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Abstract
When the shape of an object is known, its appearance is determined by the spatially-varying reflectance function
defined on its surface. Image-based rendering methods that use geometry seek to estimate this function from image
data. Most existing methods recover a unique angular reflectance function (e.g., BRDF) at each surface point and
provide reflectance estimates with high spatial resolution. Their angular accuracy is limited by the number of
available images, and as a result, most of these methods focus on capturing parametric or low-frequency angular
reflectance effects, or allowing only one of lighting or viewpoint variation. We present an alternative approach
that enables an increase in the angular accuracy of a spatially-varying reflectance function in exchange for a
decrease in spatial resolution. By framing the problem as scattered-data interpolation in a mixed spatial and
angular domain, reflectance information is shared across the surface, exploiting the high spatial resolution that
images provide to fill the holes between sparsely observed view and lighting directions. Since the BRDF typically
varies slowly from point to point over much of an object’s surface, this method enables image-based rendering
from a sparse set of images without assuming a parametric reflectance model. In fact, the method can even be
applied in the limiting case of a single input image.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction
Given a set of images of a scene, image-based rendering
(IBR) methods strive to build a representation for synthe-
sizing new images of that scene under arbitrary illumination
and viewpoint. One effective IBR representation consists of
the scene geometry coupled with a reflectance function de-
fined on that geometry. At a given point under given illu-
mination conditions, the reflectance function assigns a radi-
ance value to each exitant ray, so once the geometry and re-
flectance function are known, realistic images can be synthe-
sized under arbitrary viewpoint and (possibly complex and
near-field) illumination.

This approach to IBR involves two stages: recovery of
both geometry and reflectance. Yet, while great strides
have been made at recovering object shape (e.g., laser-
scanners and computer vision techniques), less progress has
been made at recovering reflectance properties. Recover-
ing reflectance is difficult because that is where the high-
dimensionality of IBR is rooted. At each surface point, re-
flectance is described by a four-dimensional function of the
view and lighting directions, termed the bi-directional re-

flectance distribution function (BRDF). The BRDF gener-
ally changes spatially over an object’s surface, and recov-
ering this spatially-varying BRDF (or 6D SBRDF) with-
out further assumptions generally requires a set of images
large enough to densely sample high-frequency radiometric
events, such as sharp specular highlights, at each point on
the surface. This set consists of a near exhaustive sampling
of images of the scene from all viewpoints and lighting di-
rections, which can be tens-of-thousands of images or more.

In previous work, recovering spatial reflectance has been
made tractable in two different ways. The first is to approx-
imate reflectance using an analytic BRDF model, thereby
simplifying the problem from that of recovering a 4D func-
tion at each point to that of estimating of a handful of param-
eters (e.g., [MLH02, SWI97, YDMH99, Geo03]). Since they
only recover a few parameters at each point, these methods
are able to provide reflectance estimates from a small num-
ber of images. They require the selection of a specific para-
metric BRDF model a priori, however, which limits their
accuracy and generality.
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The second category of methods avoids the restrictions of
parametric BRDF models by: i) using a much larger number
of input images, and ii) recovering only a subset of the re-
flectance function. For example, Wood et al. [WAA+00] use
over 600 images of an object under fixed (complex) illumi-
nation to estimate the 2D view-dependent reflectance varia-
tion, and Debevec et al. [DHT+00] use 2048 images to mea-
sure the 2D lighting-dependent variation with fixed view-
point. A full 4D (view and illumination) reflectance function
is measured by Matusik et al. [MPBM02], who use more
than 12,000 images of an object with known visual hull;
but even this large number of images provides only a sparse
sampling of the appearance variation at each point, and as
a result, images of the object can be synthesized using only
low-frequency illumination environments.

This paper presents an alternative approach to estimating
spatial reflectance—one that combines the benefits of both
parametric methods (i.e., sparse images) and non-parametric
methods (i.e., arbitrary reflectance functions.) In developing
this approach, it makes the following technical contributions.

• SBRDF estimation is posed as a scattered-data interpola-
tion problem, with images providing dense 2D slices of
data embedded in the mixed spatial and angular domain.

• This interpolation problem is solved by introducing: i) a
new parameterization of the BRDF domain, and ii) a non-
parametric representation of reflectance based on radial
basis functions (RBFs).

• This representation is easily adapted to handle: i) homo-
geneous BRDF data, ii) spatially-varying reflectance from
multiple images, and iii) spatially-varying reflectance
from a single input image.

Since it is non-parametric, the proposed method does not
assume a priori knowledge of the SBRDF and is flexible
enough to represent arbitrary reflectance functions, includ-
ing those with high-frequency specular effects. This ap-
proach is also very different from previous non-parametric
techniques (e.g., [WAA+00, DHT+00, MPBM02]) that in-
terpolate reflectance only in the angular dimensions, esti-
mating a unique reflectance function at each point. Instead,
we simultaneously interpolate in both the spatial and angu-
lar dimensions. This enables a controlled exchange between
spatial and angular information, effectively giving up some
of the spatial resolution in order to fill the holes between
sparsely observed view and illumination conditions. Since
reflectance typically varies slowly from point to point over
much of an object’s surface, this means that we can often ob-
tain visually pleasing results from a drastically reduced set
of images. Additionally, the method degrades gracefully as
the number of input images is reduced (see Fig. 6), and as
shown in Fig. 13, it can even be applied in the extreme case
of a single input image.

