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The appearance of natural surfaces is determined by the interaction of surface structure

with scene illumination, and this appearance can be very complex, especially when the

illumination and viewpoint are allowed to vary. Our understanding of visual appearance

is benefiting from the accelerating development of inexpensive, high-resolution imaging

technology, since these devices provide access to vast amounts of visual data. In order

to fully exploit this information, however, we must answer open questions about how to

efficiently acquire, represent and apply this data.

This dissertation describes work on two aspects of the general problem of creating ap-

pearance models from image data: recovering both the shape and reflectance (i.e., material

properties) of a scene. First, Helmholtz stereopsis is introduced as a reconstruction process

that enables the decoupling of shape and reflectance in images, allowing the accurate re-

covery of shape for a far greater class of surfaces than is possible using existing techniques.

Second, this dissertation presents an image-based method for recovering reflectance when

the scene shape is known. By exploiting the fact that reflectance varies slowly from point to

point over much of a typical object’s surface, this reflectometry method enables the accurate

estimation of spatially-varying reflectance from a drastically reduced set of images.

What is common to these two techniques is that they are designed to handle surfaces

with complex and arbitrary reflectance, meaning reflectance that is not necessarily well-

represented by a pre-chosen, low-dimensional (i.e., parametric) model. By eliminating the

need for low-dimensional approximations of reflectance, these techniques seek to provide

accurate appearance models for general scenes.
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Chapter 1

Introduction

An emerging paradigm in computer vision is generative model-based vision. According

to this paradigm, statistical class- or task-specific appearance models represent high-level

knowledge that can be integrated with low-level vision cues to disambiguate the inversion of

the image formation process and reliably recover the 3D world from its 2D projections. An

obvious example is recent work in face recognition, where models of the human face are used

for recognition under widely varying pose and illumination. The success of generative model-

based methods increases demand for accurate statistical models, which in turn increases

demand for systems that capture the data required to build them.

Image-based modeling (IBM) is the area of computer vision dedicated to recovering

accurate appearance models (usually in the form of shape and reflectance) from one or

more images of a scene. Since the primary concern is the accuracy of the model, we usually

assume these images can be captured under controlled view and illumination conditions.

(It is this assumption that differentiates IBM from many other areas of vision.) In addition

to providing the necessary data for generative model-based vision, IBM (and the shape

and reflectance models it recovers) finds direct application in visual metrology and visual

inspection, and is the basis for many image-based rendering systems in computer graphics.

This dissertation considers the image-based modeling problem in two parts. First, Chap-

ters 3–5 address the problem of recovering shape from image data. An image E provides

only indirect information about scene shape through the measurement of scene radiance,

7



CHAPTER 1. INTRODUCTION 8

since the radiance emitted from a scene is determined by the interaction of shape, reflectance

and illumination:

E = g(shape, reflectance, illumination). (1.1)

Our goal is to invert the image formation process to recover shape. The majority of existing

approaches to image-based shape recovery (e.g., stereo and photometric stereo methods)

deal with this coupling by making assumptions about surface reflectance. For example, most

stereo systems rely on the brightness-constancy constraint, which assumes that scene radi-

ance is independent of viewpoint. Assumptions such as this necessarily limit the generality

and accuracy of existing techniques. In the first part of this dissertation, we present a recon-

struction process—termed Helmholtz stereopsis—that enables the decoupling of shape and

reflectance in a set of images, enabling accurate image-based shape estimation for surfaces

with arbitrary and complex reflectance.

In contrast to conventional stereopsis (reconstruction from images taken from multi-

ple views under fixed illumination) or photometric stereopsis (reconstruction from images

with multiple illuminations under fixed viewpoint), Helmholtz stereopsis is the process of

recovering shape from reciprocal image pairs. The notion of a reciprocal pair of images is

introduced in Chapter 3, and an associated constraint equation is derived that provides

access to reflectance-independent shape information from these images. Following this,

Chapters 3–5 present three different Helmholtz stereo methods that use variations of this

constraint for the recovery of shape in the multinocular, binocular, and uncalibrated cases.

The second part of this dissertation (Chapter 6) deals with the task of estimating re-

flectance from a set of images when the shape of the scene is known. Given the shape and

a set of images of the scene under known illumination conditions, each pixel in an image

represents a sample of the surface reflectance. Without further assumptions, recovering an

accurate description of reflectance requires an input set of images large enough to observe

high-frequency radiometric events, such as sharp specular highlights, at each point on the

surface. This set consists of a near exhaustive sampling of images of the scene from all view-

points and lighting directions, which can be tens-of-thousands of images or more. While
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existing techniques make this problem tractable using low-dimensional approximations of

reflectance, this dissertation presents an alternative approach. By exploiting spatial coher-

ence, we develop reflectance sharing as a technique for the estimation of non-parametric

reflectance from a sparse set of images.

This dissertation is organized as follows. The first chapter provides some necessary

background in radiometry, and discusses the representation of scene structure in terms of

shape and reflectance. Chapters 3–5 deal with Helmholtz stereopsis, and Chapter 6 discusses

the second problem of recovering reflectance when the scene shape is known.



Chapter 2

Background

The appearance of an object is determined by structure at multiple scales. As an example,

Fig. 2.1 shows how the structure of an orange can be stratified from megastructure (“it’s

roughly a sphere”) to microstructure (molecular and cellular composition.)

For image-based modeling, it is convenient to divide structure into shape, or resolved

structure, and reflectance, or unresolved structure. In this context, we can view reflectance

as a summary of the light-scattering effects of microstructure within a small (planar) surface

patch. This chapter discusses some of the many existing representations for reflectance.

The basic tools for this discussion are provided by the field of radiometry (the science

of measuring electromagnetic radiation), so we begin with a summary of some relevant

definitions.

2.1 Bidirectional Reflectance Distribution Function (BRDF)

The development in this section summarizes relevant material from the NBS monograph

assembled by Nicodemus et al. [81]. It is assumed that the reader is familiar with radiometric

terms such as radiant flux, radiance and irradiance, since this material is now common in

standard vision and graphics texts [37, 32].

When a surface is illuminated, the incident radiant flux is partially absorbed and par-

tially reflected over the output directions. Consider a surface patch A irradiated with

monochromatic, randomly polarized light from direction (θi, φi) over an element of solid

10



CHAPTER 2. BACKGROUND 11

MESOSTRUCTURE

REFLECTANCESHAPE

MACROSTRUCTURE MICROSTRUCTURE

Figure 2.1: Surface structure exists at a continuum of scales. For image-based rendering, it is
convenient to divide this structure into resolved structure (shape) and unresolved structure
(reflectance).

angle dωi, and let dΦi denote the resulting element of incident flux [W] that strikes an

element of surface dA centered at position (xi, yi). This incident flux is scattered by the

surface, and some is emitted in direction (θo, φo) from another surface point (xo, yo). (See

Fig. 2.2.) Letting dLo(xo, yo, θo, φo) denote this reflected radiance [W·m−2·sr−1], we can

write

dLo = SdΦi,

which simply says that the reflected radiance is directly proportional to the incident ra-

diant flux. The constant of proportionality is a function of the location of the input

and output points of the surface as well as the incident and reflected directions, i.e.,

S = S(θi, φi, xi, yi; θo, φo, xo, yo), and its units are [m−2·sr−1]. The function S (referred

to as the bidirectional scattering-surface reflectance distribution function, or BSSRDF) is

derived without making any assumptions about the mechanism behind the reflection pro-

cess, and it provides a very general description of reflectance. The BRDF provides a more

tractable expression, and it is derived by making a few assumptions that are valid for a

wide range of interesting cases.

Instead of describing the microstructure in detail, as shown in Fig. 2.2, a reference plane

is chosen (intersecting the highest point on the surface) to represent the reflecting surface.

The normal to this reference plane, along with an arbitrary tangent vector, defines the
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( i , φ i )θ ( o, φo)θ
(x o,yo)(x i ,yi )

REFERENCE
PLANE

iL oLdωd i

A i
A

Figure 2.2: Geometry of incident and reflected beams for the definition of the BRDF. A
reference plane is chosen that lies above the surface structure. (The scale of the surface
structure is exaggerated in this figure.) In deriving the BRDF from the BSSRDF, it is
assumed that the illumination is uniform over Ai, and that the scattering properties are
uniform and isotropic across the reference plane.

coordinate system for the description of angular directions. The following two assumptions

are made:

1. The surface is uniformly irradiated over area Ai, which completely contains the part

of area A from which there is a significant contribution to the reflected radiance at

(xo, yo).

2. The scattering properties of the surface are uniform and isotropic1 across the reference

plane. In this case, the scattering function S does not depend on the incident and re-

flected points, but only on the distance between them. That is, S = S(θi, φi; θo, φo; r)

where r = [(xo − xi)
2 + (yo − yi)

2]
1
2 .

When these conditions are satisfied, we can add up the contributions to the reflected ra-

diance at (xo, yo) from the entire incident flux that is incident on A from direction (θi, φi)

over the element of solid angle dωi. Defining the BRDF as

fr(θi, φi; θo, φo) =

∫

A
S(θi, φi; θo, φo; r)dA, (2.1)

1This refers to spatial isotropy of the surface and is different from the angular BRDF isotropy that is
commonly considered in vision and graphics.
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gives a simple relation between the incident and reflected radiance,

dLo(θo, φo) = fr(θi, φi; θo, φo)dLi(θi, φi) cos θidωi.

Equation 2.1 shows that the BRDF depends only on the angular input and reflection direc-

tions, a property that follows directly from the assumption of uniform and isotropic surface

scattering properties. The BRDF has units [sr−1].

It is often convenient to express the input (θi, θo) and reflected (θo, φo) directions using

unit vectors instead of spherical coordinates, and here we use the notation fr(θi, φi; θo, φo)

and fr (̂i, ê) interchangeably. Additionally, when a surface is such that the BRDF is the

same at each point, it is referred to as an homogeneous surface; an inhomogeneous surface

is said to have spatially-varying reflectance, or a spatially-varying BRDF.

Wavelength and polarization

In addition to being a function of input and output directions, the BRDF can be written as

a function of wavelength and polarization. Nicodemus et al. [81] propose the use of a matrix

of sixteen separate BRDFs to represent polarization effects. For the majority of vision tasks,

however, randomly polarized light and unpolarized sensors are used, and polarization can

be ignored.

In a grayscale image, we observe a weighted spectral average of the BRDF, where the

weight function represents both the spectral composition of the illuminant and the spectral

sensitivity of the sensor. As is customary, for the remainder of this dissertation the term

BRDF will refer to this spectrally averaged BRDF. To handle colour, three separate BRDFs

are used—one per channel.

2.1.1 BRDF Measurement

The BRDF is a differential quantity, so in practice, we can only observe its average over

finite incident and reflected solid angles. In addition, although the BRDF is derived in terms

of the reflected radiance at a single point (xo, yo), any measurement device will observe the

sum of the reflected radiance from a finite surface area. These are usually not large concerns
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Ao
Ai

Figure 2.3: BRDF measurement of a planar sample. An area on the surface Ao is observed
over a finite solid angle by the sensor (e.g., a single element of a CCD array.) This area
must be uniformly illuminated over a larger area Ai, and the scattering properties of the
sample must be uniform and isotropic across the reference plane. (Only extreme rays are
drawn.)

provided that the solid angles are small relative to the angular variation of the BRDF, and

that over its entire extent, the observed surface satisfies the assumptions underlying the

BRDF (i.e., uniform and isotropic scattering properties.)

As an example, consider the measurement geometry of Fig. 2.3. A portion of planar

sample is observed by a sensor through an optical system (e.g., by a single element of a

CCD array.) The finite area of the sensor defines a finite area on the surface Ao. In order

for this system to provide an accurate measurement of the BRDF, we require that both

the illumination and the scattering effects are uniform across the surface over a larger area

Ai ⊃ Ao. Here, Ai must be large enough that incident flux outside of Ai does not contribute

significantly to the radiance reflected within Ao.

Traditionally, BRDF measurement is performed using uniform planar samples and a

gonioreflectometer. This has been greatly improved by exploiting the high spatial resolution

available in CCD cameras. By using curved mirrors with a planar sample [111, 22] or simply

by imaging a curved, homogeneous sample [67, 64, 71], one can capture thousands of BRDF

measurements in a single image. A natural question is how best to interpolate and represent

this data, which is the topic of Sect. 2.1.3. First we discuss some useful properties and special

cases of BRDFs.
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2.1.2 Properties of BRDFs

The BRDF is a positive function defined on the four-dimensional domain given by the cross

product of the input and output hemispheres, i.e., fr : Ω×Ω −→ R+. It is not quite an

arbitrary 4D positive function, however, and is generally constrained in a few ways.

Conservation of energy. Since we assume that no energy is generated by the surface,

the total reflected flux must be less than or equal to the total incident flux. This gives,

∫

Ω
fr(θi, φi; θo, φo)dωo < 1 for all (θi, φi),

which is satisfied by all BRDFs.

Helmholtz Reciprocity. The property that is of greatest importance to this dissertation

is a symmetry property commonly referred to as the principle of Helmholtz reciprocity. Ac-

cording to this principle, the BRDF is symmetric about the incident and reflected directions,

i.e.,

fr(θi, φi; θo, φo) = fr(θo, φo; θi, φi). (2.2)

Historically, it is unclear how the term ‘Helmholtz reciprocity’ came to describe this

equation. In the document that defines the BRDF, the term is used without reference, and

it is stated that Helmholtz reciprocity (Eq. 2.2), “holds in the absence of polarization and

magnetic fields.” ([81], p40.) Although it is unclear where the term was first used, it is clear

that it originates from a statement made by Helmholtz in (among other places) his Treatise

on Physiological Optics ([41] p231). A corrected translation of his statement is given by

Clarke and Parry [17]:

“Suppose light proceeds by any path whatever from a point A to another

point B, undergoing any number of reflections or refractions en route. Consider

a pair of mutually perpendicular planes a1 and a2 whose line of intersection is

along the initial path of the ray at A, and a corresponding [equivalent] pair of

planes b1 and b2 intersecting along the path of the ray at B when it comes to B.

The components of the vibrations of the aether particles in these two pairs of
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planes may be imagined. Now suppose that a certain amount of light J leaving

the point A in the given direction is polarized in the plane a1; and that of this

light the amount K arrives at the point B polarized in the plane b1; then it can

be proved that, when the light returns over the same path, and the quantity of

light J polarized in the plane b1 proceeds from point B, the amount of this light

that arrives at the point A polarized in the plane a1 will be equal to K.

“Apparently the above proposition is true no matter what happens to the

light in the way of single or double refraction, reflection, absorption, ordinary

dispersion, and diffraction, provided there is no change of its refrangibility, and

provided it does not traverse any magnetic medium that affects the position of

the plane of polarization, as Faraday found to be the case.”

Helmholtz reciprocity (i.e., Eq. 2.2) follows directly from symmetry in the BSSRDF,

S(θi, φi, xi, yi; θo, φo, xo, yo) = S(θo, φo, xo, yo; θi, φi, xi, yi),

which represents a significant generalization of the statement by Helmholtz. (See the dis-

cussion of Clarke and Parry [17] and Veach [109] for more details.) Nevertheless, the term

‘Helmholtz reciprocity’ has come to be associated with Eq. 2.2 in photometry, graphics and

vision, and we will continue to use it here.

There is no general proof of Eq. 2.2 because there are known (constructed) exceptions.

The most notable involves the Faraday isolator, which was acknowledged by Helmholtz

himself. For common materials, however, reciprocity is not violated, and there have been a

number of empirical validations [51, 67, 23]. In a sense, the results in Chapters 3–5 of this

dissertation can be viewed as further validation, since Helmholtz reciprocity is used directly

for shape recovery. (See Fig. 4.4, for example.)

Isotropy. An important special case is when the BRDF is symmetric about the surface

normal. In this case, it reduces to a function of three dimensions, commonly written as

fr(θi, θo, φi − φo).
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Bilateral Symmetry. Another, less commonly considered special case is when the BRDF

is symmetric across the plane of incidence (the plane defined by the surface normal and

the input direction.) This special case does not follow from isotropy and reciprocity. It

was exploited by Marschner [67] to create a convenient parameterization for interpolating

sampled BRDFs.

2.1.3 Representing BRDFs

Even when we account for the properties described in the previous section, the BRDF is very

impractical as an image analysis tool. Instead, in computer vision and graphics we generally

rely on low-dimensional BRDF models. Many of these representations are discussed in this

section, with two applications in mind: 1) modeling the image formation process for vision

tasks such as stereo, and 2) interpolating and representing measured BRDF data.

The simplest model of reflectance is the Lamerbertian model in which the BRDF is

a constant function. According to this model, the BRDF is written fr = ρ/π, and ρ is

referred to as the albedo. Lambertian reflectance greatly simplifies the vision problem,

since according to this model, the emitted radiance is independent of the viewing direction.

This leads to the ubiquitous brightness-constancy constraint exploited by many stereo and

structure-from-motion systems. The Lambertian model is also used for simple image-based

modeling in which the surface reflectance is represented by a diffuse texture map (see,

e.g., [67].)

Other, more complex, low-dimensional representations fall into two categories: para-

metric models and non-parametric representations.

Parametric Models

A number of models exist in which the BRDF is represented using a small number of

parameters (typically 3-12 per colour channel.) The benefit of these models is that they

offer a very compact representation. In addition, some of these models are simple enough

to be used analytically for vision tasks such as photometric stereo [36].
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In some cases, parametric models are useful for interpolating and representing measured

BRDF data, since the model parameters can typically be estimated from a small number

of noisy samples. At the same time, because these models are non-linear functions of

their parameters, the fitting process can be difficult. A more serious drawback to using

parametric models is their lack of flexibility. Each model is designed to represent a small

class of surfaces, so in general, reasonable approximation of measured data requires that

the correct model be manually selected a priori. (Of course, it is possible that a measured

BRDF is not accurately fit by any known parametric model.) In addition, this lack of

flexibility means that a parametric model cannot represent a general BRDF with arbitrary

accuracy.

Parametric models can be divided into two categories. The first category consists of

phenomenological models, i.e., empirical models that are not physically-derived. Examples

include the Phong model [86] and its close relative the Blinn-Phong model [11]. Both of

these models represent the BRDF as a weighted sum of a Lambertian component and a

single-parameter specular lobe whose shape is described by an exponentiated cosine. These

representations are isotropic, and they can violate the conservation of energy property. They

require the specification of three parameters per colour channel. Other phenomenological

models include the Ward model [111], which is capable of describing anisotropic reflectance,

and Minnaert’s model [77] for lunar reflectance.

The most prominent phenomenological model is perhaps the Lafortune model. This

model is based on a primitive function referred to as the generalized cosine lobe,

g(̂i, ê) = [̂iTC ê]n,

where C = diag(Cx, Cy, Cz). This non-linear function is capable of approximating a range

of typical BRDF behaviours, such as anisotropy, off-specular reflection, retro-reflection,

grazing-angle specularities (to a certain degree), and non-Lambertian diffuse reflection like

that described by the Minnaert model. Lafortune et al. [57] introduced a BRDF represen-

tation based on the linear combination of generalized cosine lobes, and in the literature
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this representation (the ‘Lafortune model’) is often described as a sum of non-linear basis

functions capable of representing any BRDF with arbitrary accuracy. The problem with

this characterization is that, since the representation is non-linear in its parameters, the

fitting process requires iterative optimization. The functional that is minimized contains

many local minima, especially when many lobes are used, and selecting appropriate initial

conditions is non-trivial. As a result, when using this model to represent measured BRDF

data, we are practically limited to a representation based on only two or three lobes [74].

Due to this limitation, the Lafortune model behaves much like other empirical models and

can be considered as such.

The second category of parametric models are those derived from physical principles.

The most common is the Cook-Torrance model [19], which is based on the Torrance-Sparrow

microfacet model of surface microstructure [107]. According to this model, the surface is

represented as a distribution of long, v-shaped grooves, each of which is a perfect mirror.

The Cook-Torrance model describes the reflectance of many plastics and metals. Oren and

Nayar [84] used the same surface model, but with Lambertian facets, to create a BRDF

model that describes non-Lambertian, ‘rough-diffuse’ reflectance. Another is the Poulin-

Fournier model [88] for anisotropic reflectance, which is derived from a surface microstruc-

ture consisting of parallel cylinders. All of these parametric models, like their empirical

counterparts, are completely specified by a small number of parameters.

Non-parametric representations

While parametric models can yield useful approximations in some cases, they are too con-

strained to represent the fine detail of arbitrary, complex BRDFs. At the same time, without

low-dimensional models, the need to sample the BRDF at a high angular resolution yields

an unwieldy representation. There are a number of representations that attempt to fill this

gap. These non-parametric representations have the flexibility to represent general BRDFs

with arbitrary accuracy, but at the same time, they can be truncated to provide compact

approximations.
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One approach is to represent the BRDF as a linear expansions in terms of pre-chosen

basis functions, such as spherical harmonics [99, 114, 90] or Zernike polynomials [54]. While

spherical harmonics have proved useful in analyzing low-frequency (e.g., Lambertian) re-

flectance [1, 89] even moderately complex BRDFs require a large number of non-zero coef-

ficients to be accurately represented using these bases.

Spherical wavelets have also been used to represent measured BRDF data [96, 58, 72].

Since wavelet basis functions have finite spatial support, they can be used to take advantage

of the fact that typical BRDFs vary slowly over much of their domain. For example, Matusik

et al. [72] densely sampled the BRDFs of 100 different isotropic materials and determined

that only 69 000 non-zero wavelet coefficients (equivalent to about 5% of the data) were

required to accurately represent all of the BRDFs. In Chapter 6 we present an alternative

basis that also provides significant compression.

In addition to their reduced wavelet basis, Matusik et al. [72] propose the direct use of

their BRDF database as a set of basis functions. Arbitrary measured BRDFs can either

be written as a linear combination of the 100 BRDFs in their database, or as a linear

combination of a reduced set of principle components [71]. These are rather cumbersome

representations, however, since they require the storage of the basis BRDFs, each of which

contains 1.5 million elements per colour channel.

Other BRDF representations, designed for efficient rendering in addition to compact

representation, are the factored representations of Kautz and McCool [50] and McCool et

al. [75]. They express the BRDF as a product of lower-dimensional (2D) functions,

fr =
∏

i

gi

(

πi(̂i, ê)
)

,

where the projections, πi : Ω×Ω −→ R2, are fixed a priori and the 2D functions gi are

fit to sampled BRDF data using SVD, normalized decomposition [50] or purely-positive

factorization [75]. Since the recovered 2D functions can be stored as textures in graphics

hardware, these representations are very suitable for real-time rendering applications.
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Figure 2.4: (a) Conventional in/out BRDF parameterization; (b) The halfway/difference
parameterization of Rusinkiewicz; and (c) Marschner’s isotropic, bilateral-symmetric pa-
rameterization.

Parameterization

As we have described, the BRDF domain, Ω×Ω, consists of the double hemisphere of all

pairs of incident and reflected directions. Thus far, we have assumed that this 4D domain is

parameterized by the spherical coordinates of these directions, as shown in Fig. 2.4(a). We

are free to choose any parameterization, of course, and there are significant advantages to

doing so. We discuss two additional parameterizations here, and in Chapter 6 we introduce

an alternative parameterization that combines some of their benefits.

A very useful parameterization is Rusinkiewicz’s halfway/difference parameterization [93]

shown in Fig. 2.4. According to this parameterization, a point in the BRDF domain is writ-

ten (φh, θh, φd, θd) ⊂ [0, 2π)× [0, π2 )× [0, π)× [0, π2 ). This parameterization has been shown

to reduce sampling requirements and increase compression rates since common BRDF phe-

nomena such as specular and retro-reflective peaks are aligned with the coordinate axes.

For example, the number of required non-zero wavelet coefficients can be drastically reduced

using the coordinates (φh, θh, φd, θd) instead of (φi, θi;φo, θo) [93, 72]. In addition, isotropy

and Helmholtz reciprocity are very conveniently described using the halfway/difference pa-

rameterization. Helmholtz reciprocity implies φd −→ φd + π, so that φd can be restricted

to [0, π); and isotropy implies that the BRDF is a constant function of φh, meaning that

this dimension can be ignored in the isotropic case.

Due to the singularities at θ = 0 and the periodicity of φ, both the conventional in/out



CHAPTER 2. BACKGROUND 22

parameterization and the halfway/difference parameterization are unsuitable for the appli-

cation of general interpolation techniques in R3 or R4. To overcome this, Marschner [67]

presented an alternative parameterization for bilaterally-symmetric BRDFs based on a non-

linear mapping of the in/out parameters:

(u, v, w) = (sin θi sin θo cos∆φ, sin θi sin θo sin∆φ, cos θi cos θo) ⊂ [0, 1]3 (2.3)

where ∆φ = φo − φi. As in the halfway/difference parameterization, this parameterization

ensures reciprocity. The great advantage of this parameterization is that it is well defined

everywhere in its domain, making it suitable for the application of general scattered-data

interpolation techniques such as local polynomial regression [67] or radial basis functions

(Chapter 6.)

2.2 Defining a suitable scale

The previous section discusses many representations of reflectance in terms of the BRDF

defined at a point on a surface. In order for any of these representations to provide an

accurate description of an object’s appearance, the assumptions underlying the definition

of the BRDF must be satisfied. If we use the BRDF to represent the appearance of a surface

at the pixel level, for example, this means that the surface scattering properties must be

uniform and isotropic over each region containing the area observed by each pixel. (See

Fig. 2.3.)

General surfaces that are considered in image-based modeling do not satisfy this require-

ment, however, because they are not composed of planar facets with uniform and isotropic

scattering properties. Indeed, as shown in Fig. 2.1, surfaces are generally composed of

structure at a continuum of scales. The question of scale is considered briefly by Nicodemus

et al. [81], where it is noted that for the BRDF, the requirement for isotropic scattering

properties could be dropped, and the requirement for uniformity could be relaxed to, “a

requirement for only statistical uniformity, with variations only over small enough distances

to that they are not significant.” ([81] p30) (The idea of statistical uniformity is also in-
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vestigated by Snyder [102, 103].) In general, if we wish to use the BRDF representation

of reflectance for an arbitrary surface, we must be careful to choose an appropriate scale

when making the division between BRDF and shape; the scale must be chosen so that the

requirement for statistical uniformity is satisfied.

In cases where surface structure cannot be cleanly divided into shape and BRDF, we

must seek alternative representations for appearance. The most common example is the

bidirectional texture function (BTF) [23] in which appearance is represented (often statis-

tically) using gross shape and an apparent BRDF [55] at each point.



Chapter 3

Helmholtz Stereopsis:

Decoupling Shape and Reflectance

As described in Chapter 1, the radiance measurements in an image depend on the shape

and reflectance of the surfaces in a scene as well as the illumination of that scene. Images

typically provide only indirect information about the surface shape, and the problem con-

sidered in this chapter is the recovery of shape from these indirect measurements. We are

given one or more images,

E = g(shape, reflectance, illumination),

and our goal is to invert the image formation process, finding g−1(E), to recover shape. We

will assume that the illumination is known (as it typically is in IBM systems), in which case

the coupling of shape and reflectance in the image set E is the greatest obstacle to accurate

shape recovery.

Most existing methods (e.g., stereo and photometric stereo techniques) approach the

problem by making assumptions, either explicitly or implicitly, about surface reflectance.

In contrast, this chapter presents Helmholtz stereopsis as a reconstruction process that

enables the decoupling of shape and reflectance in images, so that restrictive assumptions

are not required. This decoupling is achieved by capturing images to exploit the symmetry

of the BRDF (Helmholtz reciprocity), and it thereby enables the accurate reconstruction of

surfaces that have arbitrary, complex and unknown surface reflectance.

24
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3.1 Related Work

Estimating 3D shape from images is a fundamental vision problem, and there is a vast

literature in this area. In this section, we summarize some of the most common approaches,

and since we are interested in image-based modeling, we focus on those that provide dense

shape estimates. (This excludes feature-based stereo and structure-from-motion methods

that typically provide shape estimates at only a sparse set of points.) Existing dense re-

construction techniques can be divided into three categories: geometric methods (fixed

illumination, multiple views), photometric methods (single view, known or multiple illumi-

nations), and photogeometric methods (multiple views and multiple illuminations.) We will

discuss some of these methods here, detailing the reflectance assumptions on which they

are based.

3.1.1 Geometric Methods

This category includes dense stereo and structure-from-motion techniques in which a static

scene with fixed illumination is viewed from multiple, known camera positions. The goal is

to recover the shape of the surfaces in the scene, a process that can be viewed as a binary

classification problem: given a 3D point p that is visible in two or more cameras, decide

whether that point lies on a surface.

To help make this decision, one projects the point into each of the cameras and compares

the radiance measurements, {e1(π1(p)), . . . , eN (πN (p))}. (Here, e : R2 −→ R+ is the

radiance measured at an image point, and π : R3 −→ R2 projects a point p onto the image

plane.) Typically, the condition that these measurements are equal, i.e.,

e1(π1(p)) = e2(π2(p)) = · · · = eN (πN (p)), (3.1)

is used as a necessary condition for p to be a surface point. (There are also many stereo

methods that use filtered intensities as opposed to the image intensities themselves.) While

most geometric methods use additional surface information (e.g., surfaces are generally

smooth) in one way or another, the constraint in Eq. 3.1, termed the brightness-constancy
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constraint, is at the core of most conventional dense stereo methods. It is based on the

assumption that scene radiance is independent of viewing direction, i.e., that the surface

reflectance is Lambertian. The majority of surfaces, however, are not Lambertian and

therefore violate this assumption. For these surfaces, noticeable variations in scene radiance

occur as specularities shift with viewpoint, and smaller variations occur everywhere on the

surface. In addition, if the BRDF is spatially-varying, these variations behave differently

at every point on the surface. Under these conditions, recovering shape from a set of stereo

images is difficult, if at all possible. (Most sparse, or feature-based, stereo methods also rely

(albeit less heavily) on the Lambertian assumption; if the BRDF is arbitrary, the detected

feature points may be viewpoint or lighting dependent.)

An example of a stereo method that does not assume strictly Lambertian reflectance is

that proposed by Bhat and Nayar [10]. They assume predominantly Lambertian reflectance

with a narrow specular lobe, and by using a trinocular rig, the specular measurements are

treated as outliers and ignored.

3.1.2 Photometric Methods

In contrast to geometric methods such as stereo and structure-from-motion techniques,

photometric methods recover surface shape from a single viewpoint using photometric in-

formation. A significant difference between the two classes of techniques is that for the most

part, photometric techniques use shading information to directly estimate the Gauss map

of a surface, whereas geometric techniques estimate the surface itself (e.g., the depth at a

set of surface points). The direct estimation of surface normals is a very desirable property

since accurate normals are critical for rendering and reflectance measurement (considered

in Chapter 6.) In addition, if one assumes that the surface is continuous, the estimated

surface normals can be integrated to recover the surface.

Photometric stereopsis is the process of using two or more illuminations of a static scene

with a fixed viewpoint to estimate surface shape. Similar to conventional stereo techniques,

many photometric stereo methods assume that the BRDF is Lambertian [116, 40, 59], or
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that the BRDF is predominantly Lambertian with sharp specularities that can be treated

as outliers [18, 27]. The methods that do not make these assumptions either assume that

the BRDF is completely known a priori (usually through a set of reflectance maps [43]), or

that it can be approximated by a simple parametric model [47, 80, 105, 36]. When we are

dealing with arbitrary BRDFs, or when the form of the BRDF is spatially-varying, there

is insufficient information to reconstruct both the geometry and the BRDF from a set of

photometric stereo images.

Silver [100] presents a photometric stereo method that recovers the surface normals of

homogeneous surfaces with an arbitrary BRDF assuming that a reference object with the

same BRDF and known shape is available. Hertzmann and Seitz [42] elegantly extend

this method to enable the reconstruction of surfaces whose (possibly spatially-varying) re-

flectance can be represented as a linear combination of the BRDFs of multiple homogeneous

reference objects.

Another set of photometric methods consider the shape-from-shading problem, where

the goal is to recover the surface shape using the photometric information in only a single

image. Shape-from-shading methods are even more constrained than photometric stereo

techniques, and they generally assume surfaces are homogeneous and that the reflectance

is either Lambertian or known [46].

Magda et al. [65] presented a photometric method that can handle surfaces with ar-

bitrary, spatially-varying BRDFs, and that is quite different from these other techniques.

Their method uses many illuminations from point-sources located on two spheres of differ-

ent radii surrounding the surface, and it provides depth estimates as opposed to directly

estimating a field of surface normals.

3.1.3 Photogeometric Methods

A growing number of methods have been proposed that simultaneously exploit shading

information and variation in viewpoint to recover shape. The term photogeometric was first

used by Lu and Little [63] to describe their technique, but it seems like a suitable term for
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the entire class of methods.

One set of photogeometric techniques results from incorporating shading information

into stereo (fixed illumination, multiple view) systems [60, 21, 34, 49]. Because they incor-

porate shading cues, these methods are able to estimate shape in regions with little or no

radiance variation. They assume Lambertian reflectance, and they often assume homoge-

neous surfaces.

Another set of photogeometric methods are those that consider photometric motion [85],

in which an object moves under fixed illumination and viewpoint. In this case, both the

viewpoint and illumination change (relative to the object) from frame to frame. These

methods either assume Lambertian reflectance [66, 101, 119] or that optical flow is known

a priori [85].

A more complex technique that makes less restrictive reflectance assumptions was pro-

posed by Lu and Little [63]. They considered homogeneous surfaces with BRDFs that are

isotropic (but otherwise arbitrary), and developed a method for using multiple viewpoints

with collinear illumination to recover surface shape.

3.2 Reciprocal Image Pairs

While reconstruction techniques that rely on assumed reflectance models (such as those

discussed in the previous section) may provide acceptable results for a restricted class of

surfaces and for certain applications, many applications such as visual metrology and reflec-

tometry require very accurate shape for surfaces in which there is no reflectance information

a priori. In these cases, the assumptions made by these techniques can be violated, causing

the recovered shape to be biased. This section shows that we can eliminate the need for

restrictive reflectance assumptions by exploiting Helmholtz reciprocity. This enables the

decoupling of shape and reflectance and the accurate recovery of surfaces with arbitrary

BRDFs.

To see how Helmholtz reciprocity can be used to decouple shape and reflectance, consider

obtaining a pair of images as shown in Fig. 3.1. The first image is captured while the object
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Figure 3.1: The setup for acquiring a reciprocal pair of images that exploits Helmholtz
reciprocity. First an image is acquired with the scene illuminated by a single point source
as shown on the left. Then, as shown on the right, a second image is acquired after the
positions of the camera and light source are exchanged.

is illuminated by a single point light source, and the second image is captured once the

camera and light source positions have been swapped. That is, the camera’s center of

projection is moved to the former location of the light source, and vice versa.

Figure 3.2 shows a reciprocal pair of images there were captured in this way. Although

there are significant specular highlights in these images, the symmetry of the BRDF means

that these specularities do not shift with viewpoint. As a result, instead of complicating the

reconstruction problem, they remain fixed to the surface and becoming reliable features. A

second important property of a reciprocal pair is that if a surface point is in shadow in one

image, it is occluded (not visible) in the other. This is additional information that simplifies

reconstruction, since shadows become reliable indicators of half-occlusion.

In addition to these qualitative properties, there is an important quantitative relation-

ship between the radiance measurements in a reciprocal pair of images. This relationship

is derived from the fact that, for any visible scene point, the ratio of the emitted radiance

(in the direction of the camera) to the incident irradiance (from the direction of the light

source) is the same for both images. Let ol and or denote the positions of the camera and

light source as shown in Fig. 3.1. Denote by p and n̂ a point on the surface and its associ-

ated unit normal vector. Let the vectors v̂l =
1

|ol−p|(ol−p), and v̂r =
1

|or−p|(or−p) denote



CHAPTER 3. HELMHOLTZ STEREOPSIS 30

Figure 3.2: An example of a reciprocal pair of images. In contrast to a typical (fixed-
illumination) stereo pair, specularities appear fixed to the surface. In addition, half-occluded
and shadowed regions are in correspondence, i.e., if a point is shadowed in one image, it is
not visible in the other.

the directions from p to the camera and light source, respectively. Given this system, the

radiance emitted from p in the direction of the left camera is

el = fr(v̂r, v̂l)
n̂ · v̂r
|or − p|2

(3.2)

where n̂ · v̂r gives the cosine of the angle between the direction to the light source and the

surface normal, 1
|or−p|2

is the 1/r2 fall-off from a unit-strength, isotropic point light source,

and fr is the BRDF.

