
Deep Sparse-coded Network (DSN)

Youngjune Gwon
Harvard University

gyj@eecs.harvard.edu

Miriam Cha
Harvard University

miriamcha@fas.harvard.edu

H. T. Kung
Harvard University
kung@harvard.edu

Abstract—We present Deep Sparse-coded Network (DSN), a
deep architecture based on multilayer sparse coding. It has been
considered difficult to learn a useful feature hierarchy by stacking
sparse coding layers in a straightforward manner. The primary
reason is the modeling assumption for sparse coding that takes in
a dense input and yields a sparse output vector. Applying a sparse
coding layer on the output of another tends to violate the mod-
eling assumption. We overcome this shortcoming by interlacing
nonlinear pooling units. Average- or max-pooled sparse codes are
aggregated to form dense input vectors for the next sparse coding
layer. Pooling achieves nonlinear activation analogous to neural
networks while not introducing diminished gradient flows during
the training. We introduce a novel backpropagation algorithm to
finetune the proposed DSN beyond the pretraining via greedy
layerwise sparse coding and dictionary learning. We build an
experimental 4-layer DSN with the `1-regularized LARS and the
greedy-`0 OMP, and demonstrate superior performance over a
similarly-configured stacked autoencoder (SAE) on CIFAR-10.

I. MOTIVATION

Representational power of single-layer feature learning is
limited for tasks that involve large complex data objects
such as a high-resolution image of human face. Best current
practices in visual recognition use deep architectures based on
autoencoder [1], restricted Boltzmann machine (RBM) [2], and
convolutional neural network (CNN) [3]. A deep architecture
stacks two or more layers of feature learning units in the hope
of discovering hierarchical representations for data. In other
words, deep architectures allow us to understand a feature
at each layer using the features of the layer below. Such
hierarchical decomposition is particularly useful when it is
hard to resolve ambiguity of the low-level (or localized) fea-
tures of data. Deep architectures also promote representational
efficiency. We can achieve compaction of all characteristic
features for the entire image, book, or lengthy multimedia clip
to a single vector.

In an empirical analysis by Coates, Lee and Ng [4], a
simple single-layer scheme, which encodes features with basis
vectors learned from K-means clustering, is found on par (or
sometimes, even superior) to RBM, deep neural network, and
CNN for classification tasks on the CIFAR-10 and NORB
datasets. We have also been able to draw a similar conclusion
from our experiments with sparse coding. With these in mind,
it is sound to build a deep architecture on sparse coding.
Unfortunately, this takes more than just stacking sparse coding

units in layers. From sparse coding research on hierarchical
feature learning [5], [6], we could deduce some explanations
for the difficulty. First, sparse coding (in particular, the `1-
regularized LASSO or LARS) is computationally expensive
for multilayering and associated optimizations. From our ex-
perience, it is cumbersome to simply connect multiple sparse
coding units and run data as a feedforward network. Secondly,
sparse coding makes an inherent assumption on the input
being non-sparse. Therefore, a straightforward approach to
take the output from one sparse coding unit for an input to
another is flawed. Lastly, it is difficult to optimize all layers of
sparse coding jointly. One consensual notion of deep learning
suggests layer-by-layer unsupervised pretraining should be
followed by supervised finetuning of the whole system, which
is commonly done by backpropagation.

In this paper, we propose Deep Sparse-coded Network
(DSN), a deep architecture for sparse coding as a principled
extension from its single-layer counterpart. We consider both
the `1-regularized LASSO/LARS [7], [8] and greedy-`0 OMP
[9] as a legitimate sparse coding method. Using max pooling
as nonlinear activation analogous to neural networks, we
avoid linear cascade of dictionaries and keep the effect of
multilayering in tact. This architectural usage will remedy
the problem of too many feature vectors by aggregating them
to their maximum elements and help preserve translational
invariance of higher-layer representations. Beyond the layer-
by-layer pretraining, we propose a novel backpropagation
algorithm that is specific to multilayer sparse coding interlaced
by spatial max pooling. We have validated empirically that the
proposed backpropagation algorithm can further optimize the
classification performance by 4–6% gain in accuracy.

Rest of this paper is organized as follows. In Section 2, we
provide a brief background on sparse coding. Section 3 will
introduce DSN, explain its architectural principles, and discuss
training algorithms. In Section 4, we present an empirical
evaluation of DSN, and Section 5 concludes the paper.

