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ABSTRACT

We describe an IP-layer anonymizing infrastructure, called
ANON, which allows server addresses to be hidden from
clients and vice versa. ANON uses a network resident set of
IP-layer anonymizing forwarders that can forward IP
packets with encryption and decryption applied to their
source and destination addresses. Using ANON, a client
can send and receive packets to and from application serv-
ers without knowing their IP addresses. We have designed
and implemented a laboratory testbed for this anonymizing
infrastructure. This paper gives an overview of the ANON
architecture and its implementation, and describes its secu-
rity threat models and our countermeasures. 

INTRODUCTION

Over the current Internet, when a client acquires services
from an application server, packets sent and received by the
client reveal server IP addresses in the packet headers.
There are a number of situations where it would be useful
for an application to be able to send traffic to a destination
without revealing the IP address of the destination to the
source, the IP address of the source to the destination, or
both. For example, a Web site may want to hide its IP
addresses to reduce the risk of denial of service (DoS)
attacks aimed at these addresses. See [9] for discussion on
supporting anonymity at the IP layer. 

One way to achieve this anonymity, as described in this
paper, is to use a network resident set of IP-layer servers
that can forward IP packets, with encryption and decryp-
tion applied to their source and destination addresses when
appropriate. We will call these network resident IP-layer
servers anonymizing forwarders, or simply forwarders, and
an IP anonymizing infrastructure based on these anony-
mizing forwarders ANON. 

Using ANON, a client can send and receive packets to and
from application servers without knowing their IP
addresses. This is analogous to a user sending and
receiving U.S. mail using the P.O. Box number of an orga-
nization without using its street address. In this way, the

organization can receive mails while not revealing its street
address to the public. 

ANON incorporates countermeasures to provide protection
against various security threats such as unauthorized moni-
toring of links in the infrastructure and launching of DoS
attacks through the infrastructure. The countermeasures
include previously known techniques such as link encryp-
tion, link padding, traffic mixing, multi-hop packet encryp-
tion/decryption and protocol camouflaging, as well as new
techniques such as on-demand link padding and per-desti-
nation rate-limiting. 

The design of ANON assumes that it will be used mainly
for low-bandwidth signaling and data applications, not data
transfer that may require high bandwidth. As described
later in the paper, this assumption will increase the effec-
tiveness of our countermeasures. There are many applica-
tions that fit the model defined here, that is, they only need
medium bandwidth to function properly. These include
signaling applications such as connection setup and termi-
nation, user authentication, user authorization, service
registration, and service discovery.

Consider, for example, the use of ANON to protect authen-
tication servers against DoS attacks. By definition, an
authentication server needs to process requests from
unknown users. An adversary can exploit this fact to launch
DoS attacks on the authentication server. This means that
the adversary can swamp the authentication server by
sending a large number of fake authentication requests to it.
The risk of this type of DoS attack increases when sophisti-
cated authentication that requires increased processing is
used. ANON provides a solution to this problem by hiding
the IP address of the authentication server from the public
and thus from adversaries. When ANON is used, an adver-
sary can reach the authentication server only through the
ANON infrastructure. Using rate-limiting, ANON can miti-
gate DoS attacks through the infrastructure itself. 

We have implemented a laboratory testbed for ANON at
Harvard. The testbed incorporates the countermeasures
mentioned above. For ease of use, the testbed also includes
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gateway servers that allow existing clients and application
servers to use ANON as is, without modification.

This paper gives an overview of ANON and describes
several important aspects related to the systems. These
include usage examples, threat models and countermea-
sures, rate-limiting schemes, and implementation. In the
next section, we first compare ANON with previous
approaches in related areas.

COMPARISON WITH RELATED WORK

ANON differs from previous anonymizing approaches in
two ways. First, ANON works at the IP layer. This is in
contrast with other MIX-based [2] approaches such as
onion routing [10] that use layer-4 or higher-layer proto-
cols, and Mixmaster [3] that uses application-layer proto-
cols. Each anonymizing forwarder in ANON is a stateless
packet forwarder at the IP layer. The forwarder does not
keep any connection or session state or any mapping tables
that could be used to generate translated IP addresses and
port numbers. This means that the forwarder is oblivious to
the number of connections or sessions, and does not have
translation tables to manage. However, the forwarders can
keep statistics on traffic to specific destinations or from
specific sources so that per-source or per-destination rate-
limiting can be implemented. Since ANON is an infrastruc-
ture working at the IP layer, it does not modify packet
content in the upper layers, and thus it is able to avoid
complexities related to such modification [1]. In [4] a
recent work on IP-layer anonymizing was reported. Unlike
ANON, it uses a P2P networking infrastructure instead of a
network resident set of forwarders managed by trusted third
parties.