Now, consider the reciprocal case in which the light source is positioned at ol, and the

camera observes p from or. In this case, the observed radiance is

er = fr(v̂l, v̂r)
n̂ · v̂l
|ol − p|2

. (3.3)

Because of Helmholtz reciprocity, fr(v̂r, v̂l) = fr(v̂l, v̂r), and we can eliminate the BRDF
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term in the above two equations to obtain the reciprocity constraint 1

(

el
v̂l

|ol − p|2
− er

v̂r

|or − p|2

)

· n̂ = 0. (3.4)

In this equation, the notation el represents the radiance measured by the left camera at

the projection of point p, and can be interpreted as an abbreviation for el(πl(p)). Also,

for calibrated cameras, the values of ol and or are known, and the values of v̂l, and v̂r can

be computed for a given point p. Thus, everything in the parentheses of this equation is

determined by p, and to reflect this, we make the definition

m(p) =

(

el
v̂l

|ol − p|2
− er

v̂r

|or − p|2

)

.

Using this definition, Eq. 3.4 becomes

m(p) · n̂ = 0. (3.5)

Note that the vector m(p) lies in the plane defined by p, or and ol (the epipolar plane).

Equation 3.4 relates surface geometry to the radiance measured in two images, and it

can be used for reconstruction since it can be viewed as a constraint that must be satisfied

by a surface. Unlike the brightness-constancy constraint used by conventional stereo, the

reciprocity constraint is independent of the BRDF; it depends solely on the shape of the

object (the point p and surface normal n̂.)

There are a number of practical calibration issues that must be addressed when using

Eq. 3.4 for reconstruction. First, the cameras are generally assumed to be calibrated so

that the projections π and the camera/source positions o are known. Second, since the

reciprocity constraint involves scene radiance values (as opposed to pixel intensities), we

require that the radiometric camera response functions of the two cameras be either known,

or be equal and linear. If it exists, spatial variation in camera sensitivity due to optical fall-

off and vignetting must also be calibrated. Finally, in developing the reciprocity constraint,

we assume uniform and isotropic point light sources with equal intensity. If this is not the

1In 1941, Minnaert [77] derived a special case of this constraint. It was used along with isotropy to
increase the number of lunar reflectance measurements that could be made from Earth.



CHAPTER 3. HELMHOLTZ STEREOPSIS 32

case, the sources must also be calibrated (i.e., the relative radiance of each light source as

a function of output direction must be recovered.) An elegant procedure for calibrating the

joint effects of source anisotropy and spatial variation in camera sensitivity for a Helmholtz

stereo rig was recently developed by Janko et al. [48].

3.3 Helmholtz Stereopsis

Helmholtz stereopsis is the process of recovering shape from reciprocal image pairs. This

could be achieved in a multitude of ways, in the same way that there are many differ-

ent methods for reconstruction from stereo and photometric stereo images. Indeed, many

Helmholtz stereo methods could be adapted from these existing techniques. In particular,

the surface-evolution stereo methods of Faugeras and Keriven [29] and Yezzi and Soatto [117]

seem well-suited for Helmholtz stereopsis, since they enable the use of simultaneous con-

straints on a surface and its Gauss map. Similarly, if the surface is the graph of a function,

finite-element and parametric-surface approaches to shape-from-shading [45, 44, 104, 112]

provide inspiration for the development of Helmholtz stereo methods.

A Helmholtz stereo method that is based on conventional, area-based stereo is developed

in Sect. 3.5. Next, we present a comparison of Helmholtz stereopsis with typical stereo and

photometric stereo methods.

3.4 Comparison to Existing Methods

Helmholtz stereopsis is a photogeometric process that allows us to combine the advantages

of typical stereo and photometric stereo methods. Table 3.1 provides a summary of com-

parisons between typical Helmholtz stereo methods and these other two classes of methods,

and this section discusses this comparison in four sections. It is important to note that

this is a comparison between ‘typical’ methods, so not all of the observations made in this

section will apply to all possible techniques.2

2For example, the Helmholtz stereo methods presented in this dissertation assume surface continuity,
even though reciprocal pairs contain rich information about depth discontinuities that could be exploited by
more general techniques.
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Assumed
Reflectance

Shape:
Textured
Regions

Shape:
Constant
Regions

Shape:
Depth
Discont.

Handles
Cast
Shadows

Handles
Half-
Occlusion

Active/
Passive

Photometric
Stereopsis

Lambertian/
Known

Normals Normals No No N/A Active

Stereopsis Lambertian Depth Nothing Sometimes Yes Sometimes Passive

Helmholtz
Stereopsis

Arbitrary Depth &
Normals

Normals Yes Yes Yes Active

Table 3.1: A comparison of typical Helmholtz stereo methods and typical methods for
conventional multinocular and photometric stereo. This is a comparison between ‘typical’
methods, and not all of the observations made in this table will necessarily hold for all
techniques.

Assumed BRDF

As detailed in Sect. 3.1, both photometric stereo and conventional dense stereo techniques

are predicated on assumptions about surface reflectance, usually assuming that the BRDF

is Lambertian or of some other known parametric form. Many natural surfaces (e.g., human

skin, the skin of a fruit, glossy paint) do not satisfy these assumptions, however, and cannot

be accurately reconstructed by conventional techniques.

Recovered Surface Information

In stereo techniques, depth (and not a field of surface normals) is readily computed. Typ-

ically, the output of the system is a depth map—a discrete set of depth values at pixel or

sub-pixel intervals. In most cases, unless a regularization process is used to smooth these

depth estimates, the normal field found by differentiating the recovered depth map will be

very noisy. Instead of direct differentiation of the depth map, regularized estimates of the

normal field can be obtained, for example, based on an assumption of local planarity [25],

or through the use of an energy functional [7]. In contrast to these methods, photometric

stereo techniques generally provide a direct estimate of the field of surface normals which is

then integrated (assuming continuity) to obtain a surface. Helmholtz stereo techniques are

similar to photometric stereo methods (and different from typical stereo methods) in that
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the Gauss map is directly estimated at each point based on photometric information.

In this way, typical Helmholtz stereo methods combine the advantages of stereo and

photometric stereo methods by providing both a direct estimate of the surface depth and the

field of surface normals. This is an important property, since a good estimate of the surface

normals is critical for accurate reflectometry (as considered in Chapter 6) and rendering.

Constant Intensity Regions

Dense stereo methods work best when surfaces are highly textured; when they are not tex-

tured, the brightness-constancy constraint (Eq. 3.1) has little discriminatory power, and

regularization is needed to infer the surface. (This is achieved, for example, using a statisti-

cal prior [87, 35, 69, 7], by computing a minimal surface [29], or by computing a maximally

photo-consistent shape [56].) Sparse, feature-based stereo methods also have difficulty in

these regions; these methods only reconstruct the geometry of corresponding feature points,

so by their nature, they cannot directly reconstruct smoothly curving surfaces whose re-

flectance properties are constant. In contrast, photometric stereo and Helmholtz stereo

methods are unaffected by lack of texture, since they can effectively estimate the field of

surface normals which can be integrated to recover the surface. See Fig. 3.3 for a summary.

Depth Discontinuities

Depth discontinuities present difficulties for both stereo and photometric stereo techniques.

When there is a depth discontinuity, it does not make sense to integrate the normal field

that is output by photometric methods. Likewise, typical stereo algorithms have trouble

locating depth discontinuities. This difficulty arises for two reasons. First, if a background

object has regions of constant intensity and the discontinuity in depth occurs within one

of these regions, it is quite difficult to reliably locate the boundary of the foreground ob-

ject. Second, depth discontinuities induce half-occlusion in adjacent regions of the image,

and these regions, which are not visible in at least one of the images, often confuse the

reconstruction process.

The reciprocal image pairs used by Helmholtz stereo methods simplify the task of detect-
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Figure 3.3: A summary of the surface properties required for Lambertian surface recon-
struction by typical stereo and Helmholtz stereo techniques. Even when the BRDF is
Lambertian, stereo methods are only capable of recovering surface geometry in regions of
texture (i.e., varying albedo) or high curvature (e.g., edges). Neither photometric stereo
nor Helmholtz stereo methods suffer from this limitation.

ing depth discontinuities since the lighting setup is such that the shadowed and half-occluded

regions are in correspondence. The shadowed regions in a reciprocal image pair indicate

depth discontinuities, so if one uses a method that exploits the presence of half-occluded re-

gions for determining depth discontinuities (as done in some stereo algorithms [8, 20, 35, 6]),

these shadowed regions can significantly enhance the quality of the reconstruction.

Active vs. Passive Imaging

Like photometric stereopsis and unlike conventional stereopsis, Helmholtz stereopsis is an

active process. The requirement for reciprocal pairs means that the scene must be illumi-

nated in a controlled manner, and images must be acquired as lights are turned on and

off. As shown in Fig. 3.4, a suitable optical system can be constructed so that the camera

and light source are not literally moved, but rather a virtual camera center and light source

are co-located. Alternatively, as will be shown in the next section, a simple system can be

developed that captures multiple reciprocal image pairs with a single camera and a single

light source.
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Figure 3.4: Proposed module for rapid acquisition of reciprocal image pairs. Using a beam-
splitter, the camera and light source are effectively co-located. With multiple modules like
this one, reciprocal image image pairs can be acquired without moving the cameras and
sources.

3.5 A Multinocular Helmholtz Stereo Method

In this section, we describe a Helmholtz stereo method related to traditional area-based

stereo, and show how this method enables: 1) the reconstruction of surfaces with arbitrary,

spatially varying BRDFs (surfaces that are neither Lambertian nor approximately Lamber-

tian); 2) direct estimation of both surface depth and the field of surface normals; and 3)

the reconstruction of surfaces in regions of constant radiance.

3.5.1 A Multinocular Reciprocity Constraint

In traditional area-based stereo methods, the surface is assumed to be the graph of a

function, and an intensity constraint—usually the brightness-constancy constraint—is used

to estimate a disparity function (at pixel resolution) which is linked to the surface depth.

The reciprocity constraint in Eq. 3.4 is not well suited for this type of direct depth (or

disparity) estimation, since it also depends on the surface normal. Using multiple reciprocal

pairs, however, we can construct a multinocular reciprocity constraint that is independent

of the surface normal and can be used directly as a constraint for depth estimation.

Suppose we capture NP reciprocal image pairs as described in Sect. 3.2, and suppose
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that each of these image pairs is captured from a unique pair of positions (olj ,orj), j =

1, . . . , NP. We can form NP linear constraints like that in Eq. 3.4. Define M(p) ∈ RNP×3

to be the matrix in which the jth row is given by

mT
j (p) = elj

v̂T
lj

|olj − p|2
− erj

v̂T
rj

|orj − p|2
.

Then the set of constraints from the NP reciprocal pairs yields the multinocular reciprocity

constraint,

M(p) n̂ = 0. (3.6)

For a surface point p, the surface normal lies in the null space of M(p), and it can

be estimated from a noisy matrix using singular value decomposition. In addition, the

constraint

rank M(p) < 3, (3.7)

provides a necessary condition that can be used to recover surface depth independent of

surface orientation. At least three reciprocal pairs are required to exploit this constraint.

In addition, there is a condition on {oi}, the set of camera/source positions: for each point

p, there must exist a triple of camera/source positions o1,o2,o3 such that the set of points

{p,o1,o2,o3} are not coplanar.

3.5.2 Capturing reciprocal images

A system that enables the acquisition of multiple reciprocal image pairs with a single camera

and a single light source, can be constructed by mounting a camera and light source on a

wheel as shown schematically in Fig. 3.5(a). Using this wheel, a reciprocal pair is acquired

by capturing two images separated by a 180◦ rotation. We can capture any number of

reciprocal pairs by rotating the wheel through 360◦, stopping to capture images at reciprocal

positions along the way.

A prototype of such a system is shown in Fig. 3.5(b). The camera is a Nikon Coolpix

990, and the light source consists of a standard 100W frosted incandescent bulb fitted with

a small aperture. The camera is both geometrically and radiometrically calibrated. The
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Figure 3.5: (a) A wheel is used to capture multiple reciprocal image pairs employing a
single camera and a single light source. By rotating the wheel through 360◦, any number
of fixed-baseline pairs can be captured. (For example, images captured at ol2 and or2 will
form a reciprocal pair.) (b) An example of the wheel design shown in (a). The light source
consists of a standard 100W frosted incandescent bulb fitted with a small aperture.

former means that the intrinsic parameters and the extrinsic parameters of each camera

position are known, while the latter means that we know the mapping from scene radiance

values to pixel intensities (including optical fall-off, vignetting, and the radiometric camera

response function.) Since the lamp is not an ideal isotropic point source, it also requires

a radiometric calibration procedure in which we determine its radiance as a function of

output direction. (As mentioned earlier, a procedure for performing this calibration has

been developed by Janko et al. [48].)

An example of a set of images captured using this system is shown in Fig. 3.6. For all

results shown in this paper the diameter of the wheel was 38cm and the distance from the

center of the wheel to the scene was approximately 60cm.

3.5.3 Reconstruction

Suppose we capture n images (or n/2 reciprocal pairs) using the wheel in Fig. 3.5, and let

the centers of projection of these n views be located at oc, c = 1, . . . , n. We assume that

the surface is the graph of the function z(x, y), (x, y) ∈ U , whose domain U is known. (The
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Figure 3.6: An example of 6 reciprocal images pairs captured using the rig described in
Fig. 3.5. Reciprocal image pairs are arranged vertically.

function z(x, y) is traditionally referred to as a depth map and is inversely related to the

disparity map of binocular stereo.) We also assume that the unknown surface is completely

contained within the common field of view of all n cameras, an assumption that gives upper

and lower bounds on the depth map z. The depth is discretized so that z ∈ {zmin, . . . , zmax},

which is analogous to the discretized disparity function used in conventional binocular

stereo.

We choose the (x, y)-plane to be parallel to the face of the wheel in Fig. 3.5, with the

axis of rotation passing roughly through the center of U . For each point x ∈ U , and for each

depth value z we can construct a matrix Mx(z) using Eq. 3.6. If the depth z corresponds

to a surface point, this matrix will be rank 2, whereas it will be rank 3 in general. The

correct depth at x will be that which yields the matrixMx(z) that is ‘closest’ to being rank

2. Once the optimal depth is determined, the surface normal is uniquely determined as the

unit vector that spans the 1D null space of the corresponding matrix.

While many possible measures of rank exist, since rank M ≥ 2 (assuming the cam-

era/source condition in Sect. 3.5.1 is satisfied), a suitable measure is the ratio of the second

to third singular values of M. Given a matrix Mx(z), we compute the singular value de-

composition M = UΣVT where Σ = diag(σ1, σ2, σ3), σ1 ≥ σ2 ≥ σ3. Then, our measure of
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rank used to select the correct depth is the ratio

rx(z) =
σ2
σ3
. (3.8)

Note that at correct depth values, the ratio rx(z) will be large.

The multinocular reciprocity constraint in Eq. 3.6 is a necessary condition for correct

surface depth, but it is not sufficient. Similar to area-based stereo, we can increase the

discriminative power of the constraint by assuming that the surface depth is locally constant

and summing Eq. 3.8 over a window of points in U . (This is done, for example, when using

SSD matching in binocular stereo.)

To estimate the depth at point x◦, we consider the ratio r at this point as well as at

points in a small rectangular window W around x◦. Then, the estimated depth at x◦ is

zx◦ = argmax
z

∑

x∈W

rx(z). (3.9)

Once we have estimated the depth z◦, the least-squares estimate of the normal is

n̂x◦ = argmin
n̂

‖Mx◦(z◦)n̂‖
2 , ‖n̂‖ = 1, (3.10)

which is simply given by the right singular vector corresponding to the smallest singular

value of Mx◦(z◦). The depth map that is recovered using Eq. 3.9 will be low in resolution

due to the assumption of local depth constancy. This initial estimate of the depth can

be refined using the high frequency information provided by the field of surface normals,

however, and an example of this will be shown in the next section.

The Helmholtz stereo method makes no attempt at detecting half-occluded regions (even

though this information is available through the visible shadows), and the reconstruction

process is completely local. This method was chosen simply to demonstrate that reciprocity

can be exploited for reconstruction, and we expect that improved results could be achieved

using a more sophisticated Helmholtz stereo techniques. As shown in the next section,

however, despite the simplicity of the method, the results are of reasonable quality.



CHAPTER 3. HELMHOLTZ STEREOPSIS 41

(a)

(b) (c)

Figure 3.7: (a) one of 36 input images (18 reciprocal pairs), (b) the recovered depth map,
and (c) a quiver plot of the recovered field of surface normals. As expected, even though
we obtain a poor estimate of the depth due to lack of texture, the surface normals are
accurately recovered.

3.5.4 Results

Figures 3.7-3.10 show the results of applying this procedure to four different objects. Each

figure consists of: (a) one of the input images of the object, (b) the depth recovered using

Eq. 3.9, and (c) the recovered field of surface normals.

Figure 3.7 is a demonstration of a surface reconstruction in the case of nearly constant

image brightness. This surface (a wax cube) is a member of the class of surfaces described at

the top of Fig. 3.3, and it is an example of a case in which conventional stereo has difficulty.

Notice that our simple Helmholtz stereo method accurately estimates the normal field, even
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(a) (b) (c)

Figure 3.8: (a) one of 34 input images (17 reciprocal pairs), (b) the recovered depth map, and
(c) a quiver plot of the recovered field of surface normals. As evidenced by the specularities
in (a), the surface is non-Lambertian. Regions of very small albedo (e.g., the iris of the eyes,
the background) are sensitive to noise and erroneous results are expected there. Elsewhere,
the depth and orientation are accurately recovered. A 9× 9 window was used in the depth
search.

though the depth estimates are poor. The poor depth estimates are expected since at an

image point x, the ratio rx(d) will be nearly constant for a small depth interval about the

true surface depth. The normals are accurate, however, since each corresponding matrix

Mx(d) will have nearly the same null space.