II. SPARSE CODING BACKGROUND

Originally used to explain neuronal activations [10], sparse
coding is an unsupervised method to learn an efficient rep-
resentation of data using a small number of basis vectors. It
has been used to discover high-level features present in data

2

!"#$%&'()*+,-'./+**&,'0#1&$'23'

!"#$%&'()*+,-'./+**&,'0#1&$'43'

!!!"5#$%" 5#&%" 5#!$%"

6''
"

7#5'
"))8'

!!!"

9'#$%"

1'#$%" 1'#&%" 1'#!$%"

!!!"5#!$($%" 5#!$(&%" 5#&!$%"

7#5'
"))8'

!!!"

9'#&%"

1'#!$($%" 1'#!$(&%" 1'#&!$%"

!!!"5#!!!%" 5#!!!%" 5#"#!$%"

7#5'
"))8'

!!!"

9'#"%"

1'#!!!%" 1'#!!!%" 1'#"#!$%"

: : : '

7#5'
"))8'

:::'

9''#$%"

1''#$%" 1''#&%"

: : : '

: : : '

: : : '

6'
"

1''#!&%"

9'#!&%"

7#5'
"))8'

!!!"

9''#$%"

1''#!!!%" 1''#!!!%" 1''#$#!&%": : : '

: : : '

: : : '

(8#%%+;&$%'.<=>"=>'0#1&$3'

0#1&$'4'

0#1&$'?'

@#>AB&%'C$)D'E#F'6#>#'.G,"=>'0#1&$3'

0#1&$'H'

0#1&$'2'

Fig. 1. Deep Sparse-coded Network (DSN) with four layers

from unlabeled examples. Given an example x ∈ RN , sparse
coding searches for a representation y ∈ RK (i.e., the feature
vector for x) while simultaneously updating the dictionary
D ∈ RN×K of K basis vectors by

min
D,y
‖x−Dy‖22 + λ‖y‖1 s.t. ‖di‖2 ≤ 1,∀i (1)

where di is ith dictionary atom in D, and λ is a regularization
parameter that penalizes over the `1-norm, which induces a
sparse solution. With K > N , sparse coding typically trains
an overcomplete dictionary.

A more direct way to control sparsity is to regularize on
the `0 pseudo-norm ‖y‖0, describing the number of nonzero
elements in y. However, it is known to be intractable to
compute the sparsest `0 solution in general. The approach in
Eq. (1) is called least absolute shrinkage and selection operator
(LASSO) [7], a convex relaxation of the `0 sparse coding that
induces sparse y’s. We use least angle regression (LARS) [8]
to solve the LASSO problem. We also consider orthogonal
matching pursuit (OMP) [9], a greedy-`0 sparse coding al-
gorithm that computes an at-most S-sparse y extremely fast
by

min
D,y
‖x−Dy‖22 s.t. ‖y‖0 ≤ S. (2)

III. DEEP SPARSE-CODED NETWORK (DSN)
A. Notation

We denote input vector x, its sparse code y, and the pooled
sparse code z. An ith input vector (patch) is designated as x(i).
Sparse coding layers are the “hidden” layers of DSN. We use
subscripted Roman numerals to indicate sparse coding layers.
For example, DI means the first hidden layer’s dictionary. Note
that the first hidden layer is the overall layer 2. Accordingly, yI

is the sparse code computed at the first hidden layer with the
input x and DI, and zI the pooled sparse code over multiple
yI’s.

!"#$%&'
()*+,-'

.))/'

0J

1J
!

2J!
3#0&$'"45''
67+**&,'3#0&$'"8'

1J–1
!

Fig. 2. DSN layering module

B. Architectural Overview

Deep Sparse-coded Network (DSN) is a feedforward net-
work built on multilayer sparse coding. In Figure 1, we present
an exemplar 4-layer DSN. This is a deep architecture since
there are two hidden layers of sparse coding, each of which can
learn corresponding level’s feature representations and train
own dictionary of basis vectors. Similar to neural network,
layers 1 and 4 are the input and output layers. The input
layer takes in vectorized patches drawn from the raw data,
which will be sparse coded and max pooled, propagating up
the layers. The output layer consists of classifiers or regressors
specific to application needs.

Figure 2 depicts a stackable layering module to build
DSN. Sparse coding and pooling units together constitute
the module. The J th hidden layer (for J ≥ II) takes in
pooled sparse codes zJ−1’s from the previous hidden layer and
produces yJ using dictionary DJ . Max pooling yJ ’s yields
pooled sparse code zJ that are passed as the input for hidden
layer J + 1.

C. Algorithms

Hinton et al. [11] suggested pretrain a deep architecture
with layer-by-layer unsupervised learning and finetune via
backpropagation, a supervised algorithm popularized by neu-
ral network. We explain training algorithms for DSN using the
architecture in Figure 1.