2. Main Ideas and Related Work
The proposed method for SBRDF estimation builds on three
principal observations.

Smooth Spatial Variation. Most existing methods recover a
unique BRDF at each point and thereby provide an SBRDF
with very high spatial resolution. Many parametric methods
have demonstrated, however, that the number of input im-
ages can be reduced if one is willing to accept a decrease in
spatial resolution. This has been exploited, for example, by
Yu et al. [YDMH99] and Georghiades [Geo03], who assume
that specular BRDF parameters are constant across a surface.
Similarly, Sato et al. [SWI97] estimate the specular parame-
ters at only a small set of points, later interpolating these pa-
rameters across the surface. Lensch et al. [LKG+01] present
a novel technique in which reflectance samples at clusters of
surface points are used to estimate a basis of (1-lobe) Lafor-
tune models. The reflectance at each point is then uniquely
expressed as a linear combination of these basis BRDFs.

Similar to these approaches, our method trades spatial res-
olution for an increase in angular resolution. The difference,
however, is that we implement this exchange using a non-
parametric representation. We begin by assuming that the
SBRDF varies smoothly in the spatial dimensions, but we
also demonstrate how this can be relaxed to handle rapid
spatial variation in terms of a multiplicative texture. (In cases
where the shape of the BRDF itself changes rapidly, we cur-
rently assume that discontinuities are given as input.)

Curved Surfaces. Techniques for image-based BRDF mea-
surement [LKK98,MWL+99,MPBM03] exploit the fact that
a single image of a curved, homogeneous surface repre-
sents a very dense sampling of a 2D slice of the 4D BRDF.
In this paper, we extend this idea to the spatially-varying
case, where an image provides a 2D slice in the higher-
dimensional SBRDF domain. Our results demonstrate that,
like the homogeneous case, surface curvature (along with
smooth spatial variation) can be exploited to increase the
angular resolution of the SBRDF. (For near-planar surfaces
where curvature is not available, more angular reflectance in-
formation can be obtained using near-field illumination and
perspective views [KMG96].)

Angular Compressibility. While it is a multi-dimensional
function, a typical BRDF varies slowly over much
of its angular domain. This property has been ex-
ploited for 3D shape reconstruction [HS03], efficient
BRDF acquisition [MPBM03], efficient rendering of
BRDFs [MAA01, JM03], and efficient evaluation of envi-
ronment maps [CON99, RH02]. Here, we exploit compress-
ibility by assuming that the BRDF typically varies rapidly
only in certain dimensions, such as the half-angle.

The three ideas of this section have been developed in
very different contexts, and this paper combines and expands
them to solve a novel problem: estimating non-parametric
SBRDFs from sparse images. The fusion of these ideas is
enabled by the BRDF parameterization of Sect. 3, and an in-
terpolation approach that unifies the treatment of spatial and
angular dimensions (Sects. 4–6).
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2.1. Assumptions
We exploit scene geometry to reduce the number of input im-
ages required to accurately represent appearance. Thus, un-
like pure light field techniques [GGSC96,LH96], the method
requires a set of images of an object with known geometry,
viewpoint, and either point-source or directional illumina-
tion. A number of suitable acquisition systems have been
presented (e.g., [SWI97, DHT+00, MPBM02].)

In addition, global effects such as sub-surface scatter-
ing and interreflection are not explicitly considered in our
formulation. For directional illumination and orthographic
views, however, some of these effects will be absorbed into
our representation and can be reproduced when rendered un-
der the same conditions. (See Sect. 7.) In this case, our use
of the term SBRDF is synonymous with the non-local re-
flectance field defined by Debevec et al. [DHT+00].

Finally, in this paper we restrict our attention to isotropic
BRDFs. While the ideas of exploiting spatial coherence and
using RBFs to interpolate scattered reflectance samples can
be applied to the anisotropic case, this would require a
parameterization which is different from that presented in
Sect. 3 and is left for future work.

3. Notation and BRDF Parameterization
At the core of our approach is the interpolation of scattered
data in multiple (3-6) dimensions, the success of which de-
pends on how the SBRDF is parameterized. This section in-
troduces some notation and presents one possible parame-
terization. Based on this parameterization, our interpolation
technique is discussed in Sects. 5 and 6.

The SBRDF is a function of six dimensions and is writ-
ten f (~x,~θ), where ~x = (x,y) ⊂ R

2 is the pair of spatial
coordinates that parameterize the surface geometry (a sur-
face point is written ~s(x,y)), and ~θ ∈ Ω×Ω are the angu-
lar coordinates that parameterize the double-hemisphere of
view/illumination directions in a local coordinate frame de-
fined on the tangent plane at a surface point (i.e., the BRDF
domain.) A common parameterization of the BRDF domain
is ~θ = (θi,φi,θo,φo), which represent the spherical coor-
dinates of the light and view directions in the local frame.
When the BRDF is isotropic, the angular variation reduces
to a function of three dimensions, commonly parameterized
by (θi,θo,φo − φi). In this work, we restrict ourselves to
this isotropic case and consider the SBRDF to be a func-
tion defined on a 5D domain. In the special case when the
SBRDF is a constant function of the spatial dimensions (i.e.,
f (~x,~θ) = f (~θ)) we say that the surface is homogeneous and
is described by a 4D (or isotropic 3D) function.

The BRDF domain can be parameterized in a num-
ber of ways, and as discussed below, one good choice
is Rusinkiewicz’s halfway/difference parameteriza-
tion [Rus98], shown in Fig. 1(a). Using this parame-
terization in the isotropic case, the BRDF domain is
~θ = (θh,φd ,θd) ⊂ [0, π

2 )× [0,π)× [0, π
2 ). Note that φd is

restricted to [0,π) since φd 7−→ φd +π by reciprocity.
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Figure 1: (a) The halfway/difference parameterization of
Rusinkiewicz. In the isotropic case, the BRDF domain is
parametrized by (θh,φd ,θd) [Rus98]. (b) The mapping defined by
Eq. (1) that creates a parameterization suitable for interpolation.