Figure 3.8 shows the results for a surface that is clearly non-Lambertian. The specular-

ities on the nose, teeth and feet attest to this fact. Note that the reconstruction method is

not expected to succeed in regions of very low albedo (e.g., the background as well as the

iris of the eyes) since these regions are very sensitive to noise.

Figures 3.9 and 3.10 show two more examples of surface reconstructions. Again, note

that the recovered surface normals are accurate despite the low resolution of the depth

estimates, even in regions of nearly constant image brightness.
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As mentioned at the end of the last section, it is possible to obtain a more precise surface

reconstruction by integrating the estimated normal field. The examples above demonstrate

that this field is accurately estimated, even in regions where the depth is not. To illustrate

how surfaces can be reconstructed in this way, we enforced integrability (using the method

of Frankot and Chellapa [33] with a Fourier basis) and integrated the vector fields shown

in Figs. 3.7(c) and 3.10(c). The results are shown in Figs. 3.11 and 3.12. As seen in these

figures, the high resolution information provided by the surface normals enables the recovery

of precise surface shape — more precise than what we would expect from most conventional

stereo methods. Note that it might be possible to obtain similar reconstructions using a

photometric stereo method, but this would require an accurate model for the reflectance at

each point on the surface.
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(a)

(b) (c)

Figure 3.9: A reconstruction for the marked interior region of a ceramic figurine shown in
(a). Figures (b), and (c) are the depth map, and normal field. The low resolution of the
depth map is caused by the 11 × 11 window used in the depth search, but this does not
affect the accuracy of the estimated surface normals. Eighteen reciprocal image pairs were
used.
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(a)

(b) (c)

Figure 3.10: A reconstruction for the face of a plastic doll shown in (a). Figures (b) and
(c) are the estimated depth map and normal field. Eighteen reciprocal image pairs and a
9× 9 window were used.
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Figure 3.11: The surface that results from integrating the normal field shown in Fig. 3.7(c).
Every third surface point is shown, and the surface is rotated for clarity.
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Figure 3.12: Three views of the surface that results from integrating the normal field shown
in Fig. 3.10(c). To demonstrate the accuracy of the reconstruction, a real image taken from
each corresponding viewpoint is displayed. The specularities on the doll’s face clearly show
that the surface is non-Lambertian.
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3.6 Summary

This chapter introduces the notion of a reciprocal image pair as a means of decoupling

shape and reflectance in image data. Due to Helmholtz reciprocity, reciprocal pairs have a

unique property: the relationship between radiance measurements at corresponding image

points is independent of the BRDF. An expression for this relationship is derived, and it is

shown how it can be used as a constraint for shape recovery.

Helmholtz stereopsis is introduced as the process of recovering shape from reciprocal

images, and since it enables the direct estimation of both a surface and its Gauss map, it

allows us to combine the advantages of both conventional and photometric stereo methods.

In contrast to these traditional methods, however, Helmholtz stereo methods can recover

this geometric information for surface with arbitrary, complex and spatially-varying BRDFs.

Finally, we introduce a design that is capable of gathering reciprocal images in a con-

trolled manner with a single camera and a simple approximation to a point light source,

and we develop a simple Helmholtz stereo method (based on traditional area-based stereo)

that uses multiple reciprocal pairs to recover accurate shape.



Chapter 4

Binocular Helmholtz Stereopsis

The last chapter introduced the reciprocity constraint which relates the image measurements

at corresponding points in a reciprocal pair of images. It was shown that the combined

constraints from at least three reciprocal pairs of images provide a simple means of directly

estimating both a surface and its Gauss map.

In this chapter, we re-examine the reciprocity constraint, and investigate conditions in

which shape can be recovered from a single reciprocal pair, such as that shown in Fig. 4.1.

By writing the reciprocity constraint as a PDE, we develop a binocular Helmholtz stereo

method that can reconstruct a surface when the depth along an initial curve is given and

the surface is the graph of a C1 function. We also show how regularization can be used to

recover the surface when the initial conditions are not available.

4.1 The Reciprocity Constraint as a PDE

In the last chapter we derived the reciprocity constraint that relates the measured radi-

ance at corresponding image points in a reciprocal pair of images. Given a reciprocal pair

(captured as shown in Fig. 3.1), the constraint is

(

el
v̂l(p)

|ol − p|2
− er

v̂r(p)

|or − p|2

)

· n̂ = 0,

where el is an abbreviation for el(πl(p)), i.e., the radiance measured by the left image at

the projection of point p. For clarity, we have written the unit vectors v̂l, v̂l as explicit

functions of p.

49
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Figure 4.1: Two rectified images of a painted, plastic mannequin head acquired as a recip-
rocal pair. Note the prominent specularities.

Consider an imaging situation in which the distances from the light source and camera

to the scene are large relative to the relief of the scene, and assume the camera fields of view

to be narrow. Under these conditions, the cameras can be modeled by scaled orthographic

projection, and the vectors v̂l(p) and v̂r(p) can be taken as constant over the scene. As well,

the denominators |ol−p|
2 and |or−p|

2 can each be taken as constant over the scene. The

ratio |ol − p|/|or − p| can be easily determined when calibrating a Helmholtz stereo rig,

and here we take this ratio to be one. Under these assumptions, the reciprocity constraint

reduces to the distant-source reciprocity constraint,

(elv̂l − erv̂r) · n̂ = 0, (4.1)

where v̂l and v̂r are constants determined during calibration.

The distant-source reciprocity constraint is a first order, nonlinear PDE relating the

surface coordinates p and their derivatives expressed through the normal n̂. This equation

is very similar to the fixed-viewpoint, Lambertian case considered in a very different context
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Figure 4.2: The cyclopean coordinate system used to simplify the distant-source reciprocity
constraint. The x-axis is parallel to the epipolar planes, the z-axis bisects the two cam-
era/source directions, and the surface is the graph of a C1 function z(x, y).

by Belhumeur and Jacobs [5] and Chen et al. [15]. As was done there, we can obtain a

solution to Eq. 4.1 using the method of characteristic curves. That is, by performing a

change of variables, we obtain a PDE in one variable, and under suitable conditions, the

depth of the surface along a curve on the object is a solution to this PDE. In our case,

each characteristic curve lies in a unique epipolar plane. (These planes are parallel since we

assume scaled orthographic projection.)

As shown in Fig. 4.2, we establish a cyclopean coordinate system (as in [7]) by defining

the z-axis to be the bisector of directions v̂r and v̂l, and the x-axis to be in direction

v̂r − v̂l. In this coordinate system, epipolar planes are planes of constant y, and we have

v̂l = (− sin θ, 0, cos θ) and v̂r = (sin θ, 0, cos θ) where 2θ is the angle between the two

camera/source directions. Let the coordinates of points in the world be expressed in this

system as (x, y, z), and assume the surface is a graph of a C1 function z(x, y). Furthermore,

assume the pair of images is rectified, so that corresponding scanlines in the left and right

images lie in an epipolar plane. In this system, the point (x, y, z) will project to (x cos θ +

z sin θ, y) in the left image and to (x cos θ − z sin θ, y) in the right image. The disparity is

given by 2z sin θ.

Expressing the surface depth as z(x, y) and noting that the unnormalized surface normal

is ( ∂z∂x ,
∂z
∂y ,−1), we can write the distant-source reciprocity constraint as

−
∂z

∂x
sin θ (el(xl, y) + er(xr, y))− cos θ (el(xl, y)− er(xr, y)) = 0,
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where xl = x cos θ + z sin θ and xr = x cos θ − z sin θ. This holds for all y. Rewriting this,

we have

∂z

∂x
= cot θ

er(xr, y)− el(xl, y)

er(xr, y) + el(xl, y)
, (4.2)

which can be numerically integrated as

z(x, y) =

∫ x

x0

∂z

∂x
dx+ z(x0, y). (4.3)

In other words, for each epipolar plane (indexed by y), this integral can be indepen-

dently evaluated to estimate a profile of the surface corresponding to its intersection with

the epipolar plane. There is no search for correspondence over disparity space, as correspon-

dence is determined as a byproduct of integration. In order to evaluate Eq. 4.3, however,

we require the initial conditions z(x0, y). There are two ways to look at this issue. On one

hand, knowing z(x0, y) for some (x0, y) in an epipolar plane amounts to having the means

to estimate the depth for all points in that plane. Alternatively, one can view Eq. 4.3 as

defining a one-parameter family of reconstructed curves in each epipolar plane, with each

element of the family indexed by a different depth values at (x0, y). In Sec. 4.2, we take

the latter view and use regularization to algorithmically choose a member of this family for

each epipolar line, thereby obtaining a complete reconstruction of the surface.

In order to evaluate the practicality of Eq. 4.3, we gathered reciprocal pairs of images

of three cylinders made of an approximately Lambertian material, a rough-diffuse non-

Lambertian material [84], and a specular plastic material. Images were acquired with a

Kodak DCS 760 (12-bit) digital camera, and the scene was illuminated with a 150W halogen

bulb. The cameras were geometrically calibrated, and the distance from the cameras to the

object was about two meters, which satisfies the assumptions made in deriving Eq. 4.1.

Figure 4.4 shows, for each cylinder, a pair of rectified images and a plot of the image

intensities in a single epipolar plane. These intensity curves are characteristic of these three

material types.

For each epipolar plane, a family of reconstructed profiles was obtained by repeatedly

using Runge-Kutta integration in Matlab with a discrete set of initial depths. Figure 4.3
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Figure 4.3: A family of reconstructed curves in one epipolar plane for the specular cylinder
images in the bottom row of Fig. 4.4. The family arises from different initial conditions
z(x0, y) when integrating Eq. 4.3. The thick (red) curve is the member of this family with
the correct geometry, and is redrawn with a different scaling in the lower right of Fig. 4.4.

shows such a family for the specular cylinder. The optimal reconstruction can be selected

from this family from knowledge of a single correspondence or by some other means (e.g.,

smoothness, a shape prior, etc.) The last column of Fig. 4.4 shows the reconstructed profile

across one epipolar line overlaid on a circular cross section. (The initial conditions were

chosen manually.) The RMS errors between the reconstructed curve and overlaid circle

as a percentage of radius are 0.11%, 1.7%, and 0.94%, respectively, for the Lambertian,

generalized Lambertian, and specular cylinders. The reconstructed curve for the Lambertian

cylinder is indistinguishable from the ground truth circle whereas there is a slight deviation

for the specular cylinder.

4.2 Surface Reconstruction

As discussed in the previous section, we can recover a surface by integrating a character-

istic curve in each epipolar plane, but this requires knowledge of an initial depth in each

plane. This section presents a simple and efficient technique that uses regularization to

algorithmically determine these initial conditions.

Finding an initial depth in an epipolar plane is equivalent to finding a single binoc-
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Figure 4.4: Reconstruction of three real cylinders of three material types: The cylinder in
row 1 is approximately Lambertian, the cylinder in row 2 has rough-diffuse non-Lambertian
reflectance [84], and the plastic cylinder in row 3 is highly specular. The first two columns
show a rectified pair of images of the cylinder. The third column shows a plot of the
image intensities across one epipolar line in the left (blue, solid) and right (red, dashed)
images. The fourth column shows the reconstructed profile (thick, blue) in the epipolar
plane superimposed on a circular cross section.

ular correspondence. (This is a much simpler problem than establishing correspondence

at all points as required by conventional binocular stereo.) To solve this problem, one

could develop an algorithm that used salient features (such as edges) to establish the initial

correspondence, since surfaces generically produce rapid variations in image intensity cor-

responding to rapid variations in the surface normal and variations in the BRDF across the

surface. Additionally, the fact that shadowed surface regions correspond to half-occluded

regions in a reciprocal pair of images provides a means of establishing initial image cor-

respondence since these events generally cause discontinuities in image intensity. (Tu and

Mendonça [108] used shadow/half-occlusion boundaries as surface control points in their
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binocular Helmholtz stereo method that was developed independently from our work.)

While coupling a feature-based stereo algorithm with the solution of Eq. 4.1 might work,

it would rely on the identification of feature points, and would break down ungracefully

when the initial correspondences were incorrectly assigned. An alternative approach is to

eliminate the requirement for initial conditions altogether, exploiting instead the fact that

the surface is continuous. In this approach, one recovers the surface z(x, y) that minimizes

a functional

E(z) = Edata(z) + λEsurface(z) (4.4)

where

Edata =

∫ ∫
(

∂z

∂x
− r(z)

)2

dxdy (4.5)

with

r(z) = cot θ
er(xr, y)− el(xl, y)

er(xr, y) + el(xl, y)
. (4.6)

The second term in Eq. 4.4 reflects prior knowledge about the surface, and it can take

a variety of forms. As typically done in variational shape-from-shading [45], we can exploit

the fact that the surface is continuous (and therefore integrable) using

Esurface(z) =

∫ ∫
(

∂2z

∂x∂y
−

∂2z

∂y∂x

)2

dxdy.

Alternatively, we can bias our solution toward those that are smooth in some sense. Com-

monly used smoothness terms (stabilizers) include

Esurface(z) =

∫ ∫
(

∂z

∂x

)2

+

(

∂z

∂y

)2

dxdy

and

Esurface(z) =

∫ ∫
(

∂2z

∂x2

)2

+ 2

(

∂2z

∂x∂y

)2

+

(

∂2z

∂y2

)2

dxdy.

Of course, we can also use a combination of an integrability term and a smoothness term.

This section describes a fast technique that approximates the minimization of Eq. 4.4,

using the smoothness term

Esurface(z) =

∫ ∫
(

∂z

∂y

)2

dxdy. (4.7)
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This functional is chosen for two reasons. First, since the characteristic curves are each

continuous by construction, it is unnecessary to enforce smoothness in the x direction.

Second, using Eq. 4.7, we can find an approximation to the global minimum of Eq. 4.4 very

efficiently.

Our approximate minimization of the functional in Eq. 4.4 happens in two passes. First,

each epipolar plane is considered independently, and instead of estimating a single curve in

each plane, we recover a family of possible curves. In the second pass, we use the functional

in Eq. 4.7 to choose one curve from each epipolar family, thereby obtaining a complete

surface. Both passes are implemented very efficiently using dynamic programming.

Pass 1: Within Epipolar Planes

Consider a single epipolar plane (i.e., a plane of constant y) and denote the profile of the

surface in this plane by z(x). In order to estimate z(x), we minimize the functional

Edata(z) =

∫
(

∂z

∂x
− r(z)

)2

dx+ α

∫

|∇el −∇er|
2dx (4.8)

where el = el(xl, y), er = er(xr, y), α is a weighting term and r(z) is given by Eq. 4.6

with the known value of y. This functional represents a robust version of Eq. 4.5, one that

combines our reciprocity-based reconstruction with conventional feature-based stereo. In

regions with little texture, the image gradients are small, and the first term dominates.

Therefore, in these regions we effectively recover the surface by estimating its slope from

the photometric variation in the reciprocal pair. In textured regions, however, the finite

resolution in the images means that the ratio r(z) cannot be reliably estimated, and we

instead estimate the surface depth by aligning ‘features’ (i.e., the image gradient) in the

two images.

For each epipolar plane, we use dynamic programming to find a discrete approximation

to the curve z(x) that minimizes Eq. 4.8. For n discrete values of x, we consider m possible

depth values, and the computational cost of finding the global minimum of Eq. 4.8 is

O(nm2); see [9] for details.
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Note that by finding the global minimum of Eq. 4.8, we have eliminated the need for

an initial condition. When an epipolar plane includes an image feature such as an albedo

edge, the gradient matching term locks onto the edge, effectively providing the initial depth

needed for the integration. Thus, we expect good results for epipolar planes that include

features such as the eyes, eyebrows, and lips in Fig. 4.1. We are not guaranteed, however,

that each epipolar plane will have a significant feature that enables the minimization to find

the correct solution. (See, for example, the forehead and the bridge of the nose in Fig. 4.1.)

To overcome this, we use regularization across epipolar planes to recover the surface.

Pass 2: Across Epipolar Planes

Regularization across epipolar planes can be implemented very efficiently using the following

basic idea. First, we compute as the output from Pass 1 a family of n solutions minimizing

Eq. 4.8 with the additional constraint that the endpoints of the solutions vary over a range of

possible z values. (The endpoints are used to index the family of solutions since this family

is obtained as a by-product of dynamic programming. Note that this family differs from

the one arising in Sec. 4.1 and shown in Fig. 4.3.) If the family of solutions is big enough

(i.e., if our sampling of the depth z is fine enough), then the correct solution should be well

represented by one member from the family. This is true whether or not the epipolar plane

has a salient image feature. To choose the optimal curve for each epipolar plane, we simply

choose the collection of curves (one per plane) that minimizes our smoothness functional.

More precisely, let x = xe denote the end of the epipolar line. Let z(xe, y) = ze denote

the surface depth at the endpoint x = xe for epipolar plane y. For each y and for each

ending point ze in the range of possible z values, we compute a solution

ẑ(x, y|z(xe, y)=ze) = argmin
(z(x,y)|z(xe,y)=ze)

Edata(z(x, y)). (4.9)

In other words, ẑ(x, y|z(xe, y) = ze) is the solution along epipolar line y that minimizes

Eq. 4.8 subject to the constraint z(xe) = ze. For each epipolar plane y, we have a family

of curves, and this family is indexed by ze. Within this family there is a value of ze, and a
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Figure 4.5: Two views of a reconstructed plastic mannequin created using a binocular
Helmholtz stereo technique.

corresponding solution ẑ(x, y|z(xe, y)=ze), that is close to the correct solution. We denote

the family of solutions over all epipolar planes by Ẑ(ze; y) = {ẑ(x, y|ẑ(xe, y) = ze)}.

In order to recover the surface, we must select one curve from the family of solutions

in each epipolar plane. We do this by minimizing the functional in Eq. 4.7, and we take as

our solution to Pass 2,

ẑ(x, y) = argmin
Ẑ

Esurface(z(x, y)). (4.10)

As in Pass 1, we use dynamic programming to find ẑ(x, y). The computational cost of this

dynamic programming step is O(m2l) where m is the number of endpoints (depth values),

and l is the number of epipolar planes (values of y).