Second, ANON attempts to hide a target application server
in a large candidate set of possible servers unknown to
users and possible adversaries. By using a sufficiently large
candidate set, ANON can ensure that DoS attacks on the
application server based on indiscriminating DoS attacks
on all these candidate servers will be ineffective. In
contrast, traditional MIX-based anonymizing systems
attempt to hide a target server with which a user communi-
catea. In such a system, the target server is in a candidate
set of servers that are known to the public including adver-
saries. The anonymizing system in this case must make
sure that traffic related to the user’s communication with
the target server is indistinguishable from that with any
other server in the candidate set, so that adversaries cannot
identify the target server easily. For this, artificial load must
be injected into the network in order to disguise the user’s
traffic in the presence of traffic analysis [2]. To keep the

artificial load under a modest level, the candidate set in
these approaches needs to be small.

OVERVIEW OF THE ANON INFRASTRUCTURE

The ANON infrastructure consists of a set of anonymizing
forwarders and some number of initialization servers, as
depicted in Figure 1. Forwarders will encrypt and decrypt
IP addresses, whereas initialization servers will provide
clients with encrypted addresses of application servers. (In
the figures of this paper, an application server is denoted as
“server” for simplicity.) Forwarders themselves form an
overlay IP network. That is, a pair of forwarders may be
connected through a route involving multiple IP routers.
Request packets from a client to a server will be forwarded
over a forwarding path consisting of a subset set of these
forwarders. Reply packets from the server to the client will
use the same path in the reverse direction. For different
reply-request sessions, different forwarding paths may be
used. 

Some trusted third parties will operate forwarders. Since
forwarders may decrypt IP addresses and thereby have
access to the IP addresses that ANON intends to hide, it is
important that forwarders are properly protected from
being compromised or being monitored. To increase avail-
ability forwarders may use anycast-style addressing [6, 8],
so that any of a number of forwarders using the same
anycast address may forward a packet sent to it. 

The role of initialization servers is to provide clients with
encrypted addresses of application servers. Thus, initializa-
tion servers and the encrypted addresses provided by them
need to be properly authenticated, possibly using digital
certificates, to ensure that these encrypted addresses will be
trustworthy. In addition, initialization servers may need to
be replicated in various locations to ensure their high avail-
ability. 

Consider, for example, the case of hiding the IP address of
an application server from clients. In this case, the use of
ANON will involve three usage steps: 

Figure 1. The ANON infrastructure, where Fs are anony-
mizing forwarders and solid arrows indicate an instance of
a packet’s forwarding path.
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• Server registration. An application server whose IP
address needs to be hidden will invoke a process that
selects a sequence of forwarders, computes the
encrypted IP address for the application server, and
registers the results to initialization servers. The
sequence of forwarders can be selected manually or
automatically, and statically or dynamically. 

• Client initialization. Given an application server to
which a client wishes to access, the client obtains the
encrypted address for the application server, the
address of the first decrypting forwarder, and other
information required for packet forwarding.

• Packet forwarding. According to the information
obtained from the client initialization, ANON forwards
packets to and from the application server over the
selected sequence of forwarders. 

NOTATIONS AND ASSUMPTIONS

C: Client
S: Application Server 

• S has generated an asymmetric key pair of public and
private keys. S holds the private key. 

I: Initialization Server 
F: Anonymizing Forwarder 

• F is assumed to be outside firewalls or NATs of C, S
and I, should these firewalls or NATs exist. 

• F holds a symmetric key for all its forwarding opera-
tions. Each F has its own symmetric key not known to
others. Fs using the same anycast address share the
same symmetric key.

[X]: IP address of X 
• If X is a client behind a firewall or NAT, [X] is the IP

address as seen from the outside of the organization. 
• If X is a forwarder, [X] may be its unicast or anycast

address. 
[X]{payload}[Y] 

• A packet with its source and destination IP addresses
being [X] and [Y], respectively. 

(z)r, where r is a symmetric key 
• It is the content z encrypted in r. 
• When r is the lower case letter of the name of a for-

warder or server, r denotes the symmetric key of the
forwarder or server. For example, (z)f means z
encrypted in the symmetric key of forwarder F. 

(z)A, where A is the name of a forwarder or a server 
• It is the content z signed in A's private key or encrypted

in A's public key. In the former case, A did the signing,
whereas in the latter case another entity did the encryp-
tion. 

X->Y: [X]{payload}[Y]

• X sends packet, [X]{payload}[Y], to Y. 
X: operation 

• X performs operation. 

FORWARDING OPERATIONS

Depending on the application, a forwarder may perform
one of the forwarding operations listed below. Subsequent
usage examples will illustrate the use of these operations. 

FWD-INC (“forward and include”): 
Input packet: [X]{msg, [Y]}[F] 
Output packet: [F]{msg, [X]}[Y] 

FWD-CLR (“forward and clear”): 
Input packet: [X]{msg, [Y]}[F]
Output packet: [F]{msg}[Y] 

FWD-ENC (“forward and encrypt”):
Input packet: [X]{msg, [Y]}[F] 
Output packet: [F]{msg, ([X])f}[Y] 

DEC-FWD-INC (“decrypt, forward and include”): 
Input packet: [X]{msg, ([Y])f}[F] 
Output packet: [F]{msg, [X]}[Y] 

DEC-FWD-CLR (“decrypt, forward and clear”): 
Input packet: [X]{msg, ([Y])f}[F] 
Output packet: [F]{msg}[Y] 

DEC-FWD-ENC (“decrypt, forward and encrypt”): 
Input packet: [X]{msg, ([Y])f}[F] 
Output packet: [F]{msg, ([X])f}[Y] 

In addition to these forwarding operations, a forwarder may
also support management operations such as application
servers' registration. 

BASELINE USAGE EXAMPLE B1:
HIDE SERVER'S ADDRESS 

This example illustrates the use of ANON to achieve the
following two objectives:

• A client C sends a request to an application server S
without knowing S's address. 

• C receives a reply from S without knowing S's address. 

As described earlier, the client C first interacts with an
initialization server I. In its message to I, C expresses its
wish to access an application server S. Then the initializa-
tion server I securely sends C a message, e.g., via SSL,
containing the following two items: 

• [F], the unicast address of a forwarder F, or the anycast
address of a set of forwarders, also denoted by F. 

• ([S])f
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When the client wishes to send a request to S, it builds a
request packet containing the following contents and sends
it to [F]: 

• (req, ck)S, where req is C's request to S, and ck is a
cookie associated with the packet. (req, ck)S is (req,
ck) encrypted by S's public key. The purpose of ck is to
identify the request. After the packet is sent, C will
keep ck around, so that it can be used later to associate
the reply received from S with the request.

• ([S])f 

Upon receiving the request packet, F decrypts the packet,
forwards it to [S], with the source address of the original
packet, [C], as seen by F included in the packet payload.
That is, F performs the operation DEC-FWD-INC. 

When S receives the request packet, it builds a reply packet
containing the following contents and sends it to [F]: 

• (rep, ck)S: reply and cookie signed by S with its private
key. 

• [C]: the source address of the original packet as seen by
F. 

Upon receiving the reply packet, F forwards it to [C]
without including [S] in the packet payload, so [S] will not
be revealed. That is, F performs the operation FWD-CLR.
When C receives the packet, it decrypts the reply and
cookie using S's public key. By comparing the decrypted
cookie with the original cookie stored at C, C checks
whether the received reply is the one corresponding to its
original request. 

We summarize usage B1 for hiding [S] as follows: 

C -> F: [C]{(req, ck)S, ([S])f}[F]
F: DEC-FWD-INC

F -> S: [F]{(req, ck)S, [C]}[S] 
S: reply 

S -> F: [S]{(rep, ck)S, [C]}[F] 
F: FWD-CLR 

F -> C: [F]{(rep, ck)S}[C] 
C: decrypt reply and cookie, and verify the reply 

BASELINE USAGE EXAMPLE B2:
HIDE CLIENT'S ADDRESS 

This example illustrates the use of ANON to achieve the
following two objectives: 

• S receives request from C without knowing C's
address. 