The existence of singularities at θh = 0 and θd = 0
and the required periodicity (φd 7−→ φd + π) make the
standard halfway/difference parameterization unsuitable for
most interpolation techniques. Instead, we define the map-
ping (θh,φd ,θd) 7−→ (u,v,w), as

(u,v,w) =

(

sinθh cos2φd ,sinθh sin2φd ,
2θd

π

)

. (1)

This mapping is shown in Fig. 1(b). It eliminates the singu-
larity at θh = 0 and ensures that the BRDF f (u,v,w) satisfies
reciprocity. In addition, the mapping is such that the remain-
ing singularity occurs at θd = 0 (i.e., where the light and
view directions are equivalent). This configuration is diffi-
cult to create in practice, making it unlikely to occur during
acquisition. During synthesis, it must be handled with care.

3.1. Considerations for Image-based Acquisition
The halfway/difference parameterization increases compres-
sion rates since common features such as specular and
retro-reflective peaks are aligned with the coordinate axes
[Rus98]. The modified parameterization of Eq. (1) maintains
this property, since specular events cluster along the w-axis,
and retro-reflective peaks occur in the plane w = 0.

These parameterizations are useful in IBR for an ad-
ditional reason: for image-based data, they separate the
sparsely- and densely-sampled dimensions of the BRDF.
(Marschner’s [Mar98] parameterization also shares this
property.) To see this, note that for orthographic projection
and distant lighting—or more generally, when scene relief is
relatively small—a single image of a curved surface provides
BRDF samples lying in a plane of constant θd , since this an-
gle is independent of the surface normal. The image repre-
sents a nearly continuous sampling of θh and φd in this plane.
Thus, a set of images provides dense sampling of (θh,φd)
but only as many samples of θd as there are images. (The or-
thographic/directional case is considered for illustrative pur-
poses; it is not required by the method.)

Conveniently, the irregular sampling obtained from
image-based data corresponds well with the behavior of gen-
eral BRDFs, which vary slowly in the sparsely sampled θd-
dimension, especially when θd is small. At the same time, by
imaging curved surfaces, we ensure that the sampling rate of
the half-angle θh is high enough to accurately recover the
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high-frequency variation (e.g., due to specular highlights)
that is generally observed in that dimension.

4. Scattered Data Interpolation
Recall that our goal is to estimate a continuous SBRDF
f (~x,~θ) from a set of samples fi ∈ R

5 drawn from images
of a surface with known geometry. Our task is complicated
by the fact that, as discussed in the previous section, the in-
put samples are very non-uniformly distributed.

There are many methods for interpolating scattered data
in this relatively high-dimensional space, but for our prob-
lem, interpolation using radial basis functions provides the
most attractive choice. Given a set of samples, an RBF in-
terpolant is computed simply by solving a linear system
of equations, and the existence and uniqueness is guaran-
teed with few restrictions on the sample points. Thus, un-
like homogeneous BRDF representations such as spherical
harmonics, Zernike polynomials, wavelets and the basis of
Matusik et al. [MPBM03], an RBF representation does not
require a local preprocessing step to resample the input data
at regular intervals.

Additional properties of this method include: i) the cost
of computing an RBF interpolant is dimension-independent,
and ii) the size of the representation does not grow substan-
tially as the dimension increases. This is in direct contrast to
piecewise polynomial splines (e.g., [Ter83]) and local meth-
ods like polynomial regression (e.g., [MWL+99]) and the
push/pull algorithm of Gortler et al. [GGSC96]. These other
methods require either a triangulation of the domain or a
tabulation of function values, both of which become com-
putationally prohibitive in high dimensions. (Jaroszkiewicz
and McCool [JM03] handle this by approximating the high-
dimensional SBRDF by a product of 2D functions, each of
which is triangulated independently.)

4.1. Radial Basis Functions
To briefly review RBF interpolation (see, e.g., [Pow92,
Buh03]), consider a general function g(~x), ~x ∈ R

d from
which we have N samples {gi} at sample points {~xi}. This
function is approximated as a sum of a low-order polyno-
mial and a set of scaled, radially symmetric basis functions
centered at the sample points;

g(~x) ≈ g̃(~x) = p(~x)+
N

∑
i=1

λiψ(‖~x−~xi‖), (2)

where p(~x) is a polynomial of order n or less, ψ : R
+ →R is

a continuous function, and ‖ · ‖ is the Euclidean norm. The
sample points~xi are referred to as centers, and the RBF inter-
polant g̃ satisfies the interpolation conditions g̃(~xi) = g(~xi).

Given a choice of n, an RBF ψ , and a basis for the poly-
nomials of order n or less, the coefficients of the interpolant
are determined as the solution of the linear system

[

Ψ P
PT 0

][

~λ
~c

]

=

[

~g
0

]

, (3)

where Ψi j = ψ(‖~xi −~x j‖), ~λi = λi, ~gi = gi, Pi j = p j(~xi)
where {p j} are the polynomial basis functions, and ~ci = ci
are the coefficients in this basis of the polynomial term
in g̃. This system is invertible (and the RBF interpolant
is uniquely determined) in arbitrary dimensions for many
choices of ψ , with only mild conditions on n and the lo-
cations of the data points [Duc77, Mic86].

In many cases we can benefit from using radially asym-
metric basis functions (which are stretched in certain direc-
tions), and here we use them to manage the irregularity in
our sampling pattern. (Recall from Fig. 1 that the (u,v) di-
mensions are sampled almost continuously while we have
only as many samples of w as we have images.) Following
Dinh et al. [DTS01], an asymmetric radial function is cre-
ated by scaling the Euclidean distance in Eq. (2) so that the
basis functions become

ψ(‖M(~x−~xi)‖), (4)

where M ∈R
d×d . In our case we choose M = diag(1,1,mw).

For mw < 1, the basis functions are elongated in the w dimen-
sion, which is appropriate since our sampling rate is much
lower in that dimension. The appropriate value of this pa-
rameter depends on the angular density of the input images,
and empirically we have found that typical values for mw are
between 0.1 and 0.5.