Note that this formulation has an inherent asymmetry, as the second pass considers a

range of ending points and not a range of starting points. We correct this by re-running

this two stage process in reverse. Specifically, we run Pass 1 and Pass 2 across the data

to find a collection of optimal ending points ẑe = ẑ(xe, y) for each epipolar line. We then

re-run Pass 1 in reverse (i.e., from right to left), fixing the endpoint such that z(xe, y) = ẑe

for each y. At this stage, for each y we now have a family of solutions indexed by the value

of the beginning point zb. The overall solution is then chosen by re-running Pass 2 to select

the optimal curve from each family.

This algorithm has only one parameter: the weighting α of the image gradient term

in Eq. 4.8. The second pass is parameter free. The method does not smooth the solution
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(a) (b)

Figure 4.6: (a) Recovered depth map from the cyclopean viewpoint of the mannequin face in
which light corresponds to near and dark to far. (b) Reconstructed surface, texture-mapped
with one input image.

within epipolar planes, rather it chooses the solutions which together form the surface that

is smoothest across epipolar planes.

Figures 4.5 display two views of a surface mesh reconstructed using the two-pass dynamic

programming method. (The value α = 0.1 was used.) Figure 4.6 shows a depth map in

which light corresponds to near and dark to far, and the recovered surface texture-mapped

with the left input image. Notice that the method is unhampered by the specularities and

is able to both lock onto the features such the eyes, eyebrows, and lips, but also provide

good reconstructions in textureless regions such as the forehead.
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4.3 Summary

In this chapter, we look at the shape information that is available in a single reciprocal pair

of images. We show that the reciprocity constraint is a PDE that, under suitable conditions,

can be integrated along characteristic curves provided that initial conditions are known. We

also show how regularization can be used to determine the initial conditions algorithmically,

enabling a complete reconstruction of the surface from a single pair of images.

The results in this chapter demonstrate that, like its multinocular counterpart, binoc-

ular Helmholtz stereopsis allows the reconstruction of surfaces with arbitrary BRDFs, and

unlike typical stereo techniques, it provides accurate surface shape in regions of constant

brightness.

Binocular Helmholtz stereopsis requires minimal data. Only two images are required as

compared to the 36 images used in the last chapter. By using only two images, binocular

Helmholtz stereo methods will generally be faster, simpler, and cheaper to implement. As

a result, they can be applied to a much broader range of applications.



Chapter 5

Stratified Helmholtz Stereopsis

In Chapter 3 we derived the reciprocity constraint (Eq. 3.4) that relates the radiance mea-

surements at corresponding points in a reciprocal pair of images, and we demonstrated how

this constraint can be used to estimate the shape of surfaces with arbitrary reflectance.

Since the constraint depends on the acquisition geometry (i.e., the intrinsic and extrin-

sic camera parameters), direct application of this constraint requires that the acquisition

geometry is accurately known.

In this chapter we examine the surface information that can be obtained from recipro-

cal pairs when we do not have knowledge of the acquisition geometry. This discussion is

analogous to studies of numerous other surface reconstruction techniques (e.g., structure

from motion, stereo and photometric stereo methods) that have been adapted to handle

uncalibrated or weakly calibrated image and illumination equipment. For these conven-

tional techniques, the vision community has established a precise understanding of what

3D information can be obtained under stratified levels of prior knowledge about the acqui-

sition system. A stratified approach is useful because it tells us what can be obtained under

a given calibration condition (e.g., projective, affine or metric reconstruction) and what

assumptions are required in order to obtain more. This approach has been applied to the

problems of binocular and multinocular stereo [30, 31], structure from motion [53, 98] and

photometric stereo [40, 92]. This chapter presents a similar stratification of Helmholtz stere-

opsis. It is assumed that the reader is familiar with multiple-view geometry; the required

61
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background can be found in a number of texts (e.g., [39]).

In the first section, we introduce an ‘uncalibrated’ reciprocity constraint that is derived

from the multinocular reciprocity constraint of Eq. 3.6, but is different in that it requires

little knowledge about the cameras and sources. This new constraint can be used, for

example, to obtain a projective reconstruction in the uncalibrated case. Following this,

we explore the distant-source case (as considered in Chapter 4) in which the cameras and

sources are far from the object so that the cameras can be modeled as affine cameras. In

this case, we show that it is possible to obtain a reconstruction of the surface and its field

of surface normals up to an unknown affine transformation. Finally, we demonstrate how

knowledge about the acquisition system can be used to upgrade this affine reconstruction

to a metric one; both geometric and photometric pieces of information are considered.

5.1 An Uncalibrated Reciprocity Constraint

We begin this section with a brief review of the multinocular reciprocity constraint derived

in Sect. 3.5.1. We then construct a new constraint that does not require knowledge of the

acquisition system.

In Chapter 3 a wheel configuration was used to capture multiple reciprocal pairs using

a single camera and a single light source. Here, we consider a different acquisition system

consisting of M isotropic point light sources co-located at the camera centers of M pinhole

cameras. (This can be accomplished in numerous ways, such as by swapping cameras and

sources, or by using half-mirrors or beam-splitters as shown in Fig. 3.4. Co-location can

also be approximated by placing each light source near a camera.) Images are acquired in

the following fashion. Light source i is turned on while the other sources are turned off, and

M−1 images are acquired from all cameras but camera i. This process is repeatedM times,

each with a different source turned on, until M(M − 1) images are acquired. These images

are comprised of M(M − 1)/2 reciprocal image pairs, and Fig. 5.1 shows a set of these

images for M = 8. In this figure, the vertical direction corresponds to camera position, the

horizontal direction to source position; reciprocal pairs are in symmetric positions.
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Figure 5.1: Reciprocal images from eight camera/source positions. Columns contain fixed
illumination (stereo) images and rows contain fixed viewpoint (photometric stereo) images.
One reciprocal pair is shown highlighted.

Given M(M − 1)/2 reciprocal pairs taken from camera/source positions o1 . . .oM we

have M(M − 1)/2 reciprocity constraints on the radiance measurements at corresponding

image points. As in Eq. 3.4, we can write these constraints as

(

eij
siv̂

T
i

|oi − p|2
− eji

sjv̂
T
j

|oj − p|2

)

· n̂ = 0, (5.1)

where eij is the image irradiance at the projection of surface point p (with surface normal

n̂) in camera oi when illuminated by a point source at oj . The unit vector v̂i points in

the direction from p to oi. We have also included the relative source strengths si. (In

previous chapters, all sources were assumed to be equal or of known strength—a non-trivial
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assumption.)

As noted in Sect. 3.5.1, when the camera and source positions (and the source strengths)

are known, everything inside the parentheses is determined by the point p. By stacking

the reciprocity constraints into rows of a matrix M, we obtain the multinocular reciprocity

constraint,

M(p)n̂ = 0 (5.2)

where M ∈ RM(M−1)/2×3, and M is written as a function of p to stress the fact that it is

completely determined by a single 3D point.

This constraint is used in Chapter 3 to determine which points p in a scene are surface

points. In addition, for each established surface point, Eq. 5.2 provides an estimate of the

surface normal, since for a surface point p, the normal n̂ spans the 1D nullspace of M(p).

Reconstruction using Eq. 5.2 requires knowledge of the camera and source positions and

the source strengths. It also requires that the radiometric camera responses are known or

are linear and equal (since Eq. 5.1 involves scene radiance values and not pixel intensities),

and that the M point sources are isotropic and uniform. By a simple rearrangement of

Eq. 5.2, however, we can eliminate the need for most of these assumptions.

Making the definition

w̃i =
siv̂i · n̂

|oi − p|2
(5.3)

we can write Eq. 5.1 as eijw̃i − ejiw̃j = 0, and Eq. 5.2 becomes

Ew̃T = 0 (5.4)

where E ∈ R(M(M−1)/2)×M and w̃ ∈ RM . For example, if M = 4, we have

















e12 −e21 0 0
e13 0 −e31 0
e14 0 0 −e41
0 e23 −e32 0
0 e24 0 −e42
0 0 e34 −e43

























w̃1
w̃2
w̃3
w̃4









= 0.

Equation 5.4 is satisfied for visible points on a surface in the scene. Therefore, similar
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to the use of Eq. 5.2, the uncalibrated reciprocity constraint,

rankE < M, (5.5)

can be used to recover shape information. When the epipolar geometry of the camera

system is known (i.e., we have weak calibration), then E will be a function of disparity,

and a multinocular stereo search process can be performed using this constraint. When it

is unknown, this constraint would have to be used within the context of a robust structure

from motion algorithm (e.g., [2].) In either case, one obtains a set of corresponding points,

and in turn, one can reconstruct the scene up to a projective transformation [30].

The key advantage of the uncalibrated reciprocity constraint (Eq. 5.5) is that it depends

only on measured radiance values, so we do not need to know the positions of the cameras

and sources, nor do we need to know the source strengths. All that we require is: 1) that

the radiometric responses of the cameras are linear and equal (or are known); and 2) that

the light sources are isotropic and uniform. Also, note that we do not require radiance

measurements from all M(M − 1)/2 reciprocal pairs in order to use Eq. 5.4. We only

require measurements from P pairs, where P ≥M .

In the remainder of this chapter, we will discuss a stratified reconstruction technique

based on this constraint, even though it is a weaker correspondence constraint than that

based on Eq. 5.2 (see Appendix A.) While this may seem disconcerting, note that the

original reciprocity constraint is itself only a necessary condition for correspondence, and

that the advantage of allowing an uncalibrated system is an important one.

5.2 Distant Sources

In the previous section, we derived a correspondence constraint that does not require knowl-

edge of the cameras and sources. This suggests that it is possible to establish a projective

reconstruction of scene points from uncalibrated reciprocal pairs. This is similar to con-

ventional uncalibrated stereo [30], except that since we have carefully varied the lighting

between views, we are able to use a constraint that is independent of reflectance (as opposed
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to relying on brightness-constancy.)

In this section, we show that when the cameras and sources are far from the scene,

we can quite easily obtain more: the reciprocal image pairs provide accessible information

about both the surface normals and the light sources.

As shown in the binocular case of Chapter 4, when the cameras and sources are far from

the scene, we can write Eq. 5.1 as

(

eijs
T
i − ejis

T
j

)

n̂ = 0, (5.6)

where si is a product of the effective source strength si and direction ŝi, both of which are

the same for all points p in the scene. Accordingly, the vector w̃ in Eq. 5.4 simplifies to

w = [sT
1n̂ sT

2n̂ · · · sT
M n̂]

T
. (5.7)

Now, suppose that we have established correspondence for N points. That is, we have

corresponding observations of N unknown scene points X1 . . .XN ∈ R3 in each of M view-

points. (This could be achieved using the constraint rankE < M , for example.) For a given

point Xk, we haveM(M −1) radiance measurements, one for each source/camera pair, and

we can form a matrix Ek for that point as in Eq. 5.4. Since these radiance measurements

correspond to a single surface point, this matrix in general has rank (M−1), and its 1D null

space can be expressed as ckwk = ck [s
T
1n̂k sT

2n̂k · · · sT
M n̂k]

T, ck ∈ R. (It may be possible

for the rank of E to drop below (M − 1), but do not consider these cases here.) Letting W

denote the N ×M matrix (recall that N is the number of points and M is the number of

sources) whose rows are the transposed null vectors c1w
T
1 . . . cNw

T
N , we have

W =













c1s
T
1n̂1 c1s

T
2n̂1 · · · c1s

T
M n̂1

c2s
T
1n̂2 c2s

T
2n̂2

...
...

. . .

cNs
T
1n̂N · · · cNs

T
M n̂N













. (5.8)

The matrix W is of a familiar form; it is precisely this matrix that one considers in the

bilinear calibration-estimation problem of uncalibrated photometric stereo [27, 40, 52]. The

difference here is that the ‘albedo values’ are not due to surface reflectance properties, but
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are instead artifacts of the homogeneity of Eq. 5.4. Indeed, the reflectance of the surface

has been effectively removed through the use of reciprocal images. Each column of W

corresponds to a Lambertian image of the N points on the surface under a fixed source

direction, and Fig. 5.2 shows what these images look like for dense points on a real surface.

In order to extract the surface normal and source information embedded inW, we must

find the decomposition W = BS, where B is the N × 3 matrix of surface normals (each

scaled by a constant ck), and S is the 3×M matrix of source vectors (source directions scaled

by source strength.) A common strategy is to find a preliminary rank 3 factorization of W

using SVD, and then to correct that decomposition using additional constraints [40, 52].

That is, one computes W = UΣVT and defines B̃ = UΣ1/2 and S̃ = Σ1/2VT, keeping

only the rows and columns of U,Σ, and V corresponding to the first three singular values.

(Here, it is assumed that N ≥ 3, M ≥ 3 and that not all normals or sources lie in a plane.)

This decomposition is not unique (since B̃Q−1QS̃ = B̃S̃ for all Q ∈ GL(3)), and the true

decomposition W = BS can be obtained by finding the matrix Q that satisfies

B = B̃Q−1 (5.9)

S = QS̃.

Note that Q can only be defined up to scale, which is an expression of the fact that we can

apply a global scaling to the source strengths (and the inverse scaling to the ck’s) without

affecting W. Thus, Q has eight degrees of freedom. We examine relevant methods to

determine Q in Sect. 5.3.

In the previous section, we derived a constraint that can be used to establish correspon-

dence in the uncalibrated case. In the present section, we showed that in the case of distant

sources, we can go further; we can use the available photometric information to estimate

the surface normals at the points of observation as well as the strength and direction of

the light sources. In making this statement, we are ignoring the problem of solving for

Q in Eq. 5.9, but notice that we have not yet used the available geometric information.

Since the source directions are equivalent to the viewing directions, they can alternatively
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be computed using established techniques of structure from motion. The interplay between

the geometric and photometric constraints is discussed in the next two sections, leading to a

number of ways in which we can establish a dense metric reconstruction in the uncalibrated

case of distant-source Helmholtz stereopsis.

5.3 Affine Reconstruction

In this section we demonstrate that geometric information can be used to resolve the am-

biguity in the calibration-estimation problem. As a result, for N ≥ 4 observed points and

M ≥ 4 camera/source positions we can obtain a dense affine reconstruction of the scene

(including surface normals and source strengths) without making any assumptions beyond

those of the previous section.

When the cameras are far from the scene, they can be accurately described using the

parallel projection model. Here, we use the most general such model—that of an affine

camera [78]. To represent an affine camera, we use the tuple [P, t] where P ∈ R2×3 and

t ∈ R2. In this notation, the image point xik ∈ R2 that results from projecting scene point

Xk ∈ R3 into image i is given by

xik = PiXk + ti. (5.10)

The matrix P can be decomposed as

P =

[

αx s
0 αy

][

rT
1

rT
2

]

(5.11)

where rT
1 and rT

2 are the first two rows of a rotation matrix that describes the camera

orientation in the world coordinate system, s is the pixel skew, and αx and αy are the

horizontal and vertical scale factors. (The aspect ratio is given by αx/αy.) Also, given a

matrix P, the viewing direction (and in the present case, the source direction) in the world

coordinate system is given by the unit vector in the negative direction of the cross product

of the two row vectors pT
1 and pT

2. That is,

ŝ = −
pT
1 × pT

2

|pT
1 × pT

2|
. (5.12)



CHAPTER 5. STRATIFIED HELMHOLTZ STEREOPSIS 69

It is well known that by observing N ≥ 4 non-coplanar rigid1 points over two or more

unknown affine views, one can establish an affine coordinate frame, and thereby obtain the

scene points and the cameras up to an unknown affine transformation [53, 98]. In the present

case, this reconstruction includes the (affine) source directions, since they are equivalent to

the viewing directions. We can show that given a sufficient number of camera/source posi-

tions, knowledge of these directions enables a unique solution to the calibration-estimation

problem of Sect. 5.2.

Each known source direction ŝi gives two linear constraints on the matrix Q in Eq. 5.9,

since for each we have ŝi = αiQs̃i for some αi > 0. As noted in Sect. 5.2, Q is only

defined up to scale, and thus has eight degrees of freedom. It follows that in general, Q can

be uniquely recovered given M ≥ 4 camera/source positions by solving the corresponding

constrained linear system of equations.

To summarize, given N ≥ 4 observed points over M ≥ 4 cameras/sources in general

position, we can obtain the cameras (and source directions), the scene points, the source

strengths, and the surface normals at the observed points. All of this information is in an

affine coordinate frame. (See Fig. 5.3 for an example.) In Sect. 5.4, we discuss ways in

which we can upgrade to a metric reconstruction.

Note that if we have fewer views (if M = 3) we can still establish correspondence using

Eq. 5.4, and we can still establish an affine reconstruction of the cameras and the observed

points. We cannot, however, determine the source strengths or the surface normals without

further information.

5.4 Metric Reconstruction

The reconstruction obtained in the previous section differs from a metric reconstruction (i.e.,

up to scale) by an unknown affine transformation A ∈ GL(3). The problem of “upgrading”

the reconstruction to a metric one is thus the problem of estimating the nine parameters of

1The general affine camera model allows smooth non-rigid transformations of the scene points between
views (see [53].) Here we assume fixed source positions, however, and in order to make use of the photometric
constraints in our system, we require that the scene be rigid.
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this transformation, commonly termed the autocalibration problem. In order to solve this

problem, we require more information, either geometric or photometric, about the system.

Autocalibration is well studied, and numerous techniques exist for obtaining a metric

reconstruction using constraints on the intrinsic parameters of the cameras (see [39].) For

example, we can obtain a metric reconstruction if we know the aspect ratio of the cameras

(e.g., the pixels are square) and there is no pixel skew (valid for CCD cameras.) With this

knowledge in hand, metric reconstruction follows directly from the methods in Sect. 5.3

with no extra work, since in this case, structure from motion yields a metric reconstruction

of the points and cameras [53]. Then, the Euclidean source directions can be used to resolve

Q, yielding the Euclidean surface normals and the relative source strengths. This is perhaps

the most practical method, and the one we use in Sect. 5.5.