1) Pretraining via layer-by-layer sparse coding and dic-
tionary learning: DSN takes in spatially contiguous patches
from an image or temporally consecutive patches from time-
series data to make the overall feature learning mean-
ingful. Optimally, patches are preprocessed by normal-
ization and whitening. The input layer is organized as
pooling groups of M1 patches: {x(1),x(2), . . . ,x(M1)},
{x(M1+1),x(M1+2), . . . ,x(2M1)}, · · · . Sparse coding and dic-
tionary learning at hidden layer 1 compute sparse codes y(i)

I ’s

3

while learning DI jointly

{x(1), . . . ,x(M1)} DI−→ {y(1)
I , . . . ,y

(M1)
I }

{x(M1+1), . . . ,x(2M1)} DI−→ {y(M1+1)
I , . . . ,y

(2M1)
I }

...

Max pooling at hidden layer 1 aggregates multiple sparse
codes

{y(1)
I , . . . ,y

(M1)
I } max pool−→ z

(1)
I

...

Hidden layer 1 passes the pooled sparse codes {z(1)I , z
(2)
I , . . . }

to hidden layer 2. Sparse coding and dictionary learning
continue at hidden layer 2 using zI’s as input

{z(1)I , . . . , z
(M2)
I } DII−→ {y(1)

II , . . . ,y
(M2)
II }

...

Pooling groups at hidden layer 2 consist of M2 pooled sparse
codes from hidden layer 1. Max pooling by M2 yields

{y(1)
II , . . . ,y

(M2)
II } max pool−→ z

(1)
II

...

Pretraining completes by producing dictionaries {DI ∈
RN×K1 ,DII ∈ RK1×K2} and the highest hidden layer’s
pooled sparse codes {z(1)II , z

(2)
II , . . . } with each z

(j)
II ∈ RK2 .

Max pooling is crucial for our DSN architecture. It reduces
the total number of features by aggregating sparse codes to
their max elements. More importantly, max pooling serves
as a nonlinear activation function in neural network. Without
nonlinear pooling, multilayering has no effect: x = DIyI and
yI = DIIyII implies x = DIDIIyII ≈ DyII because linear
cascade of dictionaries is simply D ≈ DIDII regardless of
total number of layers.

2) Training classifiers at output layer: DSN learns each
layer’s dictionary greedily during pretraining. The resulting
highest hidden layer output zII is already a powerful feature
for classification tasks. Suppose DSN output layer predicts a
class label l̂ = hw(φ), where hw(.) is a standard linear classi-
fier or logistic/softmax regression that takes a feature encoding
φ as input. Note that φ is encoded on zII, but depends on DSN
setup. For instance, we may have φ = [z

(1)
II ; z

(2)
II ; z

(3)
II ; z

(4)
II]

if the highest hidden layer yields four pooled sparse codes per
training example.

For simplicity, assume φ = zII. A DSN classifier then
computes l̂ = hw(zII) = w>· zII +w0. We train the classifier
weight w = [w1 . . . wK2]

> and the bias w0 using labeled
examples {(X1, l1), . . . , (Xm, lm)} in a supervised process by
filling the input layer with patches from each example—the

ith example Xi consists of {x(1)
i ,x

(2)
i , . . . }, where x

(k)
i is the

kth patch—and working up the layers to compute zII’s that
are used to train the DSN classifiers.

3) Backpropagation: By now, we have the DSN output
layer with trained classifiers, and this is a good working
pipeline for discriminative tasks. However, we might further
improve the performance of DSN by optimizing the whole
network in a supervised setting. Is backpropagation possible
for DSN?

DSN backpropagation is quite different from conventional
neural network or deep learning architectures. We explain our
backpropagation idea again using the example DSN in Fig-
ure 1. The complete feedforward path of DSN is summarized
by

x
DI−→ yI

max pool−→ zI
DII−→ yII

max pool−→ zII
classify−→ l̂

We define the loss or cost function for the DSN classification

J(zII) =
1

2

∥∥∥l̂ − l∥∥∥2 =
1

2
‖hw(zII)− l‖2 (3)

Our objective now is to propagate the loss value down the
reverse path and adjust sparse codes. Fixing classifier weights
w, we back-estimate optimal z∗II that minimizes J(zII). To
do so, we perform gradient descent learning with J(zII) that
adjusts each element of vector zII by

zII,k := zII,k − α
∂J(zII)

∂zII,k
(4)

where α is the learning rate, zII = [zII,1 zII,2 . . . zII,K2
]>,

and K2 is the number of basis vectors in dictionary DII for
hidden layer 2. Since an optimal z∗II is estimated by correcting
zII, the partial derivative is with respect to each element zII,k

∂J(zII)

∂zII,k
= [hw(zII)− l)]

∂h(zII)

∂zII,k
= [hw(zII)− l]wk

Here, note our linear classifier hw(zII) = w0 + w1 · zII,1 +
· · · + wK2

· zII,K2
. Therefore, the following gradient descent

rule adjusts zII to z∗II

zII,k := zII,k + α [l − hw(zII)]wk (5)

This update rule is intuitive because it down-propagates the
error [l − hw(zII)] proportionately to the contribution from
each zII,k and adjusts accordingly.

