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1. INTRODUCTION 

As the construction of large multiprocessors (such as Cm* [22]) becomes practic- 
able, much thought has been given to methods of exploiting these powerful 
computers. One natural and important application is the use of the multiprocess- 
ing power to manipulate large databases. Multiprocessors might be used to service 
the needs of several database users simultaneously, or to reduce the time 
necessary for a single complex task. In order to gain experience in this direction, 
we studied the use of multiprocessors in manipulating a simple data structure 
known as a binary search tree. As a result, we designed systems that could 
support any number of the concurrent operations of insertion, deletion, and 
reorganization (specifically, rebalancing) on the tree. Although the systems are 
designed for implementation on multiprocessors, they are also useful for imple- 
mentation on uniprocessors that support multiprogramming. This paper presents 
these systems and discusses the ideas behind them. 

Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
This research was supported in part by the National Science Foundation under Grant MCS 78-236-76 
and the Office of Naval Research under Contract NOOO14-76-C-0370. 
Authors’ address: Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 
15213. 
0 1980 ACM 0362-5915/80/0900-0354 $00.75 

ACM Transactions on Database Systems, Vol. 5, No. 3, September 1980, Pages 354-382. 



Concurrent Manipulation of Binary Search Trees . 355 

1 .l Some General Techniques Used 

One problem often encountered by concurrent systems is the necessity of doing 
a set of operations simultaneously or indivisibly for correctness reasons. This 
occurs where any partial completion of the set may lead to a temporary incon- 
sistency in the data structure. To solve this dilemma, we introduce the idea of 
“copies” of sections of the binary search tree. These copies are to be created 
outside the tree, modified as appropriate to reflect the result of the set of 
operations on the tree, and then introduced into the tree structure with a single, 
indivisible operation. This technique may be used to simultaneously replace all 
of the pieces of an old version of that section of the tree, effectively performing 
many modifications simultaneously. 

In using the copying technique, a substantial amount of work is done before 
the results of that work are introduced into the data structure. Conversely, we 
also use the technique of “postponement”: delaying any work that need not be 
done immediately. Each process only does “what it has to do.” Other processes 
can perform the postponed work separately. With this technique, the multipro- 
cessing capability supplied by multiprocessors is utilized. This is particularly 
advantageous in the case where work cannot be done immediately, and a process 
would have had to wait; instead, it can relegate the work to another process, to 
be done when feasible. 

Another difficulty generally encountered in asynchronous concurrent process- 
ing is that the actions of one process may serve to invalidate some decisions made 
by another process. It may be the case that a process will see the tree “change 
out from under it.” For this possibility, we provide a recovery mechanism for 
“confused” processes, in the form of “back pointers” that redirect processes whose 
position in the tree has been invalidated by the actions of other processes. These 
back pointers are attached to “blue nodes” which signal the process that it is lost 
in the first place. 

In designing algorithms to use these techniques, we tried to keep the general 
design of the algorithms simple and efficient. For example, our locking scheme 
uses no reader locks; nor do we permit any process to exclusively lock a node. We 
only use writer-exclusion locks that prevent simultaneous update of a node by 
more than one process. The locking scheme itself is also quite simple. No complex 
queuing mechanism is required to administrate lock requests, on whose order the 
well-being of the system might depend. In addition, the number of nodes that 
any process can lock at one given time is bounded by a very small constant. 

Utilizing the ideas mentioned above, we build a set of tree-mutating processes. 
In addition, we study garbage collection mechanisms that make available for 
reuse nodes that have been deleted from the tree. While garbage collection 
processes are not specifically tree mutators, they are necessary for the complete- 
ness and correct functioning of the systems. We illustrate two such mechanisms: 
a simple version with a single garbage collection process, and a version that allows 
concurrent garbage collection (many collectors) to operate at the same time as 
tree mutators. Here we note another illustration of the idea of postponement: It 
is generally unnecessary to collect garbage immediately after it is generated. 

Developing these algorithms has strengthened our belief that concurrent al- 
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gorithms are for the most part far less intuitive than sequential algorithms. This 
is one reason that much attention has been given recently to the proof of the 
correctness of concurrent programs (following in the footsteps of the work on 
verification of sequential programs). We offer verifications of our systems, and 
include a sketch of the correctness proof for the concurrent garbage collector. 

Substantial work has been done on developing concurrent algorithms for the 
manipulation of B-trees, which are a popular data storage structure, especially 
for large collections of data (see Appendix B). These algorithms have steadily 
improved, using as a measure the size of the B-tree region locked by a process. 
An adaptation of the results in the present paper allows yet another improvement 
to B-tree algorithms along these lines (see [16]). Further generalizations of the 
ideas presented here may suggest highly concurrent algorithms for manipulating 
other data structures. 

1.2 Outline of the Paper 

In Section 2 we define the concurrent manipulation problem studied in the paper, 
state our assumptions, and set up the definitions to be used in our correctness 
proofs. In Sections 3,4, and 5 we develop our concurrent systems. In Section 6 we 
propose a simple garbage collection mechanism. A summary and concluding 
remarks are given in Section 7. In Appendix A we elaborate upon a concurrent 
garbage collection mechanism. In Appendix B we give some background for this 
problem area and describe related work that has been done. In Appendix C we 
offer a natural correctness criterion for concurrent search systems and argue that 
the properties we have proved for our systems together constitute a sufficient 
condition for that criterion. 

2. THE PROBLEM, BASIC DEFINITIONS, AND ASSUMPTIONS 

As mentioned above, the problem considered in this paper is the design of systems 
that can support concurrent manipulations on a binary search tree. (For a general 
discussion of binary search trees, see, e.g., [lo].) We hope to achieve maximuti 
concurrency without impairing the correctness of the systems. In what follows we 
first describe the data structure shared by all of the concurrent processes and 
then define the problem more precisely. 

2.1 The Data Structure 

The data structure consists of a directed graph and a queue, called GC-queue. 
The binary tree is embedded in the directed graph. Let the nodes of the graph be 
labeled by integers 1, . . . , M, and the node labled by n be in memory location n 
foralln= 1, . . . . M. Node n (or simply n) is used to refer to either the node 
labeled by n or the pointer to that node, depending on the context. For the 
purpose of this paper, we assume that each node contains six fields: a left pointer 
field, a right pointer field, a back pointer field, a color field, a value field, and a 
lock field. A pointer field contains either a pointer to a node or the null pointer 
‘9.” The value field contains a value from a linearly ordered set. The color field 
contains the color of the node, which is “white” or “blue”; nodes on the binary 
tree are always white and blue nodes are never on the tree. (The use of this 
ACM Transactions on Database Systems, Vol. 5, No. 3, September 1980 
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Fig. 1. The FREE node and free list. 

notation was motivated by the availability of colored chalk.) The lock field of a 
node is set by a process in order to gain the right to modify that node. Only one 
process at a time may have any given node locked. 

The pointer contained in the left, right, or back pointer field of node n is called 
the left, right, or back pointer of n and is denoted by nleft, nright, or n.back, 
respectively. Similarly, the contents in the color, value, and lock fields of node n 
are denoted by n.color, n.value, and n.lock, respectively. The topology of the 
graph is determined by the pointers of the nodes in the graph. Let m and n be 
any two nodes. If m.left (respectively, m.right, m.back) = n, we say that n is the 
left (right, back) son of m and that m points to n through the left (right, back) 
pointer of m. There are two special nodes denoted by ROOT and FREE. Node 
ROOT corresponds to the root of the binary search tree. It is assumed that 
ROOT.value = “infinity,” which is a value greater than any value one can search 
for. Node FREE points (through its left pointer) to the first node of a list, called 
the free list (cf. Figure l), which is a sequence of any number of nodes nl, n2, 
. . . , nk, satisfying the following properties: 

Fl. FREE.left = nl, nk.right = A. 
F2. For 1 I i < k, ni.right = Q+~. 
F3. For 1 I i 5 k, ni.color = white. 
F4. FREE.right = nk. 