• S sends reply to C without knowing C's address. 

In this case, C will obtain [F] and [S] from an initialization
server. We summarize usage B2 for hiding [C] as follows: 

C -> F: [C]{req, [S]}[F]
F: FWD-ENC

F -> S: [F]{req, ([C])f}[S] 
S: reply 

S -> F: [S]{rep, ([C])f}[F] 
F: DEC-FWD-INC 

F -> C: [F]{rep, [S]}[C] 
C: receive reply and [S] 

Note that usage B1 and B2 can be combined to yield a
scheme that will hide both [C] and [S]. 

ENHANCED TWO-HOP USAGE EXAMPLE:
HIDE SERVER'S ADDRESS 

This example is an enhanced version of baseline usage
example B1 above. It is designed to defend against a type
of replay attack. Suppose that an adversary repetitively
submits C's request: 

C->F: [C]{(req, ck)S, ([S])f}[F] 

while monitoring packet contents on links that could be on
the path from F to S and vice versa. If those packets on the
links that result from these repeated request submissions
are distinguishable, then the adversary will be able to learn
[S] by examining destination or source addresses of these
packets. It is thus important to avoid invariant bit strings in
packet load, such as [C], (req, ck)S and (rep, ck)S in usage
example B1 above, that could be used to identify these
packets. 

ANON has provided mechanisms to protect itself against
this type of attack. In particular, the infrastructure satisfies
the “semantically secure packet encryption” property. That
is, N repeated submissions of the same packet will yield N
different encrypted packet payloads on a link. This property
is depicted in Figure 2. 

Figure 2. Semantically secure packet encryption.
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Below is an enhanced version of usage example B1 satis-
fying this semantically secure packet encryption” property.
It is a two-hop example, involving forwarders F1 and F2.
Client C gets (([S], s)f2, [F2])f1 and [F1] from an initializa-
tion server. 

C->F1: [C]{req, ck, (([S], s)f2, [F2])f1}[F1] 

F1->F2: [F1]{req, ck, ([S], s)f2, [C]}[F2] 

F2->S: [F2]{(req, ck, [C])r1, (r1)s, {[C], [F1]}r2,
(r1, r2)f2}[S] 

S->F2: [S]{(rep, ck)r1, ([C], [F1])r2, (r1, r2)f2}[F2] 

F2->F1: [F2]{rep, ck, [C]}[F1] 

F1-> C: [F1]{rep, ck}[C] 

In this method, the IPsec Encapsulating Security Payload
(ESP) [7] is used for the encryption of packet transport
between forwarders F1 and F2. Note that IPsec ESP has
built-in support for semantically secure packet encryption.
For packet transport between F2 and S, F2 randomly
selects symmetrical session keys r1 and r2 to implement
semantically secure packet encryption. One can verify that
N submissions of the same packet by C will yield N
different encrypted packet payloads on path segments from
F2 to S and S to F2. For packet transport between C and F1,
there is no need to apply packet encryption, since [F1] need
not be hidden from the client or the public.

It is straightforward to extend this two-hop enhanced
scheme to hide [C], or both [C] and [S], and to allow addi-
tional hops. 

THREAT MODELS AND COUNTERMEASURES

We consider the following three types of security-related
threats for the ANON infrastructure: 

• Type 1 threat. The forwarding infrastructure may leak
address information that it is supposed to hide. This is a
case where the physical links in and out of a forwarder
might be monitored by an unauthorized party, or the
forwarder itself is compromised.

• Type 2 threat. The forwarding infrastructure may itself
be subject to DoS attacks. 

• Type 3 threat. The forwarding infrastructure may be
used as a conduit to launch DoS attacks. 

To defend against Type 1 threats, ANON uses multi-hop
forwarding, as illustrated in the enhanced two-hop usage
example earlier. Note that the adversary’s objective is to
identify the exit forwarder, the one that will have access to
the decrypted IP address of the target application server

whose address ANON attempts to hide. Starting from an
entry forwarder, the adversary would need to follow the
forwarding chain in order to discover the exit forwarder.
(For the illustrative scenario in Figure 1, F1 is the entry
forwarder and F2 is the exit forwarder.) The longer the
forwarding chain, the harder must the adversary work. This
is especially true if the forwarders are under different
administrative authorities, since in this case the attacker
will need to compromise all the authorities in order to
succeed. 