When the number of samples is large (i.e., N > 10,000),
solving Eq. (3) requires care and can be difficult (or impossi-
ble) using direct methods. This limitation has been addressed
quite recently, and iterative fitting methods [BP95], and fast
multipole methods (FMMs) for efficient evaluation [BN92]
have been developed for many choices of ψ in many dimen-
sions. In some cases, solutions for systems with over half a
million centers have been reported [CBC+01]. The next sec-
tions include investigations of the number of RBF centers re-
quired to accurately represent image-based reflectance data,
and we find this number to be sufficiently small to allow the
use of direct methods.

5. Homogeneous Surfaces
In this section, we apply RBF interpolation to homogeneous
surfaces, where we seek to estimate a global BRDF that
is not spatially-varying. The resulting BRDF representation
may be useful for interpolating image-based BRDF data
(e.g., [LKK98, MWL+99, MPBM03]).

As discussed in Sect. 3, in the case of homogeneous
BRDF data, reflectance is a function of three dimensions,
(u,v,w). In R

3, a good choice for ψ is the linear (or bihar-
monic) RBF, ψ(r) = r, with n = 1, since in this case, the
interpolant from Eq. (3) exists for any non-coplanar data,
is unique, minimizes a generalization of the thin-plate en-
ergy, and is therefore the smoothest in some sense [Duc77,
CBC+01]. The BRDF is expressed as

f̃ (~θ) = c1 + c2u+ c3v+ c4w+
N

∑
i=1

λi‖~θ −~θi‖, (5)
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where ~θi = (ui,vi,wi) represents a BRDF sample point from
the input images, and~λ and~c are found by solving Eq. (3).

As a practical consideration, since each pixel represents
a sample point ~θi, even with modest image resolution, us-
ing all available samples as RBF centers is computationally
prohibitive. Much of this data is redundant, however, and an
accurate BRDF representation can be achieved using only a
small fraction of these centers. A sufficient subset of cen-
ters could be chosen using knowledge of typical reflectance
phenomena. (To represent sharp specular peaks, for exam-
ple, RBF centers are generally required near θh = 0.) Alter-
natively, Carr et al. [CBC+01] present an effective greedy
algorithm for choosing this subset without assuming prior
knowledge, and a slightly modified version of the same al-
gorithm is applied here. The procedure begins by randomly
selecting a small subset of the sample points ~θi and fitting an
RBF interpolant to these. Next, this interpolant is evaluated
at all sample points and used to compute the radiance resid-
uals, εi = ( fi − f̃ (~θi))cosθi, where θi is the angle between
the surface normal at the sample point and the illumination
direction. Finally, points where εi is large are appended as
additional RBF centers, and the process is repeated until the
desired fitting accuracy is achieved.

It should be noted that an algorithmic choice of center
locations could increase the efficiency of the resulting repre-
sentation, since center locations would not necessarily need
to be stored for each material. This would require assump-
tions about the function being approximated, however, and
here we choose to emphasize generality over efficiency by
using the greedy algorithm.

5.1. Evaluation
To evaluate the BRDF representation in Eq. (5), we perform
an experiment in which we compare it to both parametric
BRDF models and to a non-linear basis (the isotropic Lafor-
tune model [LFTG97].) The models are fit to synthetic im-
ages of a sphere, and their accuracy is measured by their
ability to predict the appearance of the sphere under novel
conditions. (Many other representations, such as wavelets
and the Matusik bases are excluded from this comparison
because they require dense, uniform samples.)

The input images simulate data from image-based
BRDF measurement systems like those in Refs. [LKK98,
MWL+99, MPBM03]. They are orthographic, directional-
illumination images with a resolution of 100×100, and are
generated such that θd is uniformly distributed in [0, π

2 ]. The
accuracy of the recovered models is measured by the relative
RMS radiance error over 21 images—also uniformly spaced
in θd—that are not used as input. For these simulations, we
use both specular and diffuse reflectance, one drawn from
measured data (the metallic-blue BRDF, courtesy of Matusik
et al. [MPBM03]), and the other generated using the physics-
based Oren-Nayar model [ON94].

Figure 2 shows the accuracy of increasingly complex RBF
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Figure 2: Accuracy of the RBF representation as the number of
centers is increased using a greedy algorithm. The input is 10 images
of a sphere synthesized using the metallic-blue BRDF measured by
Matusik et al. This is compared to the isotropic Lafortune represen-
tation with an increasing number of lobes. Less than 1000 centers
are sufficient to represent the available reflectance information us-
ing RBFs, whereas the limited flexibility of the Lafortune basis and
the existence of local minima in the non-linear fitting process limit
the accuracy of the Lafortune representation. (See text for details.)

and Lafortune representations fit to ten input images. The
complexity of the RBF representation is measured by the
number of centers selected by the greedy algorithm, and that
of the Lafortune model is measured by the number of gen-
eralized cosine lobes. An unusually large number of lobes
are shown (two or three lobes is typical) so that the re-
sulting Lafortune and RBF representations have compara-
ble degrees of freedom. It is important to note, however,
that the size of each representation is different for equivalent
complexities; an N-lobe isotropic Lafortune model requires
3N + 1 parameters, while an N-center RBF interpolant re-
quires 4N +4.

Since the basis functions of the Lafortune model are de-
signed for representing BRDFs (and are therefore embedded
with knowledge of general reflectance behavior), they pro-
vide a reasonably good fit with a small number of lobes. For
example, a 6-lobe Lafortune model (19 parameters) yields
the same RMS error as a 300-center RBF model (1204 pa-
rameters.) In addition to being compact, the Lafortune model
has the advantage of being more suitable for direct render-
ing [MLH02]. But the accuracy of this representation is fun-
damentally limited; the lack of flexibility and the existence
of local minima in the required non-linear fitting process pre-
vent the Lafortune model from accurately representing the
reflectance information available in the input images.

In contrast, RBFs provide a general linear basis, and
given a sufficient number of centers, they can repre-
sent any ‘smooth’ function with arbitrary accuracy (see,
e.g., [Buh03].) In this example, the RBF representation con-
verges with less than 1000 centers, suggesting that only a
small fraction of the available centers are required to sum-
marize the reflectance information in the ten input images.

Similar conclusions are drawn from a second experiment
in which we investigate the accuracy of these (and other) rep-
resentations with a fixed level of complexity and an increas-
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Figure 3: Top: Error in the estimated BRDF for an increasing num-
ber of images of a metallic-blue sphere. As the number of images
increases, the RBF representation (with 1000 centers) approaches
the true BRDF, whereas the isotropic Ward model [War92] and the
Lafortune representation are too restrictive to provide an accurate
fit. Bottom: Synthesized images using the three BRDF representa-
tions estimated from 12 input images. The angle between the source
and view directions is 140◦.

ing number of input images. Results are shown in Figs. 3
and 4 for predominantly specular and diffuse reflectance.
(Here, six lobes are used in the Lafortune representation
since the results do not change significantly with additional
lobes.) Since RMS error is often not an accurate percep-
tual metric, these figures also include synthetic spheres ren-
dered with the recovered models. This experiment demon-
strates the flexibility of the RBF representation, which cap-
tures both the Fresnel reflection in Fig. 3 and the retro-
reflection in Fig. 4. Parametric models do not typically af-
ford this flexibility—while it may be possible to find a para-
metric model that fits a specific BRDF quite well, it is very
difficult to find a model that accurately fits general BRDFs.

6. Inhomogeneous Surfaces
The previous section suggests that RBFs can provide a use-
ful representation for homogeneous BRDFs. In this section,
we show that this same representation can be adapted to han-
dle spatially-varying reflectance as well. In this case, it en-
ables an exchange between spatial and angular resolution (a
process we refer to as reflectance sharing), and it can drasti-
cally reduce the number of required input images. We begin
by assuming that the 5D SBRDF varies smoothly in the spa-
tial dimensions, and in the next section, we show how this
can be generalized to handle rapid spatial variation in terms
of a multiplicative albedo or texture.

In the homogeneous case, the BRDF is a function of three
dimensions, and the linear RBF ψ(r) = r yields a unique in-
terpolant that minimizes a generalization of the thin-plate
energy. Although optimality cannot be proved, this RBF
has shown to be useful in higher dimensions as well, since
it provides a unique interpolant in any dimension for any
n [Pow92]. In the spatially-varying case, the SBRDF is a
function of five dimensions, and we let ~q = (x,y,u,v,w) be
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Figure 4: Top: Error in the estimated BRDF for an increasing num-
ber of input images of a diffuse Oren-Nayar sphere. Again, the 1000-
center RBF representation approaches the true BRDF, whereas the
Lafortune and Lambertian BRDF models are too restrictive to ac-
curately represent the data. Bottom: Synthesized images comparing
the three BRDF representations estimated from 12 input images.
The angle between the source and view directions is 10◦.

a point in its domain. Using the linear RBF with n = 1, the
SBRDF is given by

f̃ (~q) = p(~q)+
N

∑
i=1

λi‖~q−~qi‖, (6)

where p(~q) = c1 + c2x+ c3y+ c4u+ c5v+ c6w.

We can use any parameterization of the surface ~s, and
there has been significant recent work on determining
good parameterizations for general surfaces (e.g., [LSS+98,
GGH02]). The ideal surface parameterization is one that pre-
serves distance, meaning that ‖~x1 −~x2‖ is equivalent to the
geodesic distance between ~s(~x1) and ~s(~x2). For simplicity,
here we treat the surface as the graph of a function, so that
~s(x,y) = (x,y,s(x,y)), (x,y) ⊂ [0,1]× [0,1].

The procedure for recovering the parameters in Eq. (6) is
almost exactly the same as in the homogeneous case. The co-
efficients of f̃ are found by solving Eq. (3) using a subset of
the SBRDF samples from the input images, and this subset
is chosen using a greedy algorithm. Radially asymmetric ba-
sis functions are realized using M = diag(mxy,mxy,1,1,mw),
where mxy controls the exchange between spatial and angu-
lar reflectance information. When mxy ¿ 1, the basis func-
tions are elongated in the spatial dimensions, and the recov-
ered reflectance function approaches a single BRDF (i.e., a
homogeneous representation) with rapid angular variation.
When mxy À 1, we recover a near-Lambertian representation
in which the BRDF at each point approaches a constant func-
tion of ~θ . Appropriate values of mxy depend on the choice of
surface parameterization, and we found typical values to be
between 0.2 and 0.4 for the examples in this paper.

6.1. Evaluation
The SBRDF representation of Eq. (6) can be evaluated us-
ing experiments similar to those for the homogeneous case.
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Figure 5: Top: Accuracy of the SBRDF recovered by reflectance
sharing using the RBF representation in Eq. (6) as the number of
centers is increased using a greedy algorithm. The input is 10 syn-
thetic images of a hemisphere (five of which are shown) with lin-
early varying roughness.

Here, spatial variation is simulated using images of a hemi-
sphere with a Cook-Torrance BRDF [CT81] with a linearly
varying roughness parameter. Five images of the hemisphere
are shown in Fig. 5, and they demonstrate how the highlight
sharpens from left to right across the surface.

