Architecture Overview

• Topics
 • Processors, cores, and threads
 • Hardware architectures

• Learning Objectives:
 • Explain the different ways in which parallelism emerges on today’s hardware platforms.
 • Explain the difference between a thread context, a core and a processor.
Uniprogramming vs Multiprogramming

- **Uniprogramming**: a system runs only one “thing” (process or program) at a time.
 - MS-DOS
 - Old-batch systems
- **Multiprogramming**: a system that appears to run multiple “things” at once.
 - Also called multitasking.
 - Multiple programs run concurrently, even if there is only one program is running at a given instant.
- **Multiprocessing**: True concurrency
 - The hardware is actually capable of running things simultaneously, because it has multiple processing elements (intentionally ambiguous, to be defined later).
- **Contrast**: Multiprogramming/multitasking refer to the number of programs running. Multiprocessing refers to there being more than one processing element in the system (historically multiple processors; today multiple cores or multiple [hardware] threads)
• Your basic processor:
 • 1 Chip
 • 1 Execution Core
 • 1 L1 Cache
 • 1 L2 Cache
 • 1 Memory
Architecture 101 (2)

Registers
- General purpose
- Program counter
- Stack Pointer
- Arithmetic Logic Unit (ALU)
- Adder
- Multiplier
- Floating Point Unit FPU
 (optional)

Execution Core

L1 Cache

L2 Cache

Memory
Architecture 101 (3)

Really fast memory.
~4 CPU cycles
Typically a few tens of KB.
Fast memory.
~10 CPU cycles.
Typically a few tens of MB.
Architecture 101 (5)

Main memory.
~40-60 cycles
Typically several to many GB.
Multicore:
- 1 chip
- Multiple execution cores
- Multiple L1 caches
- Single L2 Cache
- 1 Memory
Architecture 101 (7)

- **Multithreading**
 - Hyperthreading
 - 1 Chip
 - Multiple execution cores
 - 1 L1 Cache
 - 1 L2 Cache
 - 1 Memory
Architecture 101 (8)

- **Multithread/Multicore**
 - 1 Chip
 - Multiple cores
 - Multiple L1 caches (1 per core)
 - Multiple execution contexts per core
 - 1 L2 Cache
 - 1 Memory
Architecture 101 (9)

- **Modern Multiprocessor**
 - Multiple chips
 - Multiple cores per chip
 - Multiple threads per core
 - L1 Cache/core
 - L2 Cache/chip
 - Shared memory

- **Sys/161**
 - Not multithreaded
 - Does not distinguish cores from processors
 - Think of as N-way single-core, multiprocessors

2/4/16

CS161 Spring 2016 11