In addition to knowledge about that camera parameters, we can also make use of pho-

tometric information about the system. For example, knowledge of the relative strength

of the light sources was used by Hayakawa [40] to partially resolve the ambiguity in the

calibration-estimation problem for uncalibrated Lambertian photometric stereo. In that

paper, it was shown that knowledge of the relative strength of six sources was enough to re-

solve the surface normals up to a unitary transformation [40, 92]. Similar analysis could be

applied here. As another example, if the BRDF of the surface is known to be highly peaked

in the specular direction, we can use detected specularities to constrain A. If a specularity

is detected at the projection of the scene point X in the reciprocal images corresponding

to camera/source directions ŝi and ŝj , it follows that the normal at that point must bisect

these two directions, or n̂ = (ŝi + ŝj)/2. Detected specularities have already been used to

reduce ambiguities in photometric stereo and affine binocular stereo [27].

Any of these geometric or photometric constraints can be combined to determine the

unknown affine transformation and thereby upgrade to a metric reconstruction. In the next

section, we provide a demonstration of one method of resolving A and obtaining a metric

reconstruction.
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5.5 Implementation and Results

For the results in this section, we acquired reciprocal pairs of images using a single 12-bit

Kodak DCS760 camera (whose radiometric response function is linear) and multiple Lowel

Pro-light sources with 250-watt halogen bulbs. M separate sources were placed at each of

M camera/source positions which were far (∼ 2.5 meters) from the scene, and the collection

process was as follows. First, the camera replaced the source at position 1, andM−1 images

were captured, each with illumination by one of the other sources. Then, the original source

was returned to position 1, and the camera replaced the source at position 2. The process

was repeated, resulting in a total of M(M−1) images, or M(M−1)/2 reciprocal pairs. An

example of a typical dataset for M = 8 is shown in Fig. 5.1.

5.5.1 Affine

The first step of the reconstruction is the establishment of an affine coordinate system.

Currently, this is done by clicking a small number of points, although it could be achieved

using a robust structure from motion technique (e.g., [2].) Given N ≥ 4 correspondences

over allM views, we compute the pointsX1 . . .XN and cameras [P1, t1], . . . , [PM , tM ] using

the Tomasi-Kanade factorization algorithm [106] generalized to affine cameras as in [98, 113].

The corresponding source directions ŝi are computed using Eq. 5.12.

Having established an affine coordinate system, we use the uncalibrated reciprocity con-

straint (Eq. 5.4) to establish dense correspondence in the multinocular system. This is

accomplished by an exhaustive search as follows. The affine coordinate system is trans-

formed so that the xy-plane is parallel to the image plane of the second camera in Fig. 5.1,

meaning that ŝ2 = [0 0 −1]T. We assume that the surface is the graph of a function

z(x, y), (x, y) ∈ U where the domain U is known. (The domain was manually selected

to eliminate the background from the reconstruction.) As in Sect. 3.5.3, the depth z is

discretized so that z ∈ {zmin, . . . , zmax}. For each point x ∈ U , and for a given depth z,

we sample all M(M − 1) images at the projected points and build Ex(z) using Eq. 5.4. As

a measure of the likelihood that rankEx(z) = M−1 we use the ratio of its two smallest
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singular values,

rx(z) =
σM−1

σM
. (5.13)

Since the constraint in Eq. 5.4 is necessary for a valid depth value but not sufficient, as

we did in Sect. 3.5.3, we use simple windowing to make the depth search more robust. For

a given point x◦ ∈ U and a depth value z, we compute the ratio rx(z) at this point as well

as at points in a small window Wr around x◦. Then, the estimated depth at x◦ is given by

zx◦ = argmax
z

∑

x∈Wr

rx(z). (5.14)

Once we have estimated the depth zx◦ , the corresponding null vector wx◦ can be ob-

tained as the linear least-squares estimate,

wx◦ = argmin
w

‖Ex◦(zx◦)w‖
2, ‖w‖ = 1, (5.15)

which is simply given by the right singular vector corresponding to the smallest singular

value of Ex◦(zx◦). However, due to sampling noise, and noise in the estimation of the

epipolar geometry and the depth estimate, the radiance measurements in Ex◦(zx◦) are in

general noisy. This affects the accuracy of the estimated null vector wx◦ , especially when

these measurements are made near discontinuities in scene radiance (e.g., at albedo edges.)

In order to mitigate these effects, we use a second, weighted windowing scheme. Given the

depth estimates at and near x◦, we construct the E matrices at x◦ and in a neighborhood

WE around it. The null vector at x◦ is estimated using

wx◦ = argmin
w

∑

x∈WE

rx ‖Exw‖
2, ‖w‖ = 1, (5.16)

where rx is given by Eq. 5.13. Again, this calculation can be done using SVD, since wx◦ is

simply the null vector of an augmented matrix created by stacking the weighted Ex matrices

vertically.

To summarize, we use a two-pass technique to establish depth and to estimate the null

vector wx for each point x ∈ U . In the first pass, the ratio in Eq. 5.13 is computed and

stored for each x and for each possible depth. By maximizing (with respect to depth) this
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Figure 5.2: The columns of the W matrix defined in Eq. 5.8 displayed as images. These
correspond to images of the surface with the reflectance removed.

ratio summed over a window in U , we estimate the true depth associated with each point.

In the second pass, we use these established depth estimates and the associated ratios to

compute an estimate of the null vectors over a second weighted window. Note that these

two steps need not be performed at the same resolution.

At this point, we have a null vector wx for every x ∈ U , and we can construct the matrix

W as in Eq. 5.8. The columns of this matrix for the dataset in Fig. 5.1 are shown in Fig. 5.2.

As mentioned previously, these columns of W correspond to images of the surface with the

reflectance removed. In order to recover the surface normals and the source strengths as

described in Sect. 5.3, we compute a preliminary factorization of W and then resolve the

ambiguity in the factorization using the known affine source directions ŝi. As a result of

this procedure, we obtain the field of surface normals as shown in Fig. 5.3(a). If we treat

the affine coordinate frame as though it were metric, and integrate this normal field (after

enforcing integrability [33]), we obtain the result shown in the top row of Fig. 5.4.

For this result, we used all of the images shown in Fig. 5.1. Twenty correspondences

were used to establish the affine coordinate system, the resolution of the reconstruction was
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(a) (b)

Figure 5.3: Surface normals seen from the viewpoint of the principle camera. (a) Normal
field that results from the affine reconstruction as described in Sect. 5.3. (b) That which
results from enforcing known aspect ratio and zero skew in all cameras.

153× 105, and we used square windows with Wr = 9× 9, and WE = 3× 3.

5.5.2 Metric

In order to obtain a metric reconstruction, we make the assumption that the cameras have

unit aspect ratio and zero skew, and the procedure of the previous section is repeated with

only minor changes. We take the set of affine points Xk and cameras [Pi, ti] and enforce

known aspect ratio and zero skew by finding G ∈ GL(3) that satisfies the set of quadratic

constraints [98, 113]

pT
i1GG

Tpi1 = pT
i2GG

Tpi2

pT
i1GG

Tpi2 = 0,

where pT
i1 and p

T
i2 are the rows of the i

th camera matrix Pi. By applying the transformation

G to the system (the cameras transform as PG and the points as G−1X), we obtain the

points and cameras in a metric coordinate frame, and we can compute the true Euclidean

source directions ŝi.
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Figure 5.4: Three views of the two surfaces that result from integrating the normal fields
in Fig. 5.3. The top row corresponds to the affine reconstruction (see Fig. 5.3(a)), and the
bottom row the metric reconstruction (see Fig. 5.3(b)).

Figure 5.5: The same surface shown in the bottom row of Fig. 5.4, but interpolated and
texture mapped with one input image.
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Since the correspondences remain unchanged, the matrix W need not be recomputed.

We simply resolve the ambiguity in the factorization using the Euclidean source directions

in place of the affine directions. The resulting normal field is shown in Fig. 5.3(b) and the

integrated surface (after enforcing integrability [33]) is shown in the bottom row of Fig. 5.4,

and in Fig. 5.5.
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5.6 Summary

This chapter takes a stratified look at uncalibrated Helmholtz stereopsis (i.e., where we have

little or no information about the cameras and light sources.) We present a new reciprocity

constraint that can be used to establish correspondence without knowledge of the cameras

and sources and thus obtain a projective reconstruction of the observed points. Like the

original reciprocity constraint, this new uncalibrated constraint has the important property

of not assuming a reflectance model for the surfaces in the scene being reconstructed.

We also show that in the distant-source case (i.e., when the distance from the scene to

the cameras/sources is large), we can obtain an affine reconstruction that, in addition to the

observed points, includes the surface normal at each observed point and the relative strength

of the light sources. We discuss ways in which further information about the cameras and

sources can be used to upgrade from this affine reconstruction to a metric reconstruction.



Chapter 6

Reflectance Sharing:

Reflectance from a Sparse Set of Images

As discussed in the introduction to this dissertation, an image E is determined by the shape

and reflectance properties of the surfaces in a scene as well as the scene illumination,

E = g(shape, reflectance, illumination).

The last three chapters addressed the problem of inverting the function g to recover the

scene shape. The approach was to capture a set of images under controlled illumination such

that shape and reflectance could be decoupled, and the shape could be recovered without

making assumptions about reflectance.

In this chapter, we consider a different problem: assuming the shape is given (by

Helmholtz stereopsis or by some other means) and the illumination is known, recover the

reflectance of the surfaces in the scene. Recovering reflectance is difficult because of the

high-dimensionality of the problem. At each point on the surface, the reflectance is de-

scribed by the BRDF, and as discussed in Chapter 2, the BRDF is a four dimensional

function of the view and lighting directions. It can vary sharply, especially when a surface

is specular. In addition, the BRDF generally changes spatially over an object’s surface.

Without further assumptions, recovering the spatially-varying BRDF (or 6D SBRDF) re-

quires an input set of images large enough to observe high-frequency radiometric events,

such as sharp specular highlights, at each point on the surface. This set consists of a near

78
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exhaustive sampling of images of the scene from all viewpoints and lighting directions, which

can be tens-of-thousands of images or more.

In previous work, recovering spatial reflectance has been made tractable in one of three

ways. Either: 1) the SBRDF is approximated using a parametric reflectance model, 2) only

low-frequency effects are recovered, or 3) accurate non-parametric reflectance is recovered,

but only for a subset of the reflectance function (e.g., for only one of view or lighting

variation.) In this chapter we present an alternative approach. We exploit the fact that,

although it is high-dimensional, the spatial reflectance function typically varies slowly over

much of its spatial and angular domain. It varies slowly in the spatial dimensions since

reflectance often varies smoothly across much of an object’s surface; and the fact that it

varies slowly in certain angular dimensions is simply a re-statement of the observation that

the reflectance at a single point—the BRDF—is highly compressible. By taking advantage of

these properties, we develop a technique for recovering an accurate SBRDF from a sparse

set of images without using a parametric model. In fact, as shown in Fig. 6.10, we can

achieve a plausible result even for the extreme case of a single input image.

We approach SBRDF estimation as a scattered-data interpolation problem, with images

providing dense 2D slices of data embedded in the higher dimensional SBRDF domain. To

solve this interpolation problem we introduce a new representation of reflectance based on

radial basis functions. This representation is compatible with many parameterizations of

the angular domain (i.e., the BRDF domain), so we are free to choose one that exploits

compressibility in these dimensions. In addition, by interpolating in both the spatial and

angular dimensions, we exploit spatial coherence by sharing reflectance information across

the surface.

6.1 Assumptions and Related Work

Although there has been substantial recent research in estimating spatial reflectance, this

chapter represents an alternative approach to the problem, relying on a different set of

assumptions. It is beneficial, therefore, to discuss these assumptions in the context of those
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made by existing techniques.

Our method is directly applicable to acquisition systems that provide a set of images of

an object with known geometry, viewpoint, and either point-source or directional illumina-

tion (see, e.g., [95, 24, 70]). Ignoring interreflections, each pixel in these images provides

a sample of the high dimensional SBRDF, and our method works by interpolating and ex-

trapolating from these samples to recover a continuous reflectance function. Although it

is not explicitly considered here, in the case of directional illumination and orthographic

projection, global effects such as sub-surface scattering and interreflection will be absorbed

into our representation, so we expect our method to handle some of these effects. (This is

similar to the non-local reflectance field defined by Debevec et al. [24].)

Our reflectance representation is based on radial basis functions, which provide a general

scattered-data interpolation technique. This means that we do not assume the SBRDF can

be represented by a parametric reflectance model. The only assumption we make about the

SBRDF is that it is “smooth” in some sense. (This is discussed in more detail in Sect. 6.3.1

and in [28, 110].) It also means that, while we expect less accurate results far from the convex

hull of the input samples (i.e., far from the set of input viewing and illumination directions),

within this convex hull we expect accurate results for arbitrary reflectance functions. This is

in sharp contrast to methods using parametric reflectance models, such as Lensch et al. [62]

and McCallister et al. [73], who represent the SBRDF using the Lafortune model [57], Sato

et al. [95] who use a simplified Torrance-Sparrow model, and Yu et al. [118] who use the

Ward model. In many cases, parametric approaches can provide useful approximations from

sparse input, even far from the convex hull of input samples, but they lack the flexibility to

represent general reflectance functions with arbitrary accuracy.

The benefits of a data-driven, non-parametric approach have been demonstrated in

previous work. For example, Wood et al. [115] use over 600 images of an object under

fixed illumination to estimate the 2D view-dependent reflectance variation at each point,

and Debevec et al. [24] use 2048 images to measure the 2D lighting-dependent variation
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corresponding to fixed viewpoint.1 These methods differ from ours in that they neither

assume nor exploit spatial coherence, relying instead on an exhaustive sampling of (a subset

of) the spatial reflectance function. They are not designed to work well for sparse input,

and the large amount of data they require makes it difficult to extend them to include

both light and view variation in a non-parametric way. For example, Matusik et al. [70]

estimate a surface reflectance function (both view and lighting) on the visual hull of an

object using more than 12,000 images. Even this large number of images provides only a

sparse sampling of the BRDF at each point, and as a result, images can be synthesized only

with low-frequency lighting.

Our method differs from previous non-parametric methods in that if exploits spatial co-

herence to reduce the number of required images. Our assumption that the SBRDF varies

smoothly in the spatial dimensions is similar to assumptions made by previous parametric

methods, that have assumed that specular parameters are the same across a surface [118] or

can be estimated at a sparse set of points [95]. To properly exploit spatial coherence we re-

quire curved surfaces, since a planar surface with distant illumination and orthographic view

provides no information about angular reflectance variation. (Note, however, that in these

cases more angular reflectance information can be obtained using near-field illumination

and perspective views.) Additionally, while we demonstrate how our method can handle

rapid spatial variation in terms of a multiplicative albedo or diffuse texture, in cases where

the shape of the BRDF itself changes rapidly, we currently assume these discontinuities to

be given as input.

In addition to assuming spatial smoothness, our second main assumption is that spatial

reflectance is highly compressible in the angular dimensions (i.e., in the BRDF domain.)

This property has been previously exploited for 3D shape reconstruction [42], efficient BRDF

acquisition [72], efficient rendering of BRDFs [75], and efficient evaluation of environment

maps [13, 91]. In the present work, angular compressibility is exploited by assuming that

1In [24], the method is extended to handle viewpoint variation through a special-purpose parametric
model.
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the BRDF typically varies rapidly only in certain dimensions (e.g., the half-angle.) Since

these dimensions are sampled densely in a single image, only a small number of images are

generally required for reflectance estimation. To accurately recover reflectance variation

in other dimensions (e.g., that corresponding to Fresnel reflection,) we expect that addi-

tional images will be required. Since variation in these other dimensions is generally low in

frequency, however, a sparse set of images usually suffices.

Other related work includes methods for compressing image-based representations, such

as factoring them using eigen-textures [82, 16], but these generally require full, densely

sampled reflectance information before compression can be applied. In addition, although

they do not address the problem of spatially-varying reflectance, our work is directly related

to, and inspired by, methods for image-based BRDF measurement [64, 68, 72]. Here, it has

been observed that a single image of a curved, homogeneous surface represents a very dense

sampling of a 2D slice of the global 3D or 4D BRDF.

6.2 Notation and BRDF Parameterization

At the core of our approach is the interpolation of scattered data in many (3-6) dimen-

sions. The success of any interpolation technique depends heavily on how the SBRDF is

parameterized. This section introduces some notation and presents one possible parameter-

ization. Based on this parameterization, our interpolation technique is discussed in detail

in Sects. 6.3 and 6.4.

The SBRDF is a function of six dimensions written f(x, θ), where x = (x, y) ⊂ R2 is the

pair of spatial coordinates that parameterize the surface geometry (a surface point is written

s(x, y)), and θ ∈ Ω×Ω are the angular coordinates that parameterize the double-hemisphere

of view/illumination directions in a local coordinate frame defined on the tangent plane at

a surface point (i.e., the BRDF domain.) As discussed in Sect. 2.1.3, a common parameter-

ization of the BRDF domain is θ = (θi, φi, θo, φo) which represent the spherical coordinates

of the light and view directions. When the BRDF is isotropic, the angular variation reduces

to a function of three dimensions, commonly parameterized by (θi, θo, φo−φi). In this work,
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we restrict ourselves to this isotropic case and consider the SBRDF to be a function defined

on a 5D domain. In the special case when the SBRDF is a constant function of the spatial

dimensions (i.e., f(x, θ) = f(θ)) we say that the surface is homogeneous and is described

by a 3D function.

The angular dimensions (the BRDF domain) can be parameterized in a number of

ways, and as discussed in Sect. 2.1.3 one good choice is Rusinkiewicz’s halfway/difference

parameterization [93], shown in Fig. 6.1(b). Using this parameterization in the isotropic

case, the BRDF is written as θ = (θh, φd, θd) ⊂ [0, π2 ) × [0, π) × [0, π2 ). (Note that φd is

restricted to [0, π) since φd 7−→ φd + π by reciprocity.)

The existence of singularities at θh = 0 and θd = 0 and the required periodicity

(φd 7−→φd+ π) make the standard halfway/difference parameterization unsuitable for most

interpolation techniques. Instead, we define the mapping (θh, φd, θd) 7−→ (u, v, w), as

(u, v, w) =

(

sin θh cos 2φd, sin θh sin 2φd,
2θd
π

)

. (6.1)

This modified parameterization is shown in Fig. 6.1(c). The mapping eliminates the singu-

larity that occurs at θh = 0 and ensures that the BRDF f(u, v, w) satisfies reciprocity. This

mapping is undefined when θd = 0 (i.e., when the light and view directions are equivalent),

but this is not a severe limitation since that configuration is difficult to create in practice

and can usually be avoided during synthesis.

6.2.1 Considerations for Image-based Acquisition

The halfway/difference parameterization of Rusinkiewicz has been shown to reduce sam-

pling requirements and increase compression rates since common features such as specular

and retro-reflective peaks are aligned with the coordinate axes [93, 72]. The modified pa-

rameterization of Eq. (6.1) maintains this property, since specular events cluster along the

w-axis, and retro-reflective peaks occur in the plane w = 0.

These parameterizations are useful in image-based modeling for an additional reason:

a single (orthographic, directional illumination) image of a homogeneous surface provides

a dense sampling of the BRDF along a plane of constant θd (or equivalently, of constant
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Figure 6.1: (a) The input/output parameterization of the BRDF domain defined in a
local coordinate system defined by the surface normal and tangent vector. (b) The
halfway/difference parameterization of Rusinkiewicz. In the isotropic case, the BRDF do-
main is parametrized by (θh, φd, θd). (c) The modified parameterization defined by Eq. (6.1)
that is suitable for interpolation. The BRDF f(u, v, w) is guaranteed to satisfy reciprocity;
the parameterization is defined for all values of θh; BRDF samples from a single image of a
homogeneous curved surface lie on planes of constant w; and specular events are clustered
near the w-axis, enabling significant compression.

w.) Thus, these parameterizations effectively separate the dimensions of the BRDF that

can be sampled densely using image based methods (θh and φd) from that which is sampled

sparsely (θd). This is clear from Fig. 6.1(b). In a single image, θd is constant for all surface

points, independent of the surface normal n̂. As a result, we have only as many samples

of this dimension as we have images. In contrast, when a surface is curved, a single image

provides a nearly continuous sampling of θh and φd.

Conveniently, the asymmetric sampling obtained from image-based data corresponds

well with the behavior of general BRDFs, which vary slowly in the sparsely sampled dimen-

sion θd, especially when θd is small. By imaging curved surfaces, we ensure that the sampling

of the half-angle θh is high enough to accurately recover the high-frequency variation that

is generally observed in that dimension.

It is worth emphasizing that our interpolation method can be implemented using a num-

ber of parameterizations, with the halfway/difference parameterization being one of many

possible choices. Another suitable parameterization that may prove useful, for example, is

the Marschner parameterization described in Sect. 2.1.3.
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6.3 Homogeneous Surfaces

With this notation in hand, we can proceed to introduce our reflectance representation and

our method for sharing reflectance. Recall that our goal is to estimate a continuous SBRDF

f(x, θ) from a set of samples {fi} drawn from images of a surface with known geometry. In

this section, we introduce the method using the special case of homogeneous surfaces, where

we seek to estimate a single global BRDF that is not spatially-varying. This special case

is considered for two reasons. First, the homogeneous case provides a convenient platform

to evaluate the performance of our method. Second, although it is not the focus of this

paper, the application of our method to the homogeneous case provides an alternative and

potentially useful representation for image-based BRDF measurement [64, 68, 72], that is

well-suited for sparse datasets. The inhomogeneous case is discussed in the next section.

In order to recover a continuous representation of the BRDF from scattered, image-based

samples, the BRDF can be interpolated using local polynomial regression [67], or expressed

as a linear expansion of pre-chosen basis functions such as spherical harmonics, wavelets,

Zernike polynomials, or the data-driven basis functions of Matusik et al. [72]. Here, we

choose an alternative representation, expressing the BRDF as a linear combination of radial

basis functions (RBFs). Radial basis functions have been used successfully for scattered data

interpolation problems in many different contexts, including 3D reconstruction [14, 26]; and

there is a growing body of research investigating convergence rates and methods for efficient

computation [12]. They are chosen here for three main reasons.

1. The coefficients of an RBF interpolant are estimated directly from scattered data

with few restrictions on the sample locations (e.g., without requiring samples on a

regular grid.) This is an important property that is not shared by methods such as

spherical harmonics and spherical wavelets. Indeed, since the sampling rate available

in image-based data is highly irregular, use of these other basis functions often requires

a preprocessing step to resample the data at regular intervals.

2. Essential to this work is the fact that RBF interpolation can easily be extended to the
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spatially-varying case. The cost of computing the coefficients of an RBF interpolant

is dimension-independent, so the RBF interpolation methods we develop here for

the homogeneous BRDF case (a 3D domain) can be easily adapted for the spatially-

varying case (a 5D domain). In contrast, spherical harmonics and Zernike polynomials

are defined only in the angular domain, and could not easily be used to model spatial

variation.

3. As has been shown by Carr et al. [14] an RBF representation can be compact, provid-

ing substantial compression of the input data. This is true for BRDF (and SBRDF)

data provided a suitable parameterization is chosen.

6.3.1 Radial Basis Functions

To briefly review RBFs, consider a general function g(x), x ∈ Rd from which we have N

samples {gi} at sample points {xi}. This function is approximated as a sum of a low-order

polynomial and a set of scaled, radially symmetric basis functions centered at the sample

points;

g(x) ≈ g̃(x) = p(x) +
N
∑

i=1

λiψ(‖x− xi‖), (6.2)

where p(x) is a polynomial of degree at most m, ψ : R+ → R is a continuous function, and

‖ · ‖ is the Euclidean norm. The sample points xi are referred to as centers, and the RBF

interpolant g̃ satisfies the interpolation conditions g̃(xi) = g(xi).

Given a choice of m, an RBF ψ, and a basis for the polynomials of order m or less, the

coefficients of the interpolant are simply determined as the solution of the linear system

[

Ψ P
P T 0

] [

~λ
~c

]

=

[

~g
0

]

, (6.3)

where Ψij = ψ(‖xi − xj‖), ~λi = λi, ~gi = gi, Pij = pj(xi) where {pj} are the polynomial

basis functions, and ~ci = ci are the coefficients in this basis of the polynomial term in g̃.

This system is invertible (and the RBF interpolant is uniquely determined) in arbitrary

dimensions for many choices of ψ, with only mild conditions on m and the locations of

the data points [28, 76]. For example, in two dimensions the familiar “thin-plate spline”



CHAPTER 6. REFLECTANCE SHARING 87

corresponds to the RBF ψ(r) = r2 log r, and the corresponding system is invertible whenever

m ≥ 1 and the sample points are not collinear.

In the case of homogeneous BRDF data, the function being interpolated is a function

of three dimensions (i.e., d = 3). A good choice in this case is the linear (or biharmonic)

RBF, ψ(r) = r, with m = 1. Using this RBF, the resulting interpolant g̃ minimizes

a generalization of the thin-plate energy and is the “smoothest” in some sense [28]. In

Sect. 6.4 we show that the linear RBF performs well in the spatially-varying case (in which

d = 5) as well.

In practical cases the samples {gi} are affected by noise, and it is desirable to allow the

interpolant to deviate from the data points, balancing the smoothness of the interpolant

with its fidelity to the data. This is accomplished by replacing Ψ in Eq. (6.3) with Ψ−ρNI,

where I is the identity matrix and ρ is a stiffness parameter. Further details are presented

in [110].

So far we have dealt exclusively with isotropic radial functions. In many cases we benefit

from using anisotropic radial functions in which the basis functions are ‘stretched’ in certain

directions. Anisotropic RBFs were used by Dinh et al. [26] to accurately represent corners

and edges in 3D surfaces. Here we use them to manage the asymmetry in our sampling

pattern. (Recall from Fig. 6.1 that the dimensions u and v are sampled almost continuously

while we have only as many samples of the w dimension as we have images.) Following Dinh

et al. [26], an anisotropic radial function is created by scaling the Euclidean distance function

in Eq. (6.2) so that the basis functions become

ψ(‖M(x− xi)‖), (6.4)

where M ∈ Rd×d. In our case we choose M =diag(1, 1, sd) to reflect the varying sampling

rates in the three dimensions. For sd < 1, the basis functions are elongated in the w

dimension, which is appropriate since our sampling rate is much lower in that dimension.

The appropriate value of this parameter depends on the angular density of the input images,

and empirically we have found that typical values for sd are between 0.1 and 0.5.
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As a final note, when the number of samples is large (i.e., N > 10 000), solving Eq. (6.3)

requires care and can be difficult (or impossible) using direct methods. This limitation has

been addressed quite recently, and iterative fitting methods [3], and fast multipole methods

(FMMs) for efficient evaluation [4] have been developed for many choices of ψ in many

dimensions. In some cases, solutions for systems with over half a million centers have been

reported [14]. The next section includes an investigation of the number of RBF centers

required to accurately represent image-based BRDF data, and we find this number to be

sufficiently small to allow the use of direct methods.

6.3.2 Radial Basis Function BRDFs

Using the linear radial basis function withm = 1, and using the modified halfway/difference

parameterization from Eq. (6.1), the BRDF is expressed as

f̃(θ) = c1 + c2u+ c3v + c4w +

N
∑

i=1

λi‖θ − θi‖, (6.5)

where θi = (ui, vi, wi) represent the BRDF sample points from the input images, and ~λ and

~c are found by solving Eq. (6.3).

As a practical consideration, since each pixel in a set of images represents a sample point

θi, even with modest resolution in the images, using all available samples as RBF centers in

Eq. (6.5) is computationally prohibitive. Much of this data is redundant, however, and an

accurate representation of the BRDF can be achieved using only a small fraction of these

centers. Carr et al. [14] use a simple greedy algorithm that selects which of the input samples

are used as centers for the RBF, and a slightly modified version of the same algorithm can

be applied here. The procedure begins by selecting a small subset of the sample points θi

and fitting an RBF interpolant to these. Next, this interpolant is evaluated at all sample

points and used to compute the radiance residuals, εi = (fi − f̃(θi)) cos θi, where θi is

the angle between the surface normal at the sample point and the illumination direction.

Finally, points where εi is large are appended as additional RBF centers, and the process

is repeated until the desired fitting accuracy is achieved.
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6.3.3 Evaluation

Equation (6.5) is an alternative representation for the BRDF. In order to test this model,

we performed numerical experiments simulating the data available from image-based BRDF

measurement systems such as that of Matusik et al. [72]. For these simulations, we used

both specular and diffuse reflectance, one drawn from measured data (the metallic-blue

BRDF, courtesy of Matusik et al. [72]), and the other generated using a physically-based

BRDF model (Oren-Nayar [84]).

Figure 6.2 provides an indication of the number of centers required to accurately repre-

sent a BRDF. The BRDF model in Eq. (6.5) was fit to ten images of a homogeneous sphere

(with the measured metallic-blue BRDF), and the accuracy of this fit was measured by its

ability to predict the appearance of the sphere under novel view and lighting conditions.

The figure shows the accuracy of our recovered BRDF representation as the number of

centers is increased using the greedy algorithm. Convergence with less than 400 centers

suggests that only a small fraction of the available centers are required to accurately sum-

marize the reflectance information available in the input images. For this experiment, the

ten input images were uniformly spaced in θd over the range [0, π2 ], and the resolution of

each image was 100× 100. The relative RMS radiance error was computed using images of

the sphere for 21 view and light directions (also uniformly spaced in θd) that were not used

as input. Images predicted by the model were compared to the true images, and the error

was summed over all pixels corresponding to surface points.

The example in Fig. 6.2 demonstrates the efficiency of this representation. For inhomo-

geneous surfaces, we obviously need more centers to represent spatial variation, but even

in that case, accurate results can be obtained with fewer than 2000 centers. (See Fig. 6.5.)

This suggests that this representation may be useful for compression of large image-based

datasets.

In a second set of experiments, we explored the accuracy of the BRDF model in Eq. (6.5)

as the number of input images increases. The results are shown in Figs. 6.3 and 6.4 for pre-

dominantly specular and diffuse reflectance, respectively. These results demonstrate that:
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Figure 6.2: The accuracy of the RBF representation as the number of centers is increased
using the greedy algorithm described in Sect. 6.3.2. The input is 10 images of a sphere
synthesized using the metallic-blue BRDF measured by Matusik et al.

1) the RBF representation provides a reasonable fit from a small number of images, and

2) the accuracy of this fit improves as the number of images is increased. The convergence

of the fit is expected since, like other data-driven representations, the RBF representation

is free to use the samples from additional images to flexibly represent the subtleties of the

material. In contrast, while parametric models yield a more compact representation, these

figures show that they can be too restricted to accurately fit arbitrary BRDF data. (This

is true even as we increase the number of generalized cosine lobes in the Lafortune rep-

resentation; additional lobes do not significantly improve accuracy, and furthermore, they

cannot be reliably fit to a small number of images.) The bottom of each of these figures

shows synthetic spheres rendered for novel view and light directions using the 1000-center

RBF and parametric BRDF models recovered from 16 input images. The bottom of Fig. 6.3

demonstrates how the flexibility of the RBF representation enables the accurate represen-

tation of the BRDF at grazing angles, whereas behavior at even moderate grazing angles is

not captured by the parametric models.

6.4 Inhomogeneous Surfaces

In the inhomogeneous case, the reflectance function varies in the spatial dimensions in ad-

dition to the angular dimensions, and our goal is to estimate the 5D SBRDF. An important
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Figure 6.3: Top: Error in the estimated BRDF for an increasing number of input images
of a sphere with the specular metallic-blue BRDF measured by Matusik et al. As the
number of images increases, the RBF representation converges to the true BRDF. For
comparison, the isotropic Ward model and the Lafortune model with one, two and three
lobes (in addition to a Lambertian diffuse lobe) were fit to the same data, and these were
found to be too restricted to provide an accurate fit. (Note: due to the difficulty in fitting
multi-lobe Lafortune representations, for each set of images the Lafortune model was fit ten
times using LM-iteration with the first and third lobes randomly initialized to Cx = Cy =
−1±0.25, Cz = 1±0.25, n = 20±5 (forward scattering) and the second to Cx = Cy = Cz =
1 ± 0.25, n = 20 ± 5 (backward scattering). The graph shows the average error over the
ten trials.) Bottom: Synthesized images using the three BRDF representations estimated
from 16 input images. (The RBF representation uses 1000 centers.) The angle between the
source and view directions is 140◦. Only the RBF representation accurately captures the
effects at this moderate grazing angle.

advantage of the RBF representation developed in the previous section is that it extends

very naturally to the inhomogeneous case, with a unified representation of both spatial and

angular variation. This representation allows us to share reflectance information spatially

across the surface, and we demonstrate how this spatial sharing can reduce the number of

required images by one or two orders of magnitude. We begin by assuming that the 5D

SBRDF varies smoothly in the spatial dimensions. In the next section, we show how this

can be generalized to handle rapid spatial variation in terms of a multiplicative albedo or
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Figure 6.4: Top: Plot comparing the error in the estimated BRDF for an increasing number
of input images of a sphere synthesized with diffuse Oren-Nayar reflectance. As the number
of images increases, the RBF representation converges to the true BRDF. When the diffuse
BRDF is modeled as Lambertian, of course this is not the case. Bottom: Synthesized images
comparing the 1000-center RBF and Lambertian models estimated from 16 input images.
The angle between the source and view directions is 10◦.

diffuse texture.

6.4.1 Radial Basis Function SBRDFs

Letting q = (x, y, u, v, w) be a point in its domain, the SBRDF is represented using the

linear RBF with m = 1, giving

f̃(q) = p(q) +
N
∑

i=1

λi‖q− qi‖, (6.6)

where p(q) = c1 + c2x + c3y + c4u + c5v + c6w. We can use any parameterization of the

surface s, and there has been a significant amount of recent work on determining good

parameterizations for general surfaces [61, 38]. The ideal surface parameterization is one

that preserves distances, meaning that ‖x1 − x2‖
1
2 is equivalent to the geodesic distance

between s(x1) and s(x2). For simplicity, here we treat the surface as the graph of a function,

so that s(x, y) = (x, y, s(x, y)), (x, y) ⊂ [0, 1]× [0, 1].
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The procedure for recovering the parameters in Eq. (6.6) is almost exactly the same

as in the homogeneous case. The coefficients of f̃ are found by solving Eq. (6.3) using a

subset of the SBRDF samples available in the input images, and this subset is chosen using

the greedy algorithm. Anisotropic basis functions are realized using M = (sx, sx, 1, 1, sd),

where sx is chosen to reflect the expected relative rates of variation in the spatial and

angular dimensions. The value of sx depends on the choice of surface parameterization, and

we have found typical values to be between 0.2 and 0.4.

6.4.2 Evaluation

The SBRDF representation of Eq. (6.6) was evaluated using experiments similar to those

used in Sect. 6.3.3 for the homogeneous case. The SBRDF is fit to synthetic images of

a hemisphere rendered using the physically-based Torrance-Sparrow model with linearly

varying roughness parameter. Five images of the hemisphere are shown in the top of

Fig. 6.6, and they demonstrate how the specular highlight sharpens as we move from left

to right across the surface.

Figure 6.5 shows the accuracy of the recovered SBRDF as a function of the number of

RBF centers when the SBRDF is fit to ten images of the hemisphere with fixed, orthographic

viewpoint and ten uniformly distributed illumination directions. It is clear from this figure

that fewer than 2000 centers are required to accurately represent the spatially-varying re-

flectance information available in the input images. This is a very compact representation,

and it does not grow significantly as more input images are added. For this experiment, the

RMS error was computed using images synthesized with 40 novel illumination directions,

also uniformly distributed over the hemisphere.

Figure 6.6 demonstrates that reflectance sharing can drastically reduce the number of

required input images. In this experiment, the SBRDF is fit to five images of the hemisphere

(shown in the top of the figure.) Even with these sparse images, we can accurately predict

the appearance of the hemisphere under novel illumination directions as shown in the middle

of the figure. For comparison, the right column shows the result obtained without exploiting



CHAPTER 6. REFLECTANCE SHARING 94

spatial coherence, i.e., by interpolating only in the angular dimensions to estimate a separate

BRDF at each point. (This is the technique used by Matusik et al. [70], and is similar in

spirit to [115, 24], since these methods also estimate a unique reflectance function at each

point.) Interpolating only in the angular dimensions means that at most five reflectance

samples are available at each point. As a result, severe aliasing occurs when the surface

is re-lit with a high frequency illumination environment like the directional illumination

shown here. The bottom of Fig. 6.6 demonstrates that even 150 images are not enough

to accurately estimate the SBRDF without exploiting spatial coherence. Thus, reflectance

sharing effectively reduces the number of required input images by one or two orders of

magnitude—from over 150 to only 5. (The accompanying video includes animated sequences

of these results.)