Using the corrected z∗II, we can correct the unpooled original
yII’s to optimal y∗II’s by a procedure called putback illustrated
in Figure 3. At hidden layer 2, we have performed max pooling
by M2. For putback, we need to keep the original M2 yII’s
that have resulted zII in memory so that corrected values at z∗II
are put back to corresponding locations at the original sparse
codes yII’s and yield error-adjusted y∗II’s.

With y∗II, going down a layer is straightforward. By sparse
coding relation, we just compute z∗I = DIIy

∗
II. Next, we do

4

. . . "

Corrected(values(at(pooled((
sparse(code(are(put(back(to((
original(loca4ons(at((
corresponding(sparse(codes(y(

z*(

Putback(yields(corrected((
sparse(codes(y*’s((

Fig. 3. Putback corrects sparse codes y from z∗

another putback at hidden layer 1. Using z∗I , we obtain y∗I ’s.
Each pooling group at hidden layer 1 originally has M1 yI’s
that need to be saved in memory.

With y∗I ’s, we should now correct DI, not x, because it
does not make sense to correct given data input. Hence, down-
propagation of the error for DSN stops here, and we up-
propagate corrected sparse codes to finetune the dictionaries
and classifier weights. We consider two methods to adjust basis
vectors of the dictionaries. First method is to use rank-1 update
in batches. The idea is to compute the residual matrix that
isolates a contribution by each basis vector only. We update
each basis vector iteratively with the first principle component
computed via singular value decomposition of the residual
(i.e., the first column of matrix U). This method is also used
in the inner-loop of K-SVD [12].

Our second method uses online gradient descent. We define
the loss function with respect to DI

J(DI) =
1

2
‖DIy

∗
I − x‖22 (6)

Adjusting DI requires to solve the following optimization
problem given examples (x,y∗I)

min
dI,k

J(DI) s.t. ‖dI,k‖22 = 1 ∀k (7)

where dI,k is the kth basis vector in DI. Taking the partial
derivative with respect to dI,k yields

∂J(DI)

∂dI,k
= (DIy

∗
I − x) y∗I,k

where y∗I =
[
y∗I,1 . . . y∗I,K1

]>
and yI = [yI,1 . . . yI,K1]

>.
We obtain the update rule to adjust DI by gradient descent

dI,k := dI,k − β(DIy
∗
I − x) y∗I,k (8)

We denote the corrected dictionary D∗I . We redo sparse coding
at hidden layer 1 with D∗I followed by max pooling. Similarly
at hidden layer 2, we update DII to D∗II by

dII,k := dII,k − γ(DIIy
∗
II − z†I) y

∗
II,k (9)

where z†I is the pooled sparse code over M1 y†I ’s from sparse
coding redone with D∗I . Using corrected dictionary D∗II, we
also redo sparse coding and max pooling at hidden layer 2. The
resulting pooled sparse codes z†II are the output of the highest
hidden layer, which will be used to retrain the classifier hw.
All of the steps just described are a single iteration of DSN
backpropagation. We run multiple iterations until convergence.

The corrections made during down-propagation for DSN
backpropagation are summarized by

zII
GD−→ z∗II

putback−→ y∗II
DII−→ z∗I

putback−→ y∗I .

The corrections by up-propagation follow

DI
GD−→ D∗I

SC−→ y†I
max pool−→ z†I

GD−→ D∗II
SC−→ y†II

max pool−→ z†II
GD−→ hw

where GD stands for gradient descent, and SC sparse coding.
We present the backpropagation algorithm for general L-layer
DSN in Algorithm 1.

Algorithm 1 DSN backpropagation
require Pretrained {DI,DII, . . . ,DL−2} and classifier hw
input Labeled training examples {(X1, l1), . . . , (Xm, lm)}
output Fine-tuned {D∗I ,D

∗
II, . . . ,D

∗
L−2} and classifier h∗w

1: repeat
2: subalgorithm Down-propagation
3: for J := L− 2 to I
4: if J == L− 2
5: Compute classifier error ε(i) = l(i) − hw(z

(i)
J) ∀i

6: