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Abstract

We present a photometric stereo method for non-diffuse
materials that does not require an explicit reflectance model
or reference object. By computing a data-dependent rota-
tion of RGB color space, we show that the specular reflec-
tion effects can be separated from the much simpler, diffuse
(approximately Lambertian) reflection effects for surfaces
that can be modeled with dichromatic reflectance. Images
in this transformed color space are used to obtain photo-
metric reconstructions that are independent of the specular
reflectance. In contrast to other methods for highlight re-
moval based on dichromatic color separation (e.g., color
histogram analysis and/or polarization), we do not explic-
itly recover the specular and diffuse components of an im-
age. Instead, we simply find a transformation of color space
that yields more direct access to shape information. The
method is purely local and is able to handle surfaces with
arbitrary texture.

1. Introduction
Scene analysis is complicated by the presence of highlights
due to specular reflection, since these highlights are a com-
plex function of viewpoint, illumination and surface mi-
crostructure. Typically, in order to obtain meaningful infor-
mation about a scene from its images, complex reflection ef-
fects such as highlights are either roughly approximated or
completely ignored by vision systems. For example, most
stereo and structure-from-motion techniques ignore specu-
lar highlights altogether, instead modeling surfaces as Lam-
bertian; and even state-of-the-art recognition systems are
based on relatively simple (e.g., spatially-invariant, para-
metric) models of reflectance. (See, Ref. [3], for example.)

Even when the illumination of a scene can be controlled,
the coupling of reflectance and shape makes the recovery
of 3D shape a difficult task. This is the case for photomet-
ric stereo methods, for example, where images are acquired
from a fixed viewpoint under multiple, known illumination
conditions. Many photometric stereo techniques assume
that surfaces are Lambertian [29], and others assume the
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Figure 1. Removal of specular reflectance effects. A
rotation of RGB color space (a) provides an image that
is void of specular reflection effects (b) and provides a
more direct measurement of scene shape.

reflectance is given a priori by a reference object [23], a lin-
ear basis of reference objects [9], or by an analytic BRDF
model [10, 18, 24]. When these reflectance assumptions are
not satisfied, the accuracy of the recovered shape can be
compromised.

Recently, a small number of surface reconstruction tech-
niques have overcome these limitations by effectively de-
coupling shape and reflectance in images. These tech-
niques rely on the careful acquisition of images to ex-
ploit physical properties such as reflectance isotropy [14],
reciprocity [15, 30] and the constancy of radiance in free
space [12, 15]. By reducing or eliminating the restrictions
on surface reflectance, these techniques provide accurate re-
constructions for a much broader class of surfaces.

In this paper, we present a new method that is simi-
lar to these techniques in that it recovers estimates of sur-
face shape that are independent of specular reflectance;
but instead of requiring a complex acquisition system, the
method is quite easy to implement. It is based on photomet-
ric stereo, and like existing photometric stereo techniques,
it can recover shape from as few as three images cap-
tured under three (possibly unknown) illumination direc-
tions. We achieve independence from specular reflectance
using a data-dependent rotation of RGB color space. This
color space transformation allows us to distill the image,
removing the specular effects, and leaving only the much



simpler—ideally Lambertian—diffuse effects. (See Fig. 1.)
The technique can be applied to any dichromatic surface
(i.e., surface whose reflectance can be represented using
Shafer’s dichromatic model [22]) for which the body spec-
tral reflectance varies significantly over the visible spectrum
(i.e., not ‘white’.)

This paper begins with a brief review of the dichromatic
reflectance model and previous work related to highlight re-
moval and photometric stereo. Then, it introduces a trans-
formation of color space as a means of removing specu-
lar reflection effects, and applies this color transformation
to the problem of photometric stereo. We show that by
eliminating specular effects, this transformation enables the
application of well-known, Lambertian photometric stereo
techniques to non-Lambertian surfaces.

2. Background and Related Work
At an appropriate scale, reflectance at a surface point is de-
scribed by the bi-directional reflectance distribution func-
tion, or BRDF. Here, we consider it to be a five-dimensional
function of wavelength and imaging geometry, and we write
it as f(λ,θ), where θ = (θi, φi, θr, φr) encodes the direc-
tions of the incident and reflected radiance in the local co-
ordinate system.

2.1. The Dichromatic Model
The dichromatic model of reflectance is a common special
case of the BRDF model, and it was originally developed by
Shafer [22] to model dielectrics. It assumes that the BRDF
of the surface can be decomposed into two additive compo-
nents: the interface (specular) reflectance and the body (dif-
fuse) reflectance. Furthermore, it assumes that each of these
two components can be factored into a univariate function
of wavelength and a multivariate function that depends on
the imaging geometry. That is,

f(λ,θ) = gd(λ)fd(θ) + gs(λ)f̃s(θ).

Finally, the model assumes that the index of refraction on
the surface is constant over the visible spectrum—a valid
assumption for many materials—so that gs(λ) is a con-
stant function. This leads to the common expression for
the BRDF of a dichromatic surface,

f(λ,θ) = gd(λ)fd(θ) + fs(θ), (1)

where fs(θ) = gsf̃s(θ). The function gd(λ) is often re-
ferred to as the spectral reflectance and is an intrinsic prop-
erty of the material.

Even though it was originally used to describe the re-
flectance of dielectrics [22], the dichromatic model has been
used successfully as an approximation of the reflectance
of many different materials. For example, although the
reflectance of human skin is more accurately described

by a higher dimensional function (the 8-dimensional BSS-
RDF [27]), the BRDF approximation—and more specifi-
cally, the dichromatic BRDF model—has proven useful for
a number of applications, including face recognition [3, 6]
and pigment-based image analysis and synthesis [26]. The
validity of this approximation for skin reflectance is also
supported the spectrophotometry measurements of Marsza-
lec et al. [16].

In order to derive an expression for the image of a dichro-
matic surface, consider an observed surface point x illumi-
nated from direction l̂, and let θ = (θi, φi, θr, φr) represent
this direction and the viewing direction in the local coordi-
nate system. We assume that the sensor is a linear device
with sensitivity function Ck(λ), and that the spectral power
distribution (SPD) of the light source is given by L(λ). Un-
der these conditions, assuming that the BRDF at x is given
by Eq. 1, the sensor response is

Ik = (Dkfd(θ) + Skfs(θ)) n̂ · l̂, (2)

with

Dk =

∫

Ck(λ)L(λ)gd(λ)dλ

Sk =

∫

Ck(λ)L(λ)dλ.

An RGB color vector I = [IR, IG, IB ]> from a typical cam-
era consists of three such measurements, each with a differ-
ent sensor response with support in the visible spectrum.

Note that Sk represents the effective source strength as
measured by the kth sensor and is independent of the sur-
face being observed. For notational simplicity, we define
S = [SR, SG, SB ]> (with a corresponding definition for
D), and since scale can be absorbed by fd and fs, we as-
sume ‖D‖ = ‖S‖ = 1.

2.2. Highlight Removal
As made clear by Eq. 2, in RGB color space a collection
of color vectors from a dichromatic material under multiple
view and illumination configurations (i.e,., different values
of θ) lie in the dichromatic plane—the plane spanned by
the effective source and body colors, S and D [22]. In ad-
dition, it has been observed that these color vectors often
cluster in the shape of a ‘skewed-T’ in this plane, where the
two limbs of the skewed-T correspond to diffuse and spec-
ular reflection [7, 11]. When these limbs are sufficiently
distinct, the diffuse and source colors can be recovered, the
two components can be separated, and the highlights can be
removed [11].

While this method works well for homogeneous, dichro-
matic surfaces in the noiseless case, there are three signifi-
cant limitations that make it difficult to use in practice. First,
many surfaces are textured and violate the homogeneous as-
sumption. Even when an image does contain homogeneous



surfaces, a non-trivial segmentation process is required to
identify them. Second, in order for the specular and dif-
fuse limbs of the skewed-T to be distinct, the specular lobe
must be sufficiently narrow (i.e., its angular support must
be small relative to the curvature of the surface.) Finally,
when the diffuse and specular colors are the same, there is
no way to distinguish between the two components, and no
color separation is possible.

Some of these restrictions can be overcome by using ad-
ditional cues such as polarization [28]. Nayar et al. [17] use
multiple exposures with varying polarization to estimate the
source color independently at each point, and they exploit
local spatial coherence to separate the diffuse and specular
components. This method offers significant improvement
over the use of only one of color or polarization informa-
tion, but it is still requires that the specular lobe is suffi-
ciently narrow, and that the diffuse color is locally constant.

2.3. Photometric Stereo

Photometric stereo is the process of recovering 3D shape
from a series of images captured from fixed viewpoint un-
der multiple illuminations. Since they rely on the inversion
of the image formation process, as described in Sect. 1, pho-
tometric stereo methods typically require significant knowl-
edge about the reflectance of surfaces in the scene.

Coleman and Jain [4] were perhaps the first to present
a photometric technique for reconstructing non-Lambertian
surfaces without an explicit reflectance model. In their
method, the BRDF is assumed to be a linear combination of
a Lambertian diffuse component and an undefined specular
component with limited angular support. When four point-
source illuminations are available, specular measurements
can be treated as outliers and discarded, provided that the il-
lumination directions are far from one another relative to the
angular extent of the specular lobe. (This ensures that the
specular reflectance component is zero for three of the four
observations of each surface point.) Barsky and Petrou [2]
refine this technique by using color information to improve
the detection of specular measurements. Like the original
work, however, specular measurements are treated as out-
liers, and the specular component is assumed to have lim-
ited angular support.

Another approach to photometric stereo for non-
Lambertian surfaces is to assume dichromatic surfaces, and
to remove highlights as a pre-processing step as discussed
in Sect. 2.2. This is the approach taken by Schlüns and
Wittig [21], who assume homogeneous dichromatic sur-
faces, and separate the diffuse and specular components us-
ing color histogram analysis techniques similar to Klinker
et al. [11]. Sato and Ikeuchi [20] take a similar approach,
but avoid the restriction to homogeneous surfaces by us-
ing a large number of light source directions to compute a
distinct color histogram at each point. Because these meth-
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Figure 2. Linear and non-linear transformations of
RGB color space. Three observations of the same
material yield color vectors I1 . . . I3 in the dichromatic
plane spanned by the source and diffuse colors S and
D. Left: The proposed SUV color space is a rotation
of the RGB space. One axis is aligned with the source
color, and two of three transformed channels (UV) are
independent of specular reflectance. Diffuse shading
information is preserved and can be used to recover
shape. Right: Central projection used to compute r-g
chromaticity values and HSV-type color spaces does
not preserve shading information.

ods explicitly recover the diffuse and specular components,
they have the additional benefit of providing an estimate of
the diffuse color D at each point in addition to recovering
the surface shape. Since they are based on conventional
dichromatic color separation, however, they are subject to
the restrictions discussed in the previous section. Most im-
portantly, they assume that the specular lobe is narrow rel-
ative to the surface curvature, an assumption similar to that
underlying the four-source method of Coleman and Jain [4].

3. A Data-dependent Color Space
As described in the previous section, many photometric
stereo methods assume the BRDF is Lambertian or known
in some form. The methods that do not make this assump-
tion require dichromatic surfaces without texture [21] or
Lambertian-plus-specular surfaces with a narrow specular
lobe [2, 4]. In this section we introduce a transformation of
color space that seeks to overcome both of these limitations.

Suppose we linearly transform RGB color space by ro-
tating the coordinate axes, and as shown in the left of Fig. 2,
suppose this rotation is such that one of the axes (red, say)
becomes aligned with the direction of the effective source
color S. This transformation defines a new color space,
which we refer to as the SUV color space. It can be de-
fined according to ISUV = [R]I using any [R] ∈ SO(3)
that satisfies [R]S = [1, 0, 0]>. Here, we choose [R] =
[RG(−θS)][RB(φS)] where [Rk(θ)] is a right-handed rota-
tion about the k-axis by angle θ, and (θS, φS) are the eleva-
tion and azimuthal angles of the source vector S in the RGB
coordinate system. From Eq. 2 it follows that

ISUV =
(

D̄fd(θ) + S̄fs(θ)
)

n̂ · l̂, (3)



where D̄ = [R]D and S̄ = [R]S = [1, 0, 0]>.
This SUV space is a data-dependent color space because

it depends on the effective source color in the image. It has
two important properties. First, it separates the diffuse and
specular reflection effects. The first channel (the S chan-
nel) encodes the entire specular component and an unknown
fraction of the diffuse component, while the remaining two
channels (U and V) are independent of fs(θ) and are func-
tions of only the diffuse reflectance.

The second important property is that, since the transfor-
mation is linear, shading information is preserved. This is
clear from Eq. 3; if r

>

i
denotes the ith row of [R], the two

diffuse channels are

IU = r
>

2 Dfd(θ)n̂ · l̂ and

IV = r
>

3 Dfd(θ)n̂ · l̂.
(4)

Assuming Lambertian diffuse reflectance, fd(θ) is a con-
stant function of θ. In this case, the two-channel color vec-
tor

J = [IU , IV ]> (5)

provides direct information about the normal vector on the
surface, with the coefficients ρU = r

>

2 Dfd and ρV =
r
>

3 Dfd behaving as Lambertian albedos.
Figure 2 compares this linear, data-dependent color

space with conventional non-linear color spaces. Non-linear
color spaces such as r-g chromaticity and hue-saturation-
value (HSV) are computed by central projection. Each RGB
pixel corresponds to a vector in the RGB cube, and these
are intersected with the plane R + G + B = c for some
c. For example, hue and saturation correspond to the dis-
tance and polar angle of these intersection points relative to
the cube diagonal, and chromaticity coordinates are derived
from the intersection of these color vectors with the plane
R + G + B = 1. Non-linear color spaces such as these
are useful for recognition, for example, since they remove
Lambertian shading and shadow information. (All positive
scalar multiples of I map to the same chromaticity coordi-
nates and the same hue.) Since they do not preserve photo-
metric information, however, they are generally unsuitable
for recovering shape.

In contrast, the SUV color space does preserve shading
information, and by providing two channels that are inde-
pendent of the complex, specular component of reflectance,
it can be a useful tool for scene analysis. One important ap-
plication is photometric stereo, and Sect. 4 provides some
examples in which these images are used for that purpose.

It is worth noting that Park [19] uses a transformation of
color space that is similar to SUV space for the purposes
of segmentation. His transformation is different from ours,
however, since it is not a pure rotation and thus does not
exactly isolate diffuse reflectance effects.

3.1. Practical Considerations
For shape recovery we are generally interested in the

two-channel diffuse signal J in Eq. 5. The quality of this
signal depends on the spectral characteristics of the surface
in addition to sensor noise.

Spectral Reflectance
When the surface is ‘white’, the spectral reflectance is a
constant function of wavelength. In this case, gd(λ) = gd,
and since

Dk = gd

∫

Ck(λ)L(λ)dλ = gdSk,

it follows that the color vector I and the source color S are
collinear in color space. For these surfaces, the UV chan-
nels are zero; and as a result, they provide no information
about the surface, regardless of the illuminant and sensors
that we choose. (This is the same restriction experienced
by Klinker et al. [11]; when the diffuse and source colors
are the same, there is no way to distinguish between the two
reflection components.) In order to recover surface shape
for these materials without restricting the BRDF, alternative
(and more complex) reconstruction methods can be used.
See, for example, Refs. [12, 30].

Sensor Noise
Assuming independent, additive Gaussian noise with zero
mean and variance σ2 in each of the three channels of color
vector I, and assuming ‖I‖ ≤ 1, the signal-to-noise ratio
(denoted SNR(I)) is 10 log10(1/σ) dB. The magnitude of
the diffuse color vector J is related to that of the original
color vector by ‖J‖ = ‖I‖ sin α, and since the noise is the
same in both cases, it follows that

SNR(J) = SNR(I) + 10 log10(sin α). (6)

This relationship is shown in Fig. 3, and it suggests that
when the angle between the image and the source color is
less than 10◦, the two-channel diffuse signal suffers severe
degradation. The effects of this degradation can be miti-
gated by using multiple exposures to collect high dynamic
range (HDR) images. When exposures are chosen judi-
ciously [8], we can increase the SNR of the original image
and therefore that of the two-channel diffuse image as well.

3.2. Computing Diffuse Images
In order to compute the two-channel diffuse image, it is nec-
essary to know the effective source color, S. Under con-
trolled conditions, the source color can be calibrated, and in
an uncontrolled setting it can be estimated using a number
of established techniques.

Tominga and Wandell [25] demonstrate a method for es-
timating the source color based on the fact that color vectors
from a homogeneous surface span the dichromatic plane.
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Figure 3. The signal-to-noise ratio (SNR) of the two-
channel diffuse image (J) relative to that of the original
image (I) as a function of α, the angle between I and
the source color S in RGB color space. (See Fig. 2.)

They determine the source color by intersecting multiple
dichromatic planes (from different dichromatic surfaces) in
color space. Similarly, Lee [13] finds the source color by
intersecting lines in 2D chromaticity space. More recently,
Finlayson and Schaefer [5] use the fact that the chromatic-
ity of the majority of illuminants lie along a known curve
in chromaticity space and recover the source color from an
image of a single homogeneous dichromatic surface.