Even though all of the input images are captured from the same viewpoint in this exper-

iment, a full SBRDF is recovered, and as shown in Figs. 6.7(a)–(b), view-dependent effects

can be accurately predicted. This is made possible by the spatial sharing of information

(since each point on the surface is observed from a unique view in its local coordinate frame)

and by reciprocity (since we effectively have observations in which the view and light direc-

tions have been exchanged.) As shown in Fig. 6.7(c), however, reflectance effects far from

the convex hull of input samples cannot be accurately recovered, since these effects are not

observed in the input images. (Figure 6.7(c) shows the actual and predicted appearance

with θd = 65◦; the five input images were captured with θd < 30◦.)

6.5 Generalized Spatial Variation

The previous sections have introduced a simple, compact representation for reflectance

and described how it can be used to accurately estimate an SBRDF from a sparse set of

images when the SBRDF varies smoothly over the surface. In this section, we soften the

requirement for spatial smoothness and demonstrate the applicability of our approach to

image-based rendering of a human face.

Rapid spatial variation can be handled using a multiplicative albedo or texture by
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Figure 6.5: The accuracy of the RBF representation for spatially-varying reflectance as the
number of centers is increased using the greedy algorithm described in Sect. 6.3.2. The
input is 10 images of a hemisphere synthesized using a Torrance-Sparrow reflectance model
with a linearly varying roughness parameter. Images of the sphere are shown at the top of
Fig. 6.6.

writing the SBRDF as

f(x, θ) = a(x)d(x, θ),

where a(x) is an albedo map for the surface and d(x, θ) is a smooth function of five dimen-

sions. As an example, consider the human face in Fig. 6.8(a). The function a(x) accounts

for rapid spatial variation caused by pigment changes in the skin, while d(x, θ) models the

smooth spatial variation that occurs as we transition from a region where skin hangs loosely

(e.g., the cheek) to where it is taut (e.g., the nose.)

In some cases, it is advantageous to express the SBRDF as a linear combination of

multiple 5D functions. For example, Sato et al. [95] and many others use the dichromatic

model of reflectance [97] in which the BRDF at a point is written as the sum of an RGB

diffuse component and a scalar specular component that multiplies the source colour. We

employ a modified dichromatic model for the example in Fig. 6.9. Using this model, the

SBRDF is given by

fk(x, θ) = ak(x)dk(x, θ) + ŝkg(x, θ), k = R,G,B, (6.7)

where ŝ is an RGB unit vector that describes the colour of the light source. In Eq. (6.7),

a single function g is used to model the specular reflectance component, while each colour
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Figure 6.6: Estimating the spatially-varying reflectance function from a sparse set of images.
Top: Five images of a hemisphere with spatially varying reflectance used as input. Middle:
By sharing reflectance information spatially, we can recover the SBRDF from this sparse
data. Severe aliasing occurs, however, if we do not share spatially, interpolating instead
only in the angular dimensions and estimating a BRDF separately at each point. Bottom:
Angular-only interpolation applied to an increasing number of input images. At least 150
images are required to obtain a result comparable to the reflectance sharing result with only
five images.

channel of the diffuse component is modeled separately. This is significantly more general

than the usual assumption of a Lambertian diffuse component, and it accounts for changes

in diffuse colour as a function of θ, such as the desaturation of the diffuse component of

skin at large grazing angles witnessed by Debevec et al. [24].

Finally, although not used in our examples, more general spatial variation can be mod-

eled by dividing the surface into a finite number of regions, where each region has spatial
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Figure 6.7: (a,b) Actual and predicted appearance of the hemisphere for two novel view-
points. Even though the input (top of Fig. 6.6) is captured from a single view, a full
SBRDF is recovered, including view-dependent reflectance effects. (c) Actual and predicted
appearance far from the convex hull of input samples. The effects at grazing angles (here,
θd = 65◦) cannot be accurately predicted, since these effects are not observed in the input
images.

reflectance as described above. Given a set of disjoint regions Rj , j = 1, . . . ,M that tile

the spatial domain, the SBRDF is expressed as

f(x, θ) =
M
∑

j=1

δj(x)fj(x, θ), (6.8)

where δj evaluates to 1 if x ∈ Rj and 0 otherwise, and fj is the SBRDF in region Rj .

6.5.1 Data Acquisition and SBRDF Recovery

We require knowledge of the surface geometry and a set of images taken from known view-

point and known directional illumination. In addition, in order to estimate the separate

diffuse and specular reflectance components in Eq. (6.7), the input images must be similarly

decomposed. While it can be accomplished in many ways (see, e.g., [94, 79]), we performed

the specular/diffuse separation by placing linear polarizers on both the camera and light

source and exploiting the fact that the specular component preserves the linear polarization

of the incident radiance. Two exposures were captured for each view/lighting configuration,

one with the polarizers aligned (to observe the sum of specular and diffuse components), and

one with the source polarizer rotated by 90◦ (to observe only the diffuse component.) To
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Figure 6.8: (a,b) An example of one input image separated into its specular and diffuse
components. (c) The geometry of the face used for SBRDF recovery and rendering.

recover the geometry, we used a variant of photometric stereo, since it directly provides the

precise surface normal estimates required for reflectometry. The geometry and an example

of a decomposed input image are shown in Fig. 6.8.

Four view/illumination configurations, with fixed orthographic viewpoint and four known

illumination directions, were used as input. (Two polarized exposures were captured in each

configuration.) The average angular separation of the light directions is 21◦ (considerably

more sparse that in previous work,) and these directions span a large area of frontal illumi-

nation.

The RGB albedo a(x) in Eq. (6.7) is estimated as the median of the four diffuse samples

at each surface point, and normalized diffuse reflectance samples are computed by dividing

by a(x) at each point. The resulting normalized diffuse samples are used to estimate the

three functions, dk(x, θ), in Eq. (6.7) using the RBF techniques described in Sect. 6.3. The

samples from the specular images were similarly used to compute g. 2000 RBF centers were

used for each diffuse colour channel, and for the specular component, 5000 RBF centers

were used.

Each diffuse RBF interpolant requires the storage of 2006 coefficients (the weights for

2000 centers and the six polynomial coefficients) and 2000 sample points {qi}, each of which

has five-dimensions. (This could be substantially reduced, for example, by using the same
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center locations for all three channels.) Similarly, the specular component requires 5006

coefficients and 5000 centers. The total required storage for the four interpolants is 66 024

single precision floating-point numbers, or 258kB. This very compact representation of both

viewpoint- and lighting-dependent reflectance effects.

6.5.2 Rendering

Images under arbitrary view and illumination are synthesized using this representation as

follows. The SBRDF coordinates q at any surface point s(x) are determined by the spatial

coordinates x, the surface normal at that point, and the view and illumination directions

in its local coordinate frame. The radiance emitted from that point toward the camera is

Ik(x) = fk(q)(l · n̂), k = R,G,B, (6.9)

where fk is given by Eq. (6.7) and l represents the strength and direction of the illumination.

Because Eq. (6.7) involves sums over a large number (up to 5000) of RBF centers for each

pixel, direct image synthesis can be quite slow. As Fig. 6.10 demonstrates, however, this

representation can be used in conjunction with precomputed light transport methods for

real-time rendering, making it a useful intermediate representation between acquisition and

rendering.

6.5.3 Results

The recovered spatially-varying reflectance function is shown in Fig. 6.9, where a synthetic

image of the surface is compared to a real image for illumination conditions that were not

used as input.

The spatial variation of the recovered reflectance function is evident in these images,

and is shown explicitly in Fig. 6.9(d). In this plot, the recovered specular lobe on the nose

is shown to be substantially more peaked than that of the cheek. Note, however, that the

shape of this lobe as seen in Fig. 6.9(b) is slightly more broad than that in the actual image.

This is caused by small movements of the subject during acquisition and calibration errors

(light source position and source anisotropy.) Both of these lead to slight misalignment of



CHAPTER 6. REFLECTANCE SHARING 100

0 20 40 60 80

0.2

0.4

0.6

0.8

1

theta
H

 (deg)

B
R

D
F

Nose
Cheek

(a) (b) (c) (d)

Figure 6.9: Comparison of an actual novel image (a) and synthesized image (b) that was
rendered using the reflectance representation in Eq. (6.7). The spatially-varying reflectance
was recovered by sharing the reflectance information from four input images. This repre-
sentation can be used to synthesized viewpoint variation (c), and it accurately models the
spatial variation of the reflectance function (d).

the images relative to the geometry and to each other and add noise to the SBRDF samples.

(Accuracy could be improved, for example, using a high speed acquisition system such as

that of Debevec et al. [24].) Figure 6.9(c) shows a synthetic image with changing view.

6.5.4 A Special Case: One Input Image

In the extreme case when only one input image is available, all reflectance samples lie on a

hyperplane of constant w, reducing the dimension of the SBRDF by one. The dimension-

independence of RBFs means this can be handled very naturally. Of course, by collapsing

the θd (or w) dimension, we do not model Fresnel effects on the surface. (As an example, if

we are given a single image captured with frontal illumination, we can say very little about

the appearance at grazing angles.) Nevertheless, a single image does contain significant

reflectance information, and as demonstrated in this section, our method obtains plausible

results in this case.

For the single image case, we use a simplified SBRDF representation,

fk(q) = ak(x) + ŝkg(q), k = R,G,B, (6.10)

with

g(q) =
N
∑

i=1

λi‖q− qi‖,
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Figure 6.10: The face is rendered using a non-parametric, spatially varying reflectance
function that is recovered from a single image (shown in Fig. 6.9(a)) of known geometry
taken under directional illumination. These images were rendered in real-time using a
technique based on precomputed information as described in [120].

where q = (x, y, u, v). The diffuse component of the reflectance function is modeled as

Lambertian, and the albedo a(x) is estimated directly from the reflectance samples in the

diffuse component of the single input image. The specular component g is estimated from

the specular reflectance samples using the fitting procedure of Sect. 6.3.2. 2000 RBF centers

are used.

Figure 6.10 shows synthetic results under natural lighting from environment maps.

These images were rendered in real-time, using the precomputed image technique discussed

in [120].

6.6 Summary

In this chapter we show that, by careful parameterization and representation of reflectance,

and by exploiting spatial coherence to share information spatially across the surface, we

can estimate a non-parametric, spatially-varying reflectance function from a sparse set of

images of known geometry. The method can be viewed as bridging parametric methods

and dense, non-parametric methods that do not exploit spatial coherence. The spatial

reflectance function can be approximated from a very small number of images, and at the
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same time, the estimate converges to the true appearance as the number of images increases.

We formulate the task of estimating spatially-varying reflectance as a scattered-data

interpolation problem, and to solve this interpolation problem we introduce a new repre-

sentation of reflectance based on radial basis functions. This representation is compact and

can be recovered directly from scattered, image-based data. It is shown to be a useful inter-

mediate representation of spatially-varying reflectance, since it can be used in combination

with existing real-time rendering techniques based on precomputed information.



Chapter 7

Conclusion

This dissertation addresses the problems of estimating both the shape and reflectance prop-

erties of an object from its images. For recovering accurate shape, it introduces the concept

of a reciprocal image pair as a means of decoupling shape and reflectance in image data.

These images exploit a symmetry property of reflectance known as Helmholtz reciprocity.

Helmholtz stereopsis is defined as the process of recovering shape from reciprocal image

pairs, and it is shown to enable accurate shape estimation for surfaces with arbitrary and

complex reflectance. Since they operate independent of reflectance, Helmholtz stereo meth-

ods can be applied to a much broader class of surfaces than conventional techniques, and

they perform well in cases where other techniques often fail. In addition, typical Helmholtz

stereo techniques have the unique ability to provide direct estimates of both the surface

and its Gauss map. This is a very desirable quality, since accurate surface normals are

essential for reflectance measurement (as considered in the second part of this dissertation)

and for rendering synthetic images (i.e., for predicting appearance under novel illumination

and viewpoint.)

Chapters 3–5 discuss some of the significant properties of reciprocal images and the

shape information they contain. These chapters show that more than one reciprocal pair

is generally required to estimate a surface and its Gauss map, but that the shape of a

continuous surface can often be recovered from a single reciprocal pair. Shape information

can also be recovered in the uncalibrated case (when little is known about the imaging

103



CHAPTER 7. CONCLUSION 104

system), and in some cases, the photometric information in a set of reciprocal pairs is

sufficient for the recovery of both shape and the parameters of the acquisition system.

The second problem considered by this dissertation is that of estimating surface re-

flectance from images of known shape, a task made difficult by the vast amount of data

it typically requires. Reflectance sharing is presented as a method that exploits the spa-

tial coherence of reflectance to obtain an accurate estimate of an object’s spatially-varying

reflectance properties from a drastically reduced set of images. Unlike most existing tech-

niques, this information is recovered without resorting to low-dimensional approximations

(e.g., parametric models) of reflectance. Reflectance sharing shows that the task of esti-

mating reflectance can be formulated as a scattered-data interpolation problem is five or

six dimensions, and this dissertation presents a new representation of reflectance that can

be used in this framework. The new representation has the added advantage of being very

compact, making it useful for compression of large datasets.

The focus of this dissertation is the acquisition of appearance models (in terms of

shape and reflectance) for surfaces with arbitrary and complex surface reflectance, mean-

ing reflectance that is not necessarily well-represented using pre-chosen, low-dimensional

reflectance models. By developing practical techniques that eliminate the restrictions im-

posed by assumed reflectance models, we move closer to the rapid acquisition of accurate

appearance models for general objects and scenes.



Chapter 8

Future Work

8.1 Helmholtz Stereopsis

Chapters 3–5 demonstrate the ability of Helmholtz stereo methods to accurately recover

the shape of general surfaces, but many properties of reciprocal images remain unexplored:

• Shadowed areas in reciprocal images provide shape information since they correspond

to half-occluded regions and are indicators of depth discontinuities. This additional

information was not used in the presented Helmholtz stereo methods, and we ex-

pect that it could increase the utility of the method. This is true in all three cases

(multinocular, binocular and uncalibrated) that were considered.

• More direct methods of combining depth and surface orientation in the multinocular

case must be explored. Model-based, surface-evolution approaches such as the stereo

techniques developed by Faugeras and Keriven [29] and Yezzi and Soatto [117] are

particularly attractive since they enable the use of simultaneous constraints on a

surface and its Gauss map. Finite-element and parametric-surface approaches to

shape-from-shading [45, 44, 104, 112] also provide inspiration for a second generation

of Helmholtz stereo techniques.

• The distant-source (affine) uncalibrated case was studied in Chapter 5, but the per-

spective case was not discussed in detail. Since the reciprocity constraint is a Euclidean

constraint, it is conceivable that reciprocal image pairs contain sufficient photometric
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information to solve the autocalibration problem in the perspective case as well.

In addition, there are two fundamental limitations to Helmholtz stereopsis. First, we

expect the accuracy of the results to be affected by the presence of significant interreflections.

Second, the accuracy may be decreased for surfaces whose reflectance is not well represented

by a BRDF, including surfaces with significant sub-surface scattering or mesostructure.

The severity of these limitations remains to be studied in detail, but concerning the second

limitation, it is important to note that most surfaces (including these supposed violators)

can be described by a BRDF at an appropriate scale. The task becomes, then, one of

automatically finding the scale at which these effects become negligible, which in turn

determines the resolution of the recovered shape.

8.2 Reflectance Sharing

Chapter 6 showed that the spatial coherence of surface reflectance can be exploited to sig-

nificantly reduce the number of images required to accurately estimate the spatially-varying

reflectance of an object. To increase the practicality of the technique, the most immediate

concern is computational efficiency. We have demonstrated that our compact RBF-based

representation is a useful intermediate representation of spatially-varying reflectance since

it can be used in combination with current rendering techniques based on precomputed

information. In future work, it may be possible to develop real-time rendering techniques

directly from the RBF-based representation. For example, fast multipole methods can be

used to reduce the evaluation of Eq. (6.2) from O(N) to O(1) [4]. This may be a good alter-

native to using factored forms of BRDFs for homogeneous surfaces [75] and may provide a

practical approach for real-time rendering of surfaces with spatially-varying, non-parametric

BRDFs.

Another direction for future work is to consider anisotropic reflectance. The ideas of

exploiting spatial coherence and using RBFs to interpolate scattered reflectance samples can

still be applied to the anisotropic case. This requires a parameterization which is different

from that presented in Sect. 6.2, however, and unless it is known a priori, it also requires
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the simultaneous estimation of the field of tangent vectors on the surface.

Finally, we demonstrated reflectance sharing for surfaces with reflectance that varies

smoothly across the surface or can be described by the product of a smooth function and

a (possibly) discontinuous albedo or texture. An important direction of future work is

to detect the regions of a surface where this is not an appropriate representation, and to

develop and incorporate more suitable appearance representations for these regions.



Appendix A

Uncalibrated reciprocity constraint

This appendix compares the original multinocular and uncalibrated reciprocity constraints

discussed in Sect. 5.1. Consider a reciprocal imaging system consisting of P reciprocal

pairs captured from M ≤ P positions. In a calibrated system, the multinocular constraint

(Eq. 5.2) can be used to establish correspondence, since for a valid correspondence, the

matrix M will satisfy rankM < 3. In the uncalibrated case, we cannot compute M, and

instead we factor it as

MP×3 = EP×MUM×3, (A.1)

where Un̂ = w̃, with w̃ as defined in Eq. 5.3. Then, the uncalibrated constraint used to

establish correspondence is rankE < M . We can show that for M ≥ 4 this is a weaker

constraint than that based on Eq. 5.2.

There are two relevant rank inequalities for a general matrix product,

rank(AB) ≤ min(rankA, rankB)

rankAn×kBk×m ≥ rankA+ rankB− k.

In the present case (noting that rankU = 3 for non-coplanar sources) these give

rankE+ 3−M ≤ rankM ≤ min(rankE, 3),

which tells us the following. First, if M = 3, rankE < M ⇐⇒ rankM < 3, and the two

constraints are equivalent. They are not equivalent, however, for M ≥ 4. In this case,

rankM < 3 =⇒ rankE < M , but the converse does not hold.
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