The graph in Fig. 5 shows the accuracy of the recovered
SBRDF as a function of the number of RBF centers when it
is fit to images of the hemisphere under ten uniformly dis-
tributed illumination directions. The error is computed over
40 images that are not used as input. Fewer than 2000 centers
are needed to accurately represent the spatial reflectance in-
formation available in the input images. This is a reasonably
compact representation, requiring roughly 12,000 parame-
ters. For comparison, an SBRDF representation for a 10,000-
vertex surface consisting of two unique Lafortune lobes at
each vertex is roughly five times as large.

Figure 6 contrasts reflectance sharing with conventional
methods that interpolate only in the angular dimensions, es-
timating a separate BRDF at each point. This ‘no sharing’
technique is used by Matusik et al. [MPBM02], and is sim-
ilar in spirit to Wood et al. [WAA+00], who also estimate a
unique view-dependent function at each point. (In this dis-
cussion, angular interpolation in the BRDF domain is as-
sumed to require known geometry, which is different from
lighting interpolation (e.g., [DHT+00]) that does not. For
the particular example in Fig. 6, however, the ‘no sharing’
result can be obtained without geometry, since it is a special
case of fixed viewpoint.)

For both the reflectance sharing and ‘no sharing’ cases,
the SBRDF is estimated from images with fixed viewpoint
and uniformly distributed illumination directions such as
those in Fig. 5, and it is used to predict the appearance of
the surface under novel lighting. The top frame of Fig. 6
shows the actual appearance of the hemisphere under five
novel conditions, and the lower frames show the reflectance

ACTUAL

REFLECTANCE SHARING

2

5

NO SHARING

5

50

150

Figure 6: Estimating the spatially-varying reflectance function
from a sparse set of images. Top frame: five images of a hemisphere
under illumination conditions not used as input. Middle frame: ap-
pearance predicted by reflectance sharing with two and five input
images. (The input is shown in Fig. 5; the two left-most images are
used for two-image case.) Bottom frame: appearance predicted by
interpolating only in the angular dimensions with 5, 50 and 150 in-
put images. At least 150 images are required to obtain a result com-
parable to the five-image reflectance sharing result.

sharing and ‘no sharing’ results obtained from increasing
numbers of input images. Note that many other methods—
most notably that of Lensch et al. [LKG+01]—are excluded
from this comparison because they require the selection of a
specific parametric model and therefore suffer from the lim-
itations discussed in Sect. 5.

In this example, reflectance sharing reduces the number
of required input images by more than an order of magni-
tude. Five images are required for good visual results using
the RBF representation, whereas at least 150 are needed if
one does not exploit spatial coherence. Figure 6 also shows
how differently the two approaches degrade with sparse in-
put. Reflectance sharing provides a smooth SBRDF whose
accuracy gradually decreases away from the convex hull of
input samples. (For example, the sharp specularity on the
right side of the surface is not accurately recovered when
only two input images are used.) In contrast, when interpo-
lating only in the angular dimensions, a small number of im-
ages provides only a small number of reflectance samples at
each point; and as a result, severe aliasing or ‘ghosting’ oc-
curs when the surface is illuminated by high-frequency en-
vironments like the directional illumination shown here.
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Figure 7: Actual and predicted appearance of the hemisphere un-
der fixed illumination and changing view. Given five input images
from a single view (bottom Fig. 5), the reflectance sharing method
recovers a full SBRDF, including view-dependent effects.

Even when the input images are captured from a single
viewpoint, our method recovers a full SBRDF, and as shown
in Fig. 7, view-dependent effects can be predicted. This is
made possible by spatial sharing (since each surface point is
observed from a unique view in its local coordinate frame)
and by reciprocity (since we effectively have observations in
which the view and light directions are exchanged.)

7. Generalized Spatial Variation
This section considers generalizations of the radial basis
function SBRDF model by softening the requirement for
spatial smoothness, and applies the model to image-based
rendering of a human face.

Rapid spatial variation can be handled using a multiplica-
tive albedo or texture by writing the SBRDF as

f (~x,~θ) = a(~x)d(~x,~θ),

where a(~x) is an albedo map for the surface and d(~x,~θ) is a
smooth function of five dimensions. As an example, consider
the human face in Fig. 8(a). The function a(~x) accounts for
rapid spatial variation due to pigment changes, while d(~x,~θ)
models the smooth spatial variation that occurs as we transi-
tion from a region where skin hangs loosely (e.g., the cheek)
to where it is taut (e.g., the nose.)

In some cases, it is advantageous to express the SBRDF
as a linear combination of 5D functions. For example, Sato
et al. [SWI97] and many others use the dichromatic model of
reflectance [Sha85] in which the BRDF is written as the sum
of an RGB diffuse component and a scalar specular compo-
nent that multiplies the source color. We employ the dichro-
matic model here, and compute the emitted radiance using

Ik(~x,~θ) = sk

(

ak(~x)dk(~x,~θ)+g(~x,~θ)
)

cosθi, (7)

where ŝ = {sk}k=RGB is an RGB unit vector that describes
the color of the light source. In Eq. (7), a single function g
is used to model the specular reflectance component, while
each color channel of the diffuse component is modeled sep-
arately. This is significantly more general than the usual as-
sumption of a Lambertian diffuse component, and it can ac-
count for changes in diffuse color as a function of ~θ , such
as the desaturation of the diffuse component of skin at large
grazing angles witnessed by Debevec et al. [DHT+00].

(a) (b) (c)
Figure 8: (a,b) Specular and diffuse components of a single input
image. (c) Geometry used for SBRDF recovery and rendering.

Finally, although not used in our examples, more general
spatial variation can be modeled by dividing the surface into
a finite number of regions, where each region has spatial re-
flectance as described above. This technique is used, for ex-
ample, in Refs. [LKG+01, JM03].