Garbage (blue) nodes are nodes that have been deleted from the tree. Garbage 
nodes are always inserted into the GC-queue. Through the garbage collection, 
nodes in the queue are appended to the free list and are then ready to be reused. 

2.2 Concurrent Processes on the Tree 

We wish to perform processes of the following types concurrently on the tree 
structure: 

Insertion is the process of adding a value to the tree, if the value is not already 
in the tree. 

Deletion is the process of removing an existing value from the tree. 
Rotation is the process of “rotating” a (sub)tree so that the heights of its 

subtrees can be adjusted. Rotation is typically used for balancing a tree (see, for 
example, [lo, p. 4.541). In this paper rotation is also used for performing deletion 
(see Section 5). 
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Searching is the process of looking for a node with a given value v in the tree. 
If a node with value u exists, then the search is successful, otherwise it is 
unsuccessful. Searching does not modify the tree, and is often used by other 
processes. For example, if we wish to delete a value from the tree, then we 
must first search for that value in the tree, since if it is not present, we cannot 
delete it. 

Garbage collection is the process of appending garbage nodes to the free list so 
that they can be reused. 

For correctness reasons we allow a process to lock one or several nodes against 
modification by another process. But, for achieving a high degree of concurrency 
we require that the number of nodes locked by any process at any one time be 
bounded by a small constant. In addition, we try to delay searches as little as 
possible, since, in general, searching is done far more often than modifying. The 
operation of locking (respectively, unlocking) a node n is denoted by “lock(n)” 
(“unlock(n)“). 

2.3 Definitions for Correctness 

We say that a concurrent system for manipulating a binary search tree is correct 
if the system possesses the following properties: 

Pl. The tree is always consistent. At any time, if we freeze the current tree, then 
an in order traversal (see, [lo, p. 3161) of the tree generates the nodes with 
values in sorted order. 

P2. The termination position of a search is always consistent. The termination 
position of a (successful or unsuccessful) search is defined to be the last node 
whose value is examined by the search before it is terminated. Consider a 
search for value u. Suppose that it terminates at node n at time t. We require 
that at the instant t if we freeze the tree and start a new search for the same 
value u from the root then n must be the termination position of the new 
search. 

P3. There is no deadlock. 
P4. An intended update is always carried out. An insertion, deletion, or rotation 

process will indeed insert, delete, or rotate as intended, before it terminates. 
P5. A value v can be added to or deleted from the tree only by the insertion or 

deletion process, respectively. (These processes are defined later.) In partic- 
ular, only nodes which are no longer reachable by an existing or future 
search will be garbage collected, and all such nodes will be garbage 
collected. 

Property Pl is clearly needed for maintaining the binary search tree. The 
necessity of Properties P3, P4, and P5 is also obvious. For Property P2, we note 
that if it is not satisfied then two searches for the same value may conclude 
differently on the same tree. Property P2 is important to insertion and deletion 
processes, since searching is performed in those processes. In fact, in Appendix C 
we show that Properties Pl-P5 are sufficient conditions for a natural correctness 
criterion for concurrent search systems. 
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2.4 Basic Assumptions 

We shall prove correctness of a system based on the following assumptions: 

Al. The tree is consistent initially, before any process has acted on it. 
AZ. The search, insertion, and rotation processes, which are defined later, are 

“correct” when executed alone, in the sense that, starting from a consistent 
tree, the search process will find a value if and only if the value is in the tree 
and the insertion and rotation processes preserve the consistency of the tree. 

A3. Each process can read or write on individual fields of a node as an indivisible 
step. 

A4. If process A attempts to lock a node which is already locked by process B, 
then A must wait for B to unlock the node. In this case, we say that process 
A is blocked (by process B) at the node. 

A5. The procedures create and append, defined in Sections 3 and 6, for manip- 
ulating the free list are correct in the sense that they will preserve the 
properties of the free list (cf. Fl-F4 in Section 2.1). 

Note that to have processes satisfying A2 and A5 is quite standard. So for clarity 
in this paper we chose to assume A2 and A5 rather than to prove them. 

2.5 Database Record Considerations 

This paper is not primarily concerned with the problem of updating records 
associated with the keys in a database; rather, we focus on the problems of 
concurrent reorganization of the part of the database containing the key structure. 
Here we will digress briefly to suggest one possible method for associating records 
with the keys in the tree. 

To each node, we would add an additional field (which is ignored in the 
remainder of this paper): the record field. This field contains a pointer to the 
record associated with the key stored in that node. A specific implementation 
may decide to put this record on the disk or in main memory. Regardless, the 
pointer in the node points to some large chunk of data that constitutes the 
associated record. For each individual record, we would view that record as a 
distinct database. To change information in this node, we might lock the whole 
record (as distinct from locking the node itself). Alternatively, since we view the 
record as a database, we could maintain its consistency as we would in a general 
database. 

3. A SEARCH-INSERTION SYSTEM 

In this section we describe a system which can support any number of concurrent 
searches and insertions on a binary search tree, and prove the correctness of this 
system. The procedures and correctness proof methods presented in this section 
will form the basis for constructing and proving more complex systems considered 
in later sections of the paper. 

3.1 An Example 

We want to demonstrate that a concurrent system consisting of the usual 
sequential searching and insertion processes without modifications is incorrect,. 
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ROOT 

Fig. 2. A simple tree. 

Consider Example 3.1 on a simple tree with ROOT.left = a and a.value = 1, as 
depicted in Figure 2. In the example, variables s and r are local to processes 
search(2) and insert(2), respectively. 

Example 3.1 

search(2) insert(2) 
(previous steps-start at ROOT) 

1. sea 
2. 
3. 2 > s.value( = 1) 
4. s-s.right 
5. s is h 
6. 
7. 
8. 
9. 
10. Value 2 does not exist! 

rta 

2 > r.value( = 1) 
rcr.right 
r is h 
Insert a node with value 2 as the right son of node a 

Note that at step 10 the search incorrectly concludes that the value 2 does not 
exist in the tree. Equivalently, Property P2 is not satisfied at the time the search 
terminates. The problem can be solved by introducing some locking scheme into 
the sequential processes. This modification is described below. 

3.2 The System 

The Search Process 

Search. This procedure searches for a node in the tree with a given value v. 

procedure search(u) 
(f, dir)cfind(ROOT, u); 
scf.dir; 
ifs # h then print “Value v is at node s” 
else print “Value v is not in the tree” fi; 
unlock(f); 

The procedure find(n, v) is defined below. It consists of the usual descent 
through a tree and is expressed recursively for clarity. It is readily seen that the 
termination position of search( v) (intuitively, the node for which we are looking) 
is f.dir if the search is successful and is f if the search is unsuccessful. The 
procedure find is an auxiliary procedure that is used by several processes 
considered in this paper. 

Find. The following procedure searches for a node with value v, starting from 
node n, with n.value # v. (Recall that we assumed that ROOT.value = “infinity.” 
Hence find(ROOT, u) is always well defined since ROOT.value > u for all u.) The 
procedure returns a pair (f, dir), where f is a node and dir is a direction (left or 
ACM Transactions on Database Systems, Vol. 5, No. 3, September 1980. 



Concurrent Manipulation of Binary Search Trees 361 

right). At the time the procedure returns (f, dir), node f is locked, and has the 
property that if value u exists in the tree, then fpoints through the pointer dir to 
a node whose value is u (i.e., [f.dir].value = u); otherwise f.dir = h. 

procedure find(n, v) 
f-; 
if u < f.value then dir-left else dirtright fi; 
stf.dir, 
ifs # X and s.value # v then 

return find( s, v) 
else 

lock(f); 
ifs # [dir then 

unlock(f); 
return find(L v) 

else return(f, dir) fi 
fi 

/*Choose correct son*/ 

/*Recurse*/ 

/*It slipped away (see note below)*/ 

/*So recurse*/ 
/*Found it*/ 

Note that after the lock(f) operation the process makes sure that f is still the 
father of s (i.e., s = f.dir). This is necessary since another concurrent insertion 
process might have changed f.dir and unlocked f between the time that find 
decided that “s = A or s.value = v” and the time that find succeeded in doing 
lock( f ). In this case, find must resume the search at node f again. 

The Insertion Process 

Insertion. This procedure inserts a node with value u into the tree (at one of 
the leaves), if no such value already exists in the tree. 

procedure insert(u) 
(f, dir)cfind(ROOT, u); 
if f.dir # h then 

print “Value v is already in the tree”; 
unlock(f) 

else 
create( 20); 
w.lefttA; 
w.right+k 
w.valuecv; 
f.dirtw; 
unlock(f) 

fi 

/*Build a node*/ 

/*Point to it*/ 

The procedure create(w), which is a standard free list manipulation procedure 
(with synchronization), is defined as follows: 

Create. This procedure creates a new node named w, by removing it from the 
free list. 

procedure create(w) 
lock(FREE); 
if FREE.left = FREE.right then 

Abort the process which calls create and inform 
the system that the free list is empty 

else 
w+FREE.left; 
FREE.left+[FREE.left].right 

fi 
unlock(FREE); 
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At this point the reader is advised to convince himself that the locking scheme 
used in procedure find indeed solves the problem demonstrated by Example 3.1. 
It is also instructive to note that a search process is never blocked by other 
processes, except possibly at the time right before it terminates. This property 
holds for all the systems considered in the paper. 

3.3 Property P2’- A Property for Proving P2 

It is difficult to prove Property P2 defined in Section 2.3 by induction on time, 
since it is only meaningful as a property at the termination time of a search. Here 
we define another property, Property P2’, which implies Property P2 but is more 
convenient to use for the (inductive) correctness proofs in later sections of the 
paper. 

Consider a search for value u (denoted by search(u)). Suppose that the search 
starts and terminates at time to and tl, respectively. For any t, t E [to, tl], we 
define TP(t) and TP,,t(t) as follows. (TP(t) and TProot(t) denote termination 
positions.) Suppose that at time t we “freeze” the current tree (i.e., its structure) 
in the following sense. After time t, no process is allowed to make any change on 
any pointer field, but each process must proceed to the point where it must make 
a pointer change, or it is blocked by another process. As it so proceeds, it locks 
and releases the same locks as it would ordinarily. The important point here is 
that the structure of the tree is not changed, but all processes proceed as far as 
they can to avoid impeding a search through the tree. 

Now consider the continuation of search( u) on the tree frozen at time t, with 
the search starting from wherever it was at time t. Then with respect to the tree 
frozen at time t, search(u) may or may not terminate, depending upon whether 
or not the node it has to lock is already locked by another process. We define 
TP( t) to be the termination position of search( U) if it terminates; otherwise TP( t) 
is undefined. Similarly, with respect to the same tree frozen at time t, we define 
TProot ( t) to be the termination position of a new search that starts searching from 
the root of the tree for the same value u. TP,,,,( t) is undefined if the new search 
does not terminate. 

Property P2’ is stated as follows: 

P2’. For any search which starts at to and terminates at t,, 
TP(t) = TP,,,t(t) 
for any t E [to, t,] for which TP( t) is well defined. 

In this new terminology, Property P2 can be expressed as 

P2. For any search, 
TPttl) = TProot(h) 
where tl is the termination time of the search. 

It is seen that Property P2’ implies Property P2, since by the definition of tl, 
TP( tl) is well defined. 

3.4 The Correctness Proof of the System 

We only need be concerned with Properties Pl and P2’; it is trivial that the 
system satisfies Properties P3, P4, and P5. By Assumption Al, Properties Pl and 
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(4 (b) 

Fig. 3. Trees T- and T’ describing the status of the system at times t - e and t + e, respectively. 

P2’ hold initially. We assume (inductively) that Properties Pl and P2’ hold up to 
time t, when a change to the tree structure, f.dircw, is made. For proof purposes 
we may assume that no two operations are done at exactly the same time. Hence 
we may choose E > 0 so that in the interval [t - E, t + E] the change at time t is 
the only operation done by any process. Let T- and T+ be the trees frozen at 
times t - E and t + E, respectively. Note that T’ is the tree resulting from T- by 
adding w as the “dir” son of /I’ This is illustrated in Figure 3, assuming “dir” 
equal to “right.” 

We wish to prove the following two assertions (a) and (b). 

(a) Property Pl holds at time t + E. Consider the insertion responsible for the 
change at time t. Note that the insertion process is simply a search followed 
by a pointer change. Since the search satisifies Property P2’ at time t - E, 
one can view that the change at time t is done by the insertion executed 
alone on tree T-. Therefore by Assumption A2 Property Pl holds at time 
t + E. 

(b) Property P2’ holds at time t + E. Consider a search process, say, search(v), 
which starts before time t - E and terminates after t + E (i.e., it is in progress 
when the pointer is changed at time t). By the inductive assumption that 
Property P2’ holds up to time t, we know that the assertion is true for tree 
T-. For the purpose of proving Property P2’ at time t + E, we can assume 
that TP( t + E) is well defined. In the following, we wish to prove that on 
T+ the termination position TP( t + E) of search(u) coincides with that 
TProot( t + E) of another search process, namely, find(ROOT, u). 

Case 1. TP( t - E) is well defined. Then TP( t - E) (=TP,,,,( t - E)) must not be 
node f, since f is locked at time t - E by the insertion process responsible 
for the change f.dirtw, and TP( t + E) = f would make TP( t + E) 
undefined. This implies that TP( t) and TP,,,t( t) are constants over [t 
- E, t + E], since the change f.dirtw has no effect on them. (We rely, of 
course, on Assumption A2 of the correctness of the pointer change 
involved.) Therefore TP( t + E) = TP,,t( t + E). 

’ In this paper we use the notation “bdir” to refer to the node pointed to by node fin the direction 
specified by “dir” (which is usually a variable), or to refer to a pointer to that node. The notation 
“dir”’ refers to the direction complementary to “dir”. Hence if dir = left then dir’ = right, and vice 
versa. 
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Case 2. TP( t - E) is not well defined. Since TP( t + E) is well defined, in defining 
TP( t - E) the continuation of the search, search(u), on T- must be 
blocked at node fi There are two cases, depending on the state of the 
process search(u) at time t - E: 

(i) The process search(u) has not yet examined (dir at time t - E. Then 
on T’ search(u) will correctly reach either f.dir’ or f.dir as 
find(ROOT, u) does, since the search uses the updated f.dir. 

(ii) The process search(u) has read f.dir as X at time t - E. Then on T’, 
search(u) will find f.dir ( = W) # h and thus start searching from fi 
This implies that search(u) will again correctly reach w as 
find(ROOT, u) does. 

We have shown that the pointer change done by an insertion process preserves 
Properties Pl and P2’. Therefore, by induction, Properties PI and P2’ always 
hold. 

3.5 Comments on Locking 

Notice that the find procedure locks the father of the node whose key has the 
value for which find is searching. (Consequently, the search procedure also locks 
that node.) However, for purposes of simply reporting the “instantaneous” 
existence of a key in the database the find and search procedures can be modified 
by deleting the lock/unlock calls to provide the ability to search without locking. 
While we have omitted those versions of find and search from the present paper 
for purposes of clarity, we would certainly include such procedures in a full 
system, where simultaneous examination of nodes by several processes was likely 
to occur. 

Notice, however, that locking the associated record is often necessary. For 
example, locking would be used in the case that some modification will be made 
to the associated record, once the key is found (see Section 2.5). In this case we 
would lock the record (or possibly some segment of the record) to prevent change 
by another process. 

Similarly, record locking may be necessary during prolonged examination of a 
node and its record. For example, if we wish to guarantee that a key continues to 
exist while we examine its record, then we must lock the node containing that 
key to prevent deletion by another process. Again, we might instead wish to lock 
some segment of the record to prevent modification to that segment. 

4. A SEARCH-INSERTION-ROTATION SYSTEM 

In this section we extend the system of Section 3 to include rotation processes. 
Important ideas of this paper such as the use of back pointers, copying, and blue 
nodes are introduced in this section. 

4.1 An Example 

The following example illustrates the kind of problems we might encounter when 
rotations are executed concurrently with search. Consider Example 4.1 for rotat- 
ing and searching the tree shown in Figure 4a. 
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Fig. 5. 

(a) (b) 
Fig. 4. Rotating (b, c) to the left; a, p, and 6 are subtrees. 

Results of rotation (of the tree in Figure 4a) using the idea of copying. In the diagram, 
(or garbage) nodes are indicated by dotted circles, and back pointers by dashed lines. 

blue 

Example 4.1 

search (20) 
1. sta 
2. 20 > s.value ( = 5) 
3. sts.right( = b) 
4. 20 > s.value ( = 10) 
5. 
6. 
7. 
8. sts.right( = bxight = j?) 

rotation 

axightcc 
c.left+b 
b.right+-p 

Note that at step 8 the search starts to search subtree /3 for value 20 in the 
rotated tree (i.e., the tree in Figure 4b), white at this time a search from the root 
for the same value 20 (in the same tree) will terminate in subtree 6. Property P2 
is therefore violated. Our solution to this problem is to first establish a rotated 
version of the structure in a copy outside the tree. (In particular, we create copies 
6’ and c’ of nodes b and c in Figure 5.) We then connect the copy into the tree by 
changing just one pointer from node a, which is an indivisible operation. The 
nodes in the old structure are changed to blue nodes and inserted into GC-queue, 
and are to be collected by garbage collectors. (The garbage collection process is 
described in Section 6.) By providing “back pointers,” we ensure that those search 
processes which are at blue nodes can still come out to reach their “correct” 
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termination positions. The result of rotating the tree shown in Figure 4a using 
this new method is illustrated in Figure 5. 

4.2 The System 

The rotation process, which follows, performs a rotation by building a copy of 
the section of the tree to be altered and then replacing the old section with the 
modified new section. In this version of the rotation procedure we include some 
code that will only be useful when used (in Section 5) with the deletion procedure. 
For example, locking the new nodes (b’ and c’) is unnecessary for the rotation 
procedure itself, since once the procedure switches from the old version to the 
new version by a pointer change, it no longer uses b’ and c’. 

Also of interest is the use of a “back pointer,” which was mentioned earlier. 
This pointer has no meaning for (“white”) nodes that are part of the tree. 
However, for “blue” nodes, the back pointer is used to continue the search when 
the father of the node for which find is searching has been deleted (made blue) 
while find was deciding whether the node was, in fact, the father of the desired 
node. 

The Rotation Process 

Rotation. Suppose that a, a.dirl, and [ a.dirll.dir2 are three consecutive white 
nodes on a path. The following procedure moves a.dirl away from the path by 
performing a rotation.’ It is assumed that a and a.dirl are locked when this 
procedure is called. The procedure returns (a, c’, b’) where c’ = a.dirl and b’ = 
c’.dir2’, with c’, b’ locked. 

procedure rotation( a, dir& dir2) 
b+a.dirl; 
ctb.dir2; 
create( b’); create( c’); 
lock( c’); lock( b’); lock(c); 
c’.dir2+c.dir2; c’.dir2’4’; c’.valuecc.vahe; 
b’.dir2cc.dir2’; b’.dir2’cb.dir2’; b’.value+b.value; 
a.dirlcc’; 
b.back+a; 
color b blue; 
c.back+-c’; 
color c blue; 
enqueue nodes b and c in GC-queue; 
unlock(a); unlock( 6); unlock(c); 
return (a, c’, b’) 

/*Set up new nodes*/ 

/*Change the tree*/ 
/*Back pointers*/ 

/*And blue nodes*/ 

/*For garbage collection*/ 
/*Unlock a, b, c*/ 

The search and insertion processes are the same as those defined in Section 3. 
But the procedure find(n, u) must be redefined (as follows) to handle the presence 
of blue nodes. In particular, it must consider the possibility that f became blue 
between the decision to lock it and the actual locking of the node. 

Find. The modified find procedure. This version of find uses deleted (“blue”) 
nodes and back pointers in order to continue searching from a deleted node. 

* In this paper we do not wish to restrict our result to any specific type of balanced tree such as the 
AVL tree. Therefore, for the balancing purpose, schemes of deciding where rotations should take 
place will not be specified. Recent schemes by Guibas and Sedgewick [9] on detecting rotations to be 
performed based on local information seem to be particularly suitable to our systems. 
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procedure find( n, u) 
fen; 
if u c f.value then dir-+-left else dir-right fi; 
s+-f.dir; 
ifs # h and s.value # u then 

return find( s, u) 
else 

lock(f 1; 
if f is blue then 

unlock(f); 
return fiid( f.back, u) 

else 
ifs # f.dir then 

unlock(f); 
return find(f, v) 

else return( L dir) 
fi 

fi 
fi 

/*Find son*/ 

/*Next level*/ 

/*Just missed getting node*/ 

/*Follow back pointer from blue node*/ 

/*Some process changed it*/ 

/*Found it*/ 

4.3 The Correctness Proof of the System 

We only need be concerned with Properties Pl, P2’, and P3; it is trivial that the 
system satisfies Properties P4 and P5. Since a rotation process always locks nodes 
on a path in top-to-bottom order, there is no danger of deadlock. Hence Property 
P3 is satisfied. We now prove that Properties Pl and P2’ hold. This proof uses 
the framework and terminologies established in Section 3.4. 

By Assumption Al, Properties Pl and P2’ hold initially. We also assume 
(inductively) that they hold up to time t, when a change performed by a rotation 
process is made to the tree structure. We need not be concerned with changes 
due to insertions, since, by the results of Section 3, we know that insertions will 
preserve Properties Pl and P2’. Define E, T-, and T’ as in Section 3.4. 

(a) Property Pl holds at time t + E. Note that the rotation process locks 
all the nodes it reads and writes. Hence the proof follows directly from 
Assumption A2. 

(b) Property P2’ holds at time t + E. As before, consider a search process, say, 
search(v), which starts before time t - E and terminates after t + E. By the 
inductive assumption that Property P2’ holds up to time t, we know that the 
assertion is true for tree T-. Again, we assume that TP( t + E) is well defined 
and want to prove that on T’ the termination position, TP(t + E), of search(u) 
coincides with the termination position, TP,,,,(t + E), of find(root, u). 

Case 1. The change at time t is a.dirl+--c’ or b.backtu (cf. Figure 6). 

(i) TP( t - E) is well defined. Then TP( t - E) ( = TPrOOt( t - E)) must not 
be a, b, or c, since they are all locked at time t - E. This implies that 
TP( t) and TProot (t) are constant over [t - E, t + E], since the change 
at time t has no effect on them. That is, search(u) or fmd(root, u) 
will terminate at the same node on either T- or T+. Therefore, TP( t 
+ E) = TP,,,,( t + E). 

(ii) TP( t - E) is not well defined. Then search(u) on T- must be blocked 
at some node. It is still blocked on T’, since no lock will be released 
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Fig. 6. The new tree formed after the operation a.dirl+c’. 

after the change at time t and before the next pointer change. This 
contradicts the assumption that TP( t + E) is well defined.. 

Case 2. The change at time t is c.backtc’. 

(i) TP( t - E) is well defined. The proof that TP( t + E) = TP,,,,( t + E) is 
the same as that in part (i) of Case 1. 

(ii) TP( t - E) is not well defined. Then we can conclude that search(u) 
on T- must be blocked at a, b, or c, since (1) these are the only nodes 
whose locks will be released on T’ by the action at time t and (2) 
search(u) is unblocked at time t (recall that TP( t + E) is well defined). 
Further, on T+ search(u) will always come out from the garbage 
nodes to reach correct white nodes. The procedure find(root, u) does 
this, by utilizing the back pointers to resume the search through 
the tree. 

5. A SEARCH-INSERTION-ROTATION-DELETION SYSTEM 

In this section, we further extend our system to include concurrent deletion 
processes. Unlike other operations considered so far, deletion is not a “local” 
operation in the sense that it may have to make changes in two sections of the 
tree that are arbitrarily distant from each other. That is, the node to be deleted 
and the node with which it is to be replaced can be arbitrarily far apart. This 
makes the deletion operation difficult to deal with in a concurrent system where 
only a constant number of nodes may be locked by a process at any time. In this 
section we demonstrate how “nonlocal” operations such as the deletion operation 
can still be correctly incorporated into a concurrent system using only “local” 
locks. This is achieved through the repeated use of the rotation process introduced 
in Section 4. 

5.1 An Example 

Example 5.1 and Figure 7 illustrate that an existing searching process may 
become incorrect when another deletion process is executing concurrently. 
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Example 5.1 

search( 15) 
(previous steps) 

1. 15 > f.value ( = 5) 
2. scf.right ( = a) 
3. 15 < s.vaZue ( = 20) 
4. s+s.left ( = b) 
5. 
6. 

7. 
8. 15 > s.value ( = 7) 

(a) (b) 

Fig. 7. Deletion of node a with value 20. 

delete(20) 

(search(20); obtain node a) 
(search for the node in the left subtree of a which has the 
largest value (node e, in this case) ) 
replace a with e 

After step 7, the searching process searches for value 15 in the left subtree of 
node e (cf. the tree in Figure 7b). Property P2 is not satisfied because 
find(root, 15) would search the right rather than the left subtree of node e. 

In general, suppose that node a is the node to be deleted and node a’ is the 
node with which node a is to be replaced. Then any active search process that 
has passed node a while searching for a value between a’.value and a.value will 
become inconsistent after the deletion. In the following we propose a method for 
dealing with this problem. 

5.2 The System 

The search, insertion, and rotation processes are the same as those defined in 
Section 4. The deletion process is described as follows. 

Note that if at least one son of the node to be deleted is X (which should occur 
with more than 0.5 probability), then the deletion is very simple. This is illustrated 
in Figure 8. The procedure remove defined below performs this simple deletion. 
Briefly, the procedure works by changing the pointer from the father (a) of the 
node (b) to be deleted to point “around” that node. (This only works when b has 
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(a) 
Fig. 8. The simple deletion case. 

(b) 

only one son, since node a cannot use the same pointer to point to two nodes 
simultaneously.) This operation removes b from the tree. A back pointer is 
provided (which points from b to a) for any process that was searching at b when 
a.dir was changed, so that the search can continue correctly. 

The Deletion Process 

Remove. This procedure removes a node (a.dirl) when it is known that one 
son of that node (( a.dirQ.dir2’) is A. Nodes a and a.dirl are locked when the 
procedure is called, and are unlocked when the procedure ends. 

procedure remove( a, dir& dir2) 
b+a.dirl; 
ctb.dir2; 
adirlcc; 
b.dir2’cc; 
b.backca; 
color b blue; 
enqueue node b in GC-queue 
unlock(a); 
unlock(b); 

/*Point around b*/ 
/*Redirect search from b: b.left = b.right = c*/ 

/*Provide back pointer*/ 
/*And blue node*/ 

/*For garbage collection*/ 

The deletion process described below is formulated as two steps: (1) find the 
correct node and (2) delete it (handled by the procedure deletion-by-rotation). 

Delete. This procedure deletes a node with value u from the tree, if such a 
node exists. 

procedure delete(u) 
(fi dir)cfind(root, u); 
if f.dir = A then 

print “Value v is not in the tree”; 
unlock(f); 

else 
s+f.dir; 
lock(s); 
deletion-by-rotation(f, dir) /*Do the dirty work*/ 

fi 

The procedure deletion-by-rotation(f, dir) is defined below. Since simple dele- 
tion by the remove procedure is sometimes not possible, this procedure moves 
the node to be deleted down in the tree to a place where that action is possible. 
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It does this by repeatedly rotating the node to a lower position in the tree (using 
the rotation procedure defined in Section 4), until it is possible to call remove to 
actually delete the node. After this has been accomplished, the procedure works 
its way back up the tree in an attempt to rebalance the tree. In particular, the 
procedure moves the node down the tree by recursive calls on itself. After 
deletion, it rebalances by going back up the tree (again using rotation), after each 
recursive call returns. 

In the version of the deletion-by-rotation procedure that we give here, all 
operations are biased in one direction for purposes of clarity and simplification of 
the algorithm. This directional bias is not necessarily unreasonable if the deletion 
starts on a balanced tree or if the information about the structure of the tree is 
not available. If one were striving for efficiency, one could add additional code to 
optimize the direction in which rotations and removals were to be done, using 
information about the structure of the tree. 

Note that in the call to rotation, in the returned triple (f, g, h), h is the new 
copy of the node to be deleted, and f is identical to the procedure parameter f 

Deletion-by-Rotation. The following procedure deletes node f.dir by (recur- 
sively) performing a sequence of rotations that serve to move fidir to a position 
lower in the tree where it can be removed by the procedure remove given above 
(ending the recursion). Nodes f and f.dir are locked when the procedure is called. 
The procedure also rebalances the tree after deletion when such rebalancing is 
still possible. The procedure ends with no locks set. 

procedure deletion-by-rotation( f, dir) 
s-f.dir, 
if s.left = h then remove(f, dir, right) 

else 

/*End recursion*/ 
/*(Note. Example of directional bias) */ 

( f, g, h)+rotation( f, dir, left); 
if h.left = X then 

/*Move f.dir down*/ 

/*Do not need to rebalance on last recursive call*/ 
deletion-by-rotation(g, right); 

else /*Do recursion and rebalance*/ 
deletion-by-rotation(g, right); /*Recursive call*/ 

/*N.B. at this point, no nodes are locked*/ 
lock(f); /*Begin rebalance*/ 
if g # f.dir or f is blue then 

/* Cannot rebalance, since things have changed*/ 
unlock(f) 

else 
lock(g); 

(f, g’, h’)+rotation( i dir, right); 
unlock( g’); 
unlock(K) 

fi 
fi 

fi 

It is relatively easy to check that the inclusion of the procedure remove into 
the system of Section 4 preserves its correctness. If the system in the current 
section is deadlock-free, then we can conclude that it is correct, since it is built 
from the procedure remove and the system in Section 4. To show that the system 
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is deadlock-free, we note that at any level of recursion, when the deletion-by- 
rotation call returns, no nodes are locked. For each level at which rebalancing is 
attempted, therefore, only new locks are used. Furthermore, they are applied 
using the top-down discipline. Thus deadlocks cannot occur in the system. 

An alternative solution to the problem concerning deletions would be to simply 
leave locked all nodes locked by the deleter, and then unlock them “on the way 
back up,” after rebalancing. However, this would violate our constraint of never 
locking more than a constant number of nodes at one time. 

6. GARBAGE COLLECTION 

In this section we consider the problem of correctly appending garbage nodes to 
the free list. 

6.1 An Example 

The following example illustrates that for garbage collection one cannot simply 
append blue nodes to the free list. Refer to Figure 8. 

Example 6.1 

search(20) 
1. r-a 
2. 20 > r.value( = 5) 
3. r+r.right ( = b) 
4. 
5. 
6. compare r.vahe( = kvalue) 

delete(l0) 

(deZete( b)) 
garbage-colZect( b) 

with 20 

Note that the comparison in step 6 is erroneous, since node b no longer exists 
in the tree. It should have been left (blue) and not garbage collected so the search 
could have recovered from the deletion. This is why-in the procedures given 
above-we only enqueue blue nodes to be garbage collected. The garbage collector 
must be careful not to collect a node to which another process might still have 
access. 

6.2 Remarks 

Rules for a garbage collector are simply that it not collect garbage too soon, but 
that it also not have to wait “too long.” These can be stated more formally as 

(1) Let f be a node that is detached from the tree. If f is referenced-or can be 
referenced-by any process, then f is not yet garbage ready to be collected. 

(2) When the garbage collector prepares to collect node f, it only has to wait for 
that particular node (not for later copies of the node) to no longer be 
referenceable. 

6.3 A Solution 

In this section we offer a simple solution with a single garbage collector. In 
Appendix A we sketch modifications to the concurrent tree manipulation pro- 
cesses that allow a number of garbage collectors to operate concurrently with the 
tree mutators. 
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Perhaps the simplest way to solve the problem is as follows. Periodically, the 
garbage collector freezes the garbage collection queue (GC-queue) in the following 
sense. It locks the queue (against any insertion to it by the tree mutators), copies 
it (to, say, a queue GC’-queue), resets the original queue (GC-queue) to its emply 
state, and unlocks it. (Copying GC-queue and resetting it can be done in constant 
time for arbitrarily long queues if the queue is stored as a linked list.) Then, it 
waits until all of the currently running processes have terminated. These are the 
processes that started running before GC-queue was locked by the garbage 
collector, i.e., the processes which might access the garbage (blue) nodes in 
GC’-queue. (Such a wait might be implemented, for example, by having each 
process enter in a log the time when it starts and terminates. The GC process 
would then wait until “OUT” entries appeared in the log for each process that 
had an “IN” entry, but no “OUT” entry, at the time the GC-queue was locked.) 
After this wait, the garbage collector returns each of the garbage nodes in GC’- 
queue to the free list by using the append procedure defined below. 

Append. This procedure returns a node to the free list. 

procedure append(n) 
n.colorcwhite; 
n.right+)\; 
lock(FREE); 
[FREE.right].right+n; 
FREE.rightcn; 
unlock(FREE) 

With this solution, blue (or garbage) nodes may not be appended to the free 
list for some long period of time after they become garbage. This is undesirable 
for situations where space utilization is crucial. Note, however, that, because 
white nodes never point to blue nodes in our systems, the existence of blue nodes 
has no effect on the speeds of those searches through the tree which started after 
these nodes had become garbage nodes. Also, the execution of the append 
procedure is carried out in parallel with other processes. Thus it appears that this 
simple solution is quite acceptable as far as search speeds are concerned. 

7. SUMMARY AND CONCLUDING REMARKS 

In this paper, we have examined some of the details of a particular problem in 
concurrent database manipulation. To the authors’ knowledge, many of the 
properties of the systems presented are not achievable on the basis of any existing 
general theory on concurrency control. For example, in the two-phase locking 
scheme offered by Eswaran et al. [7], a search process would be required to lock 
all nodes in the search path, and would not release any of these locks until the 
end of the search. The special structure of binary search trees enables us to 
design concurrent systems enjoying a high degree of concurrency. For further 
discussion and results on how special information about a problem can help the 
design of efficient concurrent database systems, see [ll, 121. 

We summarize some of the important contributions embodied in the concurrent 
binary search tree systems presented in this paper: 

(1) The algorithms use neither reader locks, nor exclusive locks. Only writer- 
exclusion locks are used, simply to prevent the obvious problems engendered 
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by simultaneous update of a node by more than one process. The locking 
scheme used to apply these locks is simple. In particular, it is implementable 
without the overhead incurred by a queue manager or a system supervisor. 

(2) The size of the region of the tree which is locked by a process at any time is 
bounded by a (small!) constant. 

(3) The idea of copying-doing large amounts of work outside the data structure 
and then indivisibly introducing all of the changes simultaneously-is a useful 
technique for removing some of the inherent complexity of concurrent oper- 
ations. 

(4) The back pointers and blue nodes are a specific instance of the idea of a 
general mechanism for recovery from some of the “confusion” caused by 
concurrency. Such a mechanism is provided for use by processes whose earlier 
actions have become invalid as a result of the actions of another process. 

(5) In order to take full advantage of the power of multiprocessing, we introduce 
the idea of postponement. This is embodied by the rule: “A process should 
only do what it has to do.” Often, nothing is lost by allowing a second process 
to continue the work begun by a first process. In fact, waiting time may 
sometimes be avoided by postponing work (e.g., collection of the garbage 
nodes produced by a process is postponed and is eventually performed by a 
garbage collector process). 

(6) We present a fairly rigorous proof of the correctness of our concurrent 
systems. In doing so we demonstrate that such correctness can be proved, 
and we develop techniques for use in these proofs. 

(7) Two garbage collection mechanisms are offered. These are auxiliary to the 
main tree system. They allow us to further exploit the concurrency available 
by using some of the techniques mentioned above (copying, postponement, 
etc.), and decoupling the necessary garbage collection from the main tree 
operations (insertion, deletion, reorganization). 

Binary search trees represent a very simple structure for storing data. Further 
work should try to extend some of the ideas presented in this paper to more 
general database systems. 

APPENDIX A. CONCURRENT GARBAGE COLLECTION 

Al. The Problem 

In Section 6 we presented a simple approach to the garbage collection problem. 
Here we sketch modifications to the set of concurrent processes given in the 
paper which will allow a set of concurrent garbage collectors to operate correctly 
in parallel with the tree mutators. The garbage collectors will never incorrectly 
collect a blue node that might still be used by some process (as was described in 
Example 6.1). This scheme should be used when space utilization is important, 
since garbage is collected and returned to the free list very quickly (relative to 
the batched collection suggested in Section 6). 