Figure 1 shows a diffuse image that was computed using
the source color determined by intersecting lines in chro-
maticity space [13]. (Three homogeneous surfaces were
manually segmented for this purpose.) The monochrome
diffuse image was created by transforming the input image
to the SUV color space and computing ‖J‖ at each pixel.
Comparing this to the original image, we see that the spec-
ular effects have been removed as expected. Note that the
dichromatic model is violated when saturation occurs in the
input images, and this causes errors at points of extreme
specularity. Additional examples computed with calibrated
sources are shown in Sect. 4.1.

4. Application to Photometric Stereo

The two-channel diffuse image of the previous section is
derived without making any assumptions about the nature
of specular reflectance, and yet it is independent of specu-
lar reflection effects for dichromatic surfaces. By assuming
that the diffuse component of the reflectance is Lambertian,
we can use these images along with established techniques
for photometric stereo to obtain estimates of surface shape.

Assuming the light source color is known, the color vec-
tor I at each pixel can be transformed to SUV space using
Eq. 3. The two diffuse UV channels preserve shading in-
formation, and the two-channel image J is independent of
the specular component. Assuming that the diffuse reflec-
tion component is Lambertian, standard photometric stereo
techniques can be used for surface reconstruction. Here, we
discuss a modified version1 of the color photometric stereo
method of Barsky and Petrou [1].

Let J
1, J

2 and J
3 be three 2-channel color vectors pro-

duced by observing a single point under three different light

1The method was originally designed for color images with three chan-
nels. Here we use the same method for a two-channel images.

Figure 4. Photometric stereo using SUV color space.
Three or more RGB images are acquired under known
illumination conditions, and these are transformed to
SUV space using the known source color. The UV
channels represent diffuse images of the object, and
these are used with standard photometric stereo tech-
niques to estimate the surface normal at each pixel.
The normals are integrated to recover the surface.

source directions l̂
1, l̂2 and l̂

3. As in Eq. 4, it follows that

J
k =

[

Ik

U , Ik

V

]>

= (n̂ · l̂k)ρ, (7)

where ρ is a 2-channel UV albedo. A shading vector is
defined according to F =

[

f1, f2, f3
]>

= [̂l1 l̂
2

l̂
3]>n̂,

and the shading information from all three observations is
combined in an intensity matrix that satisfies

[J ] =





J1
1 J1

2

J2
1 J2

2

J3
1 J3

2



 =





f1ρU f1ρV

f2ρU f2ρV

f3ρU f3ρV



 = Fρ>. (8)

The least squares estimate of the shading vector F can eas-
ily be computed from the intensity matrix; it is the principal
eigenvector of [J ][J ]>. Once the shading vector is known,
the surface normal is found by solving the matrix equation
F = [̂l1 l̂

2
l̂
3]>n̂.

This reconstruction procedure is outlined in Fig. 4, and
it can be applied without change to any number of images
larger than three.

4.1. Experimental Results

To validate the method quantitatively, we used objects of
known shape with varying material properties. The objects
are shown in Fig. 7, and they consist of a set of spheres
with increasing specularity. (The incident-plane BRDFs are
shown in Fig. 5.)

For each sphere, a set of four high dynamic range (HDR)
images were captured from a fixed viewpoint and four
known illumination directions. The source color was cal-
ibrated by imaging a Macbeth color checker, and it was
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used to compute the SUV images as described in Sect. 3.
The second column of Fig. 7 confirms that the UV chan-
nels of these images depends largely on the diffuse re-
flectance. (These monochrome diffuse images show the
magnitude of the two diffuse channels, computed using
‖J‖ = (I2

U
+ I2

V
)

1

2 at each pixel.)
Using the diffuse UV images, the surface normals of

each sphere were estimated using the photometric stereo
method described in Sect. 4. As a means of comparison, we
implemented two different RGB-based photometric tech-
niques. The first method uses all four RGB images and
assumes Lambertian reflectance [1]. The second method
assumes Lambertian+specular reflectance and reconstructs
the surface by choosing the three ‘least specular’ RGB mea-
surements at each pixel [2, 4].