7.1. Data Acquisition and SBRDF Recovery
For real surfaces, we require geometry and a set of images
taken from known viewpoint and directional illumination. In
addition, in order to estimate the separate diffuse and spec-
ular reflection components in Eq. (7), the input images must
be similarly decomposed. Specular/diffuse separation can be
performed in many ways (e.g., [SWI97, NFB97]), one of
which uses linear polarizers on both the camera and light
source and exploits the fact that the specular component pre-
serves the linear polarization of the incident radiance. Two
exposures are captured for each view/lighting configuration,
one with the polarizers aligned (to observe the sum of spec-
ular and diffuse components), and one with the source polar-
izer rotated by 90◦ (to observe the diffuse component only.)
The specular component is then given by the difference be-
tween these two exposures. (See, e.g., [DHT+00].)

Geometry can also be recovered in a number of different
ways, and one possibility is photometric stereo, since it pro-
vides the precise surface normals required for reflectometry.
Figure 8 shows an example of a decomposed image along
with the corresponding geometry, which is recovered using
a variant of photometric stereo.

Given the geometry and a set of decomposed images, the
representation in Eq. (7) can be fit as follows. First, the ef-
fects of shadows and shading are computed, shadowed pixels
are discarded, and shading effects are removed by dividing
by cosθi. The RGB albedo a(~x) in Eq. (7) is estimated as
the median of the diffuse samples at each surface point, and
normalized diffuse reflectance samples are computed by di-
viding by a(~x). The resulting normalized diffuse samples are
used to estimate the three functions dk(~x,~θ) in Eq. (7) using
the RBF techniques described in Sect. 4.1. The samples from
the specular images are similarly used to compute g.

7.2. Rendering
In order to synthesize images under arbitrary view and illu-
mination, the SBRDF coordinates~q at each surface point are
determined by the spatial coordinates~x, the surface normal,
and the view and lighting directions. The radiance emitted
from that point toward the camera is then given by Eq. (7).
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Because Eq. (7) involves sums over a large number of RBF
centers for each pixel, image synthesis can be slow. This
process can be accelerated, however, using programmable
graphics hardware and precomputation.

Hardware Rendering Using the GPU. Equation (7) is well
suited to implementation in graphics hardware because the
same calculations are done at each pixel. For example, a ver-
tex program can compute each ~q and these can be interpo-
lated as texture coordinates for each pixel. A fragment pro-
gram can then perform the computation in Eq. (6), which
is simply a sequence of distance calculations. Implementing
the sum in Eq. (7) is straightforward, since it is simply a
modulation by the albedo map and source color.

For the results in this section, we take this approach and
use one rendering pass for each RBF center, accumulat-
ing their contributions. On a GeForce FX 5900, rendering
a 512× 512 image with 2000 centers (and 2000 rendering
passes) is reasonably efficient, taking approximately 30s.
Further optimizations are possible, such as considering the
contributions of multiple RBF centers in each pass.

Real-Time Rendering with Precomputed Images. To en-
able real-time rendering with complex illumination, images
synthesized using the RBF representation can be used as in-
put to methods based on precomputed images. One example
is the double-PCA image relighting technique of Nayar et
al. [NBB04]. This algorithm is conceptually similar to clus-
tered PCA methods like those in Refs. [CBCG02,SHHS03],
and allows real-time relighting of specular objects with com-
plex illumination and shadows (obtained in the input images
using shadow mapping in graphics hardware.)

We emphasize that despite these gains in efficiency, the
RBF representation does not compete with parametric rep-
resentations for rendering purposes. Instead, it should be
viewed as a useful intermediate representation between ac-
quisition and rendering.

7.3. Results
As a demonstration, the representation of Eq. (7) was used
to model a human face, which exhibits diffuse texture in ad-
dition to smooth spatial variation in its specular component.

The spatially-varying reflectance function estimated from
four camera/source configurations is shown in Figs. 9–
11. For these results, two polarized exposures were cap-
tured in each configuration, and the viewpoint remained
fixed throughout. For simplicity, the subject’s eyes remained
closed. (Accurately representing the spatial discontinuity at
the boundary of the eyeball would require the surface to
be segmented as mentioned in Sect. 6.) The average angu-
lar separation of the light directions is 21◦, spanning a large
area of frontal illumination. (See Fig. 9.) This angular sam-
pling rate is considerably less dense than in previous work;
approximately 150 source directions would be required to
cover the sphere at this rate compared to over 2000 source
directions used by Debevec et al. [DHT+00].

10

20

ACTUAL REFLECTANCE SHARING

Figure 9: Actual and synthetic images for a novel illumination di-
rection. The image on the right was rendered using the reflectance
representation in Eq. (7) fit to four input images. Left inset shows a
polar plot of the input (+) and output (◦) lighting directions, with
concentric circles representing angular distances of 10◦ and 20◦

from the viewing direction.

In the recovered SBRDF, 2000 centers were used for each
diffuse color channel, and 5000 centers were used for the
specular component. (Figure 11 shows scatter plots of the
specular component as the number of RBF centers is in-
creased.) Each diffuse channel requires the storage of 2006
coefficients—the weights for 2000 centers and six polyno-
mial coefficients—and 2000 sample points~qi, each with five
components. This could be reduced, for example, by us-
ing the same centers locations for all three color channels.
The specular component requires 5006 coefficients and 5000
centers, so the total size is 66,024 single precision floating-
point numbers, or 258kB. This is a very compact represen-
tation of both view and lighting effects.

Figure 9 shows real and synthetic images of the surface
under novel lighting conditions, and shows how a smooth
SBRDF is recovered despite the extreme sparsity of the in-
put images. Most importantly, the disturbing ghosting ef-
fects observed in the ‘no sharing’ results of Fig. 6 are
avoided. (The accompanying video includes animations of
view and lighting variation.) Figure 10 shows that the recov-
ered SBRDF is indeed spatially-varying. The graph in the
right of this figure is a (θh,φd) scatter plot of the specular
SBRDF on the tip of the nose (in transparent blue) and on
the cheek (in red), and it shows that the recovered specular
lobe on the nose is substantially larger.