Concurrent garbage collection in a list processing environment has recently 
received much attention (see, for example, [5] and [13]). The problem considered 
in this appendix is different in that the safety of collecting a garbage node depends 
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on whether or not it is reachable by any existing or future search; knowing that 
the node is not reachable from the root does not ensure the safety of collecting 
the node. The idea of the method described in this appendix is to use reference 
counts to guarantee that only blue nodes that are no longer reachable by any 
existing or future search will be garbage collected. Note that in a tree there are 
no cycles; so we do not encounter some of the problems of using reference count 
schemes in general list processing. We assume that in addition to the usual fields, 
each node also has two reference counters: node.ref[O] and node.ref[l], and one 
index (or indicator) field, node.index, to designate which counter is currently in 
use for that node. The field node.index can take either 0 or 1 as a value to 
designate one of the two reference counts. We further assume that interchanging 
between these two values (denoted “camp” for complement) is an indivisible 
operation and that incrementing and decrementing reference counts (denoted 
“inc” and “dec”) can also be done indivisibly. 

A2. The System 

In this section, we demonstrate the modifications to the procedures given above 
that will allow concurrent garbage collection as described. 

The search process used in previous sections must be redefined to handle 
updates for reference counts. For any node n, n.ref[O], n.ref[l], and n.index are 
initially set to zero by the create procedure. 

The Search Process 

Search. This procedure searches for a node in the tree with a given value u. 

procedure search(u) 
jtROOT.index; 
inc ROOT.ref [ j]; 
(f,dir)+find(ROOT,j, u); 
stf.dir; 

/*Reference ROOT*/ 

ifs # h then print “Value u is at node s” 
else print “Value u is not in the tree” fi; 
unlock(f) 

The procedure find(n, i, u) is redefined as follows. When the procedure is 
called, f.ref[ i] has already been incremented by the search process which calls 
the procedure. 

Find. This procedure recursively performs the search, modifying reference 
counts as appropriate. 

procedure find( n, i, U) 
f-n; 
if u c f.value then dircleft else direright fi; 
scf.dir; /*Find son*/ 
ifs # X and s.value # u then 

(j+s.index; inc s.ref [ j]} ; /*Reference son*/ 
/*(Operations inside (. . .} assumed indivisible.) */ 

dec firef [ i]; /*Then dereference father*/ 
return find( s,j, u) /*Next level*/ 
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else 
lo&f ); 
if f is blue then 

unlock(f); 
tcfiback; 
{ jct.index; inc t.ref [ j]) ; 
dec f.ref [ i]; 
return find( f.back, j, u) 

else 
ifs#f.dirthen 

unlock(f); 
return fmd(f, i, v) 

else 
dec f.ref [ i]; 
return(f,dir) 

fi 
fi 

fi 

The new version of the insert procedure follows: 

/*Get pointer to back son*/ 
/*Reference it*/ 

/*Then dereference this one*/ 
/*Follow back pointer*/ 

/*Lost it*/ 

/*Found it*/ 

The Insertion Process 

Insertion. This procedure inserts a node with value v into the tree (at one of 
the leaves), if no such node already exists in the tree. 

procedure insert(u) 
jcROOT.index; 
inc ROOT.ref [ j]; 
(f, dir)cfind(ROOT, j, u); 
if f.dir # h then 

print “Value u is already in the tree”; 
unlock(f) 

else 
create(w); 
w.leftth; 
w.right4; 
w.valuecu; 
f.dir+w; 
unlock(f) 

fi 

/*Reference ROOT*/ 

/*Build a node*/ 

/*Point to it*/ 

The new delete procedure follows: 

Delete. This procedure deletes a node with value v from the tree, if such a 
node exists. 

procedure delete(u) 
(f, dir)cfind(ROOT, u); 
if f.dir = X then 

print “value v not in tree”; 
unlock( f ); 

else 
+/dir; 
lock(s); 
deletion-by-rotation( f, dir) /*Do the dirty work*/ 

fi 
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The procedure deletion-by-rotation is modified as follows: 

Deletion-by-Rotation 

procedure deletion-by-rotation( h dir) 
L-/Index; 
inc f.ref [ i]; 
s+f.dir; 
if s.left = h then remove(f, dir, right) 

else 

/*End recursion*/ 
/*(Note. Example of directional bias)*/ 

(f, g, h) +rotation( f, dir, left); 
if h.left = A then 

/*Move f.dir down*/ 

/*Do not need to rebalance on last recursive call*/ 
deletion-by-rotation(g, right); 

else /*Do recursion and rebalance*/ 
deletion-by-rotation(g, right); /*Recursive call*/ 

/*N.B. at this point, no nodes are locked*/ 
lo&f ); /*Begin rebalance*/ 
if g # f.dir or f is blue then /*Cannot rebalance, since things have changed*/ 

unlock(f) 
else 

lock(g); 
(f, g’, h’)+rotation(f, dir, right); 
unlock(g’); 
unlock( h’) 

fi 
fi 

fi 
dec f.ref [ i] 

Create. This procedure creates a new node named w, by removing it from the 
free list. It also sets the reference counts and index for w to zero. 

procedure create(w) 
lock(FREE); 
if FREEleft = FREE.right then 

Abort the process which calls create and inform 
the system that the free list is empty 

else 
LucFREE.left; 
FREE.leftc[FREE.left].right 

fi 
unlock(FREE); 
Lu.ref[O]+O; lo.ref[l]+O; ur.index4 

The procedure append, remove, and rotation are the same as that given above 
in the main part of the paper. 

We include in the algorithm below steps to handle the multiple garbage 
collectors case. For this purpose, we require the use of the additional field for 
each node mentioned above-the GC-lock field. Garbage collectors use this lock 
to prevent confusion caused by switching a reference count. field while another 
garbage collector is still using it. There is also a single lock on the entire GC- 
queue; this lock is also used by the enqueue operation in the rotation and remove 
procedures. Moreover, for technical reasons, in the rotation procedure we en- 
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queue the triple (a, b, c) rather than the nodes b and c, and in the remove 
procedure we enqueue the pair (a, b) rather than node b. 

The Garbage Collection Process 

Garbage-collector. This process appends garbage nodes to the free list. 

lock(GC-queue); 
get (a, b, c) (or (a, b) for which the algorithm is 

similar) from GC-queue; 
lock a for GC; 
unlock(GC-queue); 
aindexccomp aindex; 
iccomp a.index; 
while a.ref [ i] > 0 wait; 
unlock a for GC; 
lock(b); 
unlock(b); 
i+b.index; 
while b.ref [ i] > 0 wait; 
append(b); 
if we got (a, b) instead of (a, b, c) then return; 
lock(c); 
unlock(c); 
i+c.index; 
while c.ref[ i] > 0 wait; 
wpend( c) 

/*Single lock for GC-queue*/ 

/*Set CC-lock field of a*/ 

/*Switch a*/ 
/*Old counter*/ 

/*Let old processes drain*/ 
/*We are done with it*/ 
/*Make sure no GC is*/ 

/*Using b*/ 

/*Be sure everyone done with b*/ 
/*Append b to free list*/ 

/*Done*/ 
/Make sure no GC is using it*/ 

/*Be sure everyone done with c*/ 
/*Append c to free lis*/ 

The procedure append(n) was defined in Section 6. 

A3. Comments and Justification 

Note the simplicity of the GC operation when taken sequentially for collection of 
nodes .3 and c. It consists of switching the counter on node a (thus searches 
arriving at a after the switch will increment the reference count in the new 
counter), letting the old processes “drain” from a, letting b drain, freeing b, and 
if we have a triple (a, b, c), then letting c drain and freeing c. 