The results are shown in Figs. 5 and 7. The recov-
ered surfaces, including cross-sections overlaid on the true
shape, are displayed in Fig. 7. More quantitative results are
shown in Fig. 5, with the bottom of that figure displaying
the angular difference between the true and estimated sur-
face normals as a function of increasing specularity. (This
plot shows the mean-square error computed over a win-
dow encompassing the visible specularities in the four im-
ages.) These results demonstrate that the SUV-based recon-
struction is largely independent of the specular reflectance,
whereas both the four-image and three-image RGB methods
are affected by it. The four-image method assumes Lam-
bertian reflectance and its performance degrades monoton-
ically as gloss increases; and while the three-image RGB
method performs well for the high-gloss (narrow specular

lobe) spheres, it performs less well when the angular sup-
port of the specular lobe is large relative to the separation of
the light source directions.

Figure 6 shows the results of applying our SUV-based
photometric stereo method to two natural objects (a pear
and a pumpkin.) For each object, four HDR images were
captured and transformed to SUV color space, and the two-
channel diffuse images were used to estimate the surface
normals. For each object, we show an input image and
the surfaces recovered by integrating these surface normals.
Since the transformation to SUV space is purely local, the
method requires no spatial coherence in the image, and it
performs well for surfaces with arbitrary texture as shown
by the pear example. This is not true for alternative photo-
metric stereo techniques that use color-based highlight re-
moval [11,21], since these methods generally require spatial
coherence.

5. Conclusion

This paper presents a data-dependent rotation of RGB
color space that separates the diffuse reflection effects from
the more complex, specular reflection effects in images of
dichromatic surfaces. Since it is linear, this transformation
preserves diffuse shading information, and images in this
transformed space can be used to obtain photometric recon-
structions that are independent of the specular reflectance.
The result is a photometric stereo method for non-diffuse
materials that does not require an explicit BRDF model or
reference object. The method is evaluated both qualitatively
and quantitatively, and it is shown to perform well for both
painted surfaces with varying specular reflectance and nat-
ural surfaces with and without texture.

We currently assume that the color of the illuminant is
constant over the surface, although one can imagine en-
hancing this method with polarization, for example, to es-
timate the source color locally. Additionally, although it
is not explored in this paper, it is straight-forward to adapt
the method to the ‘uncalibrated’ case in which the lighting
directions are unknown. Finally, while this paper explores
the application of this color transformation to photometric
stereo, it can be useful for any visual task (e.g., shape-from-
shading, stereo, structure-from-motion) that is simplified by
the absence of specular reflectance. Exploring these appli-
cations is an interesting direction for future work.
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Figure 6. SUV-based photometric stereo applied to natural surfaces. Left: Input RGB images show significant specular
reflectance and texture. By transforming the images to SUV space, the specular effects are removed, enabling accurate
recovery of shape. Middle, Right: The surfaces recovered by integrating the estimated surface normals.
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[21] K. Schlüns and O. Wittig. Photometric stereo for non-
Lambertian surfaces using color information. In Proc. Int.
Conf. on Image Analysis and Processing, pages 505–512,
September 1993.

[22] S. Shafer. Using color to separate reflection components.
COLOR research and applications, 10(4):210–218, 1985.

[23] W. Silver. Determining shape and reflectance using multiple
images. Master’s thesis, MIT, 1980.

[24] H. Tagare and R. deFigueiredo. A theory of photomet-
ric stereo for a class of diffuse non-lambertian surfaces.
IEEE Trans. Pattern Analysis and Machine Intelligence,
13(2):133–152, February 1991.

[25] S. Tominga and B. Wandell. Standard surface-reflectance
model and illuminant estimation. J. Optical Society of Amer-
ica A, 6(4):576–584, April 1989.

[26] N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu,
H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake. Image-
based skin color and texture analysis/synthesis by extracting
hemoglobin and melanin information in the skin. In Proc.
SIGGRAPH, pages 770–779, 2003.

[27] H. Wann Jensen, S. Marschner, M. Levoy, and P. Hanrahan.
A practical model for subsurface light transport. In Proc.
SIGGRAPH, pages 511–518, 2001.

[28] L. B. Wolff and T. E. Boult. Constraining object features
using a polarization reflectance model. IEEE Trans. Pattern
Analysis and Machine Intelligence, 13(7):635–657, 1991.

[29] R. Woodham. Photometric stereo: A reflectance map tech-
nique for determining surface orientation from image inte-
sity. In Proc. SPIE, volume 155, pages 136–143, 1978.

[30] T. Zickler, P. Belhumeur, and D. Kriegman. Helmholtz stere-
opsis: Exploiting reciprocity for surface reconstruction. In
Proc. European Conf. on Computer Vision, pages III: 869–
884, May 2002.