ANON provides countermeasures that can hide forwarding
traffic from the adversary. To prevent packet contents from
revealing forwarding information, ANON uses techniques
such as semantically secure packet encryption described
earlier.

To defend against traffic analysis, ANON employs previ-
ously known techniques such as traffic mixing, link
padding and protocol camouflaging. For example, ANON
camouflages UDP packets forwarded between forwarders
as normal TCP packets. ANON also employs new tech-
niques such as on-demand link padding and per-destination
rate-liming that allow artificial padding traffic to be
inserted only when there is real traffic to hide. In addition,
ANON supports dynamic re-selection of forwarders. A
target application server can dynamically register
forwarding paths so that a new forwarding path can be used
before the old one is cracked. That is, application servers
may change the forwarders they use from time to time
through the registration process.

To defend against Type 2 threats, ANON can have entry
forwarders perform high-volume, lightweight filtering of
packets. Operating at wire speed these forwarders could
filter packet addressees and send challenges to packet
sources, so that packets with illegitimate IP addresses will
be discarded. DoS attacks at forwarders other than the entry
forwarders will not be possible unless their addresses
become known to the attacker. This leaking should not
happen if countermeasures against Type 1 threats work.

To defend against Type 3 threats, ANON can reject packets
with spoofed source IPs, and rate limit on a per-link, per-
source or per-destination basis. 

To implement rate-limiting, each forwarder alternates
between two phases, equalization and relaxation. The
forwarder can use the “push-back” technology [5] to send
control signals to its upstream nodes to regulate the rate of
traffic from the upstream nodes to the current forwarder. In
the equalization phase, if its current total rate is above
certain threshold HI, a forwarder will increase its push-
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back signal to sources that have relatively larger traffic
usage at present. In contrast, in the relaxation phase, if its
current total rate is below certain threshold LOW, a
forwarder will reduce its push-back signal to sources that
have relatively small traffic usage at present. This rate-
limiting scheme can keep the utilization of the ANON
network at a reasonably high level and its packet loss rate
due to congestion at a reasonably low level, while blocking
large users, including DoS attackers, from taking away
bandwidths that other small users may need. 

TESTBED IMPLEMENTATION

We have implemented a laboratory testbed for ANON at
Harvard. The testbed, depicted in Figure 3, consists of a
half-dozen forwarders. Nodes in the testbed are imple-
mented on top of FreeBSD 4.5-Stable. The divert socket
available from FreeBSD is used to implement various
header processing tricks at the user-level. For the symmet-
ric key algorithm, the testbed uses the AES reference
implementation from NIST.

The testbed includes NAT-like gateways, GWc for clients
and GWs for servers. These gateways allow existing clients
and servers to use the testbed without modifications.
Clients may connect to their GWc directly or via a VPN
connection. In a similar way, servers connect to their GWs.

The current testbed implementation can achieve a
throughput of 5 Mbps. This performance, which is more
than adequate for signaling applications, is made possible
mainly because we have managed to avoid using public key
encryption and decryption in packet forwarding, as illus-
trated in usage examples earlier.

SUMMARY AND CONCLUDING REMARKS

In this paper, we have described the architecture of an
anonymizing infrastructure at the IP layer. The infrastruc-
ture is specially designed for low-bandwidth applications
such as authentication and authorization. We have shown
usage examples of hiding addresses of servers, clients, etc.

We have described security threat models for the anony-
mizing infrastructure, and a suite of countermeasures, such
as semantically secure packet encryption and rate-limiting
schemes. Finally, we have described a laboratory testbed
implementation of the infrastructure.

This work has shown that it is both feasible and natural to
provide an anonymizing infrastructure at the IP layer. For
example, rate-limiting and link padding can be conve-
niently implemented at the IP layer. If one would attempt to
implement these functions at higher layers, it would incur a
great deal of efforts if possible at all. 
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Figure 3. Experimental testbed that has been implemented.
GWc and GWs are gateways that allow existing clients
and servers to use ANON without modifications.
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