The concurrent garbage collection works simply because we do the switch on 
a after b becomes garbage. Then we let all old processes drain from a. After this 
step, any process which can access a must access it at some time after a enters 
the GC-queue, which guarantees that it accesses a after a no longer points to b. 
Then we simply have to wait for all old processes to drain from b. This means 
that b is safe to free. 

Further, suppose we are running concurrent garbage collectors that might 
interfere with each other. We first observe that only one tuple in the GC-queue 
can have any node, b, as the nonfirst node. Otherwise that node would have been 
deleted from the tree twice before being returned to the free list. This is clearly 
impossible based on the operation of the deletion and rotation (and search) 
algorithms. 

Now suppose that two garbage collectors are working, say, on the tuples (a, b) 
and ( b, c). (The case of ordered triples instead of ordered pairs is an easy 
generalization.) Then we can show that it is impossible that the tuples were 
removed from the GC-queue in the order: (a, b), (b, c). This is, of course, 
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equivalent to being placed in the queue in that order. If this were so, then consider 
placing (b, c) in the queue. Placing this tuple in the queue implies that the node 
c was removed from the tree, and that node b was the father of c, but was still in 
the tree. However, at the time that (b, c) was placed in the queue, (a, 6) was 
already in the queue, implying that node b had previously been removed from 
the tree. For (b, c) to be placed in the queue, both b and c must be locked; 
similarly for (a, b). But then after (a, b) is placed in the queue, b must be 
unlocked before it can be locked by the process that locks b and c and places 
(b, c) in the queue. Therefore, this latter process locks a node that has been 
deleted from the tree. However, such a lock (on a blue node) is checked for, and 
immediately released if detected. Therefore, a node that had been deleted from 
the tree would not be the first element in an ordered pair (triple) placed in the 
GC-queue. This contradicts the placement of (b, c) in the queue after (a, b). 

Therefore, we know that the tuples occur in the order: (b, c), (a, b). 
Lastly, we observe that a garbage collector, say g, locks node b (from tuple 

(a, b) or (a, b, c)) to guarantee that other garbage collectors (those using it in 
tuples of the form (b, c) or (b, c, x)), say g’, are done with it. Any such g’ would 
lock node b while in the critical section of the garbage collector (protected by 
lock/unlock(GC-queue)). This means that g cannot lock b until all tuples (b, x)- 
that occur in the queue before (a, b)-have been processed to the extent that 
they have locked (and then unlocked!) b. Therefore, node b will not be garbage 
collected by g until it is safe to do so. 

APPENDIX B. RELATED WORK 

In this appendix, we discuss alternative solutions to the problem presented in 
this paper, and related work that has been done. In discussing alternative 
solutions, we point out some of the advantages and disadvantages of each. 

For examples of the design and construction of multiprocessors see Wulf and 
Bell [24], and Swan, Fuller, and Siewiorek [22]. For examples of verification 
methodology, see Dijkstra’s book [4], and the comprehensive survey by Manna 
and Waldinger [17] (and its references). For extensions of verification ideas to 
parallel programs, see the work by Owicki [ 191 and Lamport [ 141. In the database 
systems area, research in concurrency and integrity control has been done, for 
example, by Eswaran et al. [7], Gray [a], and Ries and Stonebreaker [20]. 

Since B-trees (see Bayer and McCreight [2] or Knuth [lo]) have been found 
convenient for storing large amounts of data in the sequential case, many database 
systems have been constructed using B-trees (or often B*-trees; see Wedekind 
[23]) as the main data structure (e.g., Astrahan et al. [l]). These structures have 
the advantage that they are balanced by definition (although this does not 
preclude the necessity of other forms of reorganization). While we chose to 
examine the structure of binary search trees, much similar work on the question 
of concurrent operations on B-trees and B*-trees has been done. We note, 
however, that the branching factor in most practical B-trees is such that the 
number of levels required to store large amounts of data rarely exceeds four. This 
raises the question of just how much concurrency we can squeeze into such a flat 
structure. 
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(a) The first solution to the concurrent B-tree problem was advanced by Samadi 
[21]. His approach is to use semaphores to lock exclusively the path along 
which modifications may take place, effectively locking the entire subtree of 
the highest node locked. 

(b) Bayer and Schkolnick [3] improve upon this by proposing a parameterized 
algorithm for concurrent B*-tree manipulation. This algorithm locks upper 
sections of the tree with writer-exclusion locks (which do not lock out 
readers), until the actual modifications need to be done (when exclusive locks 
are finally applied), thus increasing the concurrency of the algorithm. 

(c) Miller and Snyder [ 181 are working on a solution which locks a region of the 
tree of bounded size (which is close to our notion of locking a region of 
constant size). This locked region propagates up the tree, performing appro- 
priate modifications to the tree structure. 

(d) Ellis [6] presents a solution for 2-3 trees (generalizable to B-trees) which 
uses several methods to enhance concurrency. These methods include an 
application of Lamport’s idea for correctly reading and writing simultaneously 
[15]. The algorithms Ellis presents allow temporary departures from the tree 
structure in order to minimize the cost of maintaining consistency during 
concurrent operations. Also, “relaxing a process’s responsibility to do its own 
work” is a specific case of our idea of postponement; the structural degrada- 
tion caused by one process may be fixed later by another. 

(e) A paper by Lehman and Yao [16] will contain a more extensive survey of 
these ideas, along with a concurrent B*-tree algorithm that uses some of the 
ideas in the present paper to achieve minimal (constant size) locking and 
high concurrency. 

Guibas and Sedgewick’s [9] scheme for representing many types of tree struc- 
tures as “dichromatic” binary trees suggests that the problems of concurrently 
maintaining more general trees may be reducible to the set of problems studied 
in the present paper. 

APPENDIX C. A CORRECTNESS CRITERION FOR CONCURRENT 
SEARCH SYSTEMS 

The binary search tree or any physical database storage structure can be 
viewed as an implementation of the abstract notion of some data storage mech- 
anism. The abstract notion specifies properties of various operations that we wish 
to perform on the database. 

In this paper, we have adopted a natural abstract notion. That is, the responses 
given by the search processes must correctly reflect the results of the modifying 
operations on the database. For example, if the following operations take place 
(shown in order of termination time) then the responses given by the search 
processes must be the ones shown on the right-hand side. 

insert( 1) 
insert(2) 
search(2) 
delete(2) 
search( 1) 
search(2) 

response: “Yes.” 

response: “Yes.” 
response: “No.” 

rotate 
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That is, search(u) returns the answer “Yes” if and only if the number of 
successful insert(u) operations which have terminated so far is strictly larger 
than the number of successful deZete( u) operations which have terminated. We 
use the same abstract notion for concurrent database systems. We say a concur- 
rent system is correct if it implements the abstract notion. 

It is necessary to define more precisely what we mean by “termination time of 
a process” in a concurrent environment. We define this as the instant at which an 
updating process makes its last modification to the database link structure or the 
instant at which a query process reports the result of its search. We can easily 
argue that Properties Pl-P5 are sufficient for the correctness criterion stated 
here. (Actually, they also guarantee no deadlocks and completion of all processes.) 
Since by Property P5 a value u will not be added to or deleted from the tree 
without using insert(u) or delete(u), respectively, we only need to check that a 
search(u) returns “Yes” (i.e., finds u) if and only if u is in the tree. This is 
guaranteed by Properties Pl and P2; Property Pl ensures that the tree is always 
consistent, and thus by Property P2 the search will find u if and only if it is in the 
tree (since the search process on the “frozen” tree is correct in the sense of 
Assumption A2). 
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