric calibration is demon-
strated in Fig. 8(d), which compares the surface obtained
using the estimated relative source strengths to that ob-
tained assuming all sources are equal. To generate the lat-
ter, the surface from Fig. 8(a-c) was projected into the im-
ages, the surface normals were re-estimated using Eq. 2
with sl = sr = 1 for all pairs, and these new surface nor-
mals were integrated to recover the new surface. When the
sources are erroneously assumed to be constant, each sur-
face normal is biased, which results in the skewed surface
on the bottom of Fig. 8(d). In contrast, by making use of
the radiometric information from matched Type II features,
this ‘skewing’ is avoided.

6. Conclusion
Despite its ability to provide accurate reconstructions for a
broad class of surfaces, the utility of Helmholtz stereopsis
has been limited by its supposed need for off-line geometric
and radiometric calibration. This paper demonstrates that
stable interest regions exist in Helmholtz image pairs, and
that these interest regions can be used to obtain much of
the necessary calibration information directly from the data
without an off-line calibration.

We identify two distinct classes of features. The first is
analogous to interest regions used in conventional stereo,
while the second class is based on the use of specular high-
lights and is unique to Helmholtz stereopsis. In addition to
providing geometric information, the symmetry of a recip-
rocal imaging system means that specular features provide
essential radiometric information in the form of constraints
on the relative strengths of the light sources.

The methods for identifying and matching interest re-
gions described in this paper provide a necessary stepping
stone from a Helmholtz stereo dataset to a sparse, projective
reconstruction. This opens the door to questions regarding
how this reconstruction—along with the associated radio-
metric constraints—is best upgraded to a dense, metric re-
construction. This paper provides an example in which an
affine to metric upgrade is accomplished using established
tools from multi-view geometry; and reciprocity-specific
auto-calibration for the far-field (affine) case has received



(a) (b) (c) (d)
Figure 8. Dense reconstruction obtained by a self-calibrating reciprocal imaging system. Five camera/source positions capture ten recip-
rocal image pairs—one of which is in the left of Fig. 7—and the system self-calibrates both geometrically and radiometrically (in terms
of relative source strengths) using specular highlights as features. (a–c) Surface recovered using complete calibration information. (d)
Profile comparison with the surface obtained by a naive approach (bottom) that ignores radiometric calibration and erroneously assumes
all sources to be of equal strength.

some attention in past work [17]. However, reciprocity-
specific auto-calibration for dense reconstruction in the pro-
jective case remains largely unexplored.

There is a growing demand for three-dimensional visual
content, and in order to fill this need, practical and accurate
reconstruction systems must be developed. In this context,
tools for self-calibration, such as those presented here, will
likely play an important role.
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