While this synthetic result is plausible, careful examina-
tion of Fig. 9 reveals that it deviates from the actual image
(the relative RMS difference is 9.5%.) For example, the spa-
tial discontinuity in the specular component at the boundary
of the lips is smoothed over due to the assumption of smooth
spatial variation; and more generally, with such a limited
number of input samples, the representation is sensitive to
noise caused by extreme interreflection and subsurface scat-
tering, motion of the subject during acquisition, calibration
errors in the source positions and relative strengths, and er-
rors in the geometry. The accuracy could be improved, for
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Figure 10: Spatial variation in the estimated specular reflectance
function. Left: synthesized specular component used to generate the
image in the right of Fig. 9. Right: magnitude of the estimated spec-
ular SBRDF at two surface points. Plots are the SBRDF as a func-
tion of (θh,φd) for θd = 5◦, with red and transparent-blue plots rep-
resenting the indicated points on the cheek and nose. (Large values
of θh near the origin are outside the convex hull of input samples and
are not displayed.) For comparison, the inset shows a Cook-Torrance
lobe fit to the reflectance of the nose.

example, by using a high speed acquisition system such as
that of Debevec et al. [DHT+00], and by identifying spa-
tial discontinuities (perhaps using clustering techniques or
by using diffuse color as a cue for segmentation.)

We emphasize, however, that only four input images are
used, and it would be difficult to improve the results without
further assumptions. Even a parametric method like that of
Lensch et al. [LKG+01] may perform poorly in this case,
since little more than a Lambertian albedo value could be fit
reliably from the four (or less) reflectance samples available
at each point.

Finally, Fig. 12 shows synthetic images with a novel view-
point, again demonstrating that a full SBRDF is recovered
despite the fact that only one viewpoint is used as input.

7.4. A Special Case: One Input Image
Due to its dimension-independence, the RBF representation
can also be adapted to the extreme case when only one input
image is available. In one (orthographic, directional illumi-
nation) image all reflectance samples lie on a hyperplane of
constant w, reducing the dimension of the SBRDF by one.
Thus, we can use a simplified SBRDF representation, com-
puting the surface radiance according to

Ik(~q) = sk

(

ak(~x)+
N

∑
i=1

λi‖~q−~qi‖

)

cosθi, (8)

where ~q = (x,y,u,v).

In this case, the diffuse component is modeled as Lam-
bertian, and the albedo a(~x) is estimated directly from the
reflectance samples in the diffuse component of the input
image (after shading and shadows are removed.) The spec-
ular component is estimated from the specular reflectance
samples using the same fitting procedure as the multi-image
case. Figure 13 shows an example of a 2000-center SBRDF

3500 4500 5000

Figure 11: Estimated SBRDF on the cheek (red) and nose (blue) as
the number of RBF centers is increased using the greedy algorithm.
The 5000-center plots are the same as those on the right of Fig. 10.

under natural lighting from environment maps. These were
rendered using precomputation [NBB04] as discussed in
Sect. 7.2, and the accompanying video demonstrates real-
time manipulation of complex lighting.

Since a single image is used as input, only a 2D subset of
the angular variation is recovered, and Fresnel effects are ig-
nored. (As done by Debevec et al. [DHT+00], this represen-
tation could be enhanced to approximate Fresnel effects by
using a data-driven microfacet model with an assumed index
of refraction.) Also, by using a complete environment map,
we necessarily extrapolate the reflectance function beyond
the convex hull of input samples, where it is known to be
less accurate. Despite these limitations, the method obtains
reasonable results, and they would be difficult to improve
without assuming a specific parametric BRDF model (as in,
e.g., Ref. [BG01].)

8. Conclusions and Future Work
This paper presents a method for exploiting spatial co-
herence to estimate a non-parametric, spatially-varying re-
flectance function from a sparse set of images of known ge-
ometry. Reflectance estimation is framed as a scattered-data
interpolation problem in a joint spatial/angular domain, an
approach that allows the exchange of spatial resolution for
an increase in angular resolution of the reflectance function.

This paper also presents a flexible representation of re-
flectance based on radial basis functions (RBFs), and shows
how this representation can be adapted to handle: i) homo-
geneous BRDF data, ii) smooth spatially-varying reflectance
from multiple images, iii) spatial variation with texture, and
iv) a single input image. When using this representation, the
recovered reflectance model degrades gracefully as the num-
ber of input images decreases.

The most immediate practical issue for future work in-
volves computational efficiency. We have demonstrated that
the RBF representation is a useful intermediate represen-
tation of spatially-varying reflectance, since it can be used
in combination with current rendering techniques based on
precomputed information. To improve this, it may be possi-
ble to develop real-time rendering techniques directly from
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Figure 12: Synthesized images for two novel viewpoints. Even
though the input images are captured from a single viewpoint, a
complete SBRDF is recovered, including view-dependent effects.

Figure 13: Images synthesized using the SBRDF representation
in Eq. (8) estimated from the single (decomposed) image shown
in Fig. 8. These were rendered in real-time using the methods dis-
cussed in Sect. 7.2.

the RBF representation. For example, fast multipole meth-
ods can be used to reduce the evaluation of Eq. (2) from
O(N2) to O(N logN) [BN92]. This may be a viable alterna-
tive to using factored forms of BRDFs [MAA01, JM03] and
may provide a practical approach for real-time rendering of
surfaces with spatially-varying, non-parametric reflectance.

The increasing use of measured reflectance data in com-
puter graphics requires efficient methods to acquire and rep-
resent such data. In this context, appropriate parameteriza-
tions, representations and signal-processing techniques are
likely to be crucial. This paper presents a step in this direc-
tion by providing a method for using sparse, image-based
datasets to accurately recover reflectance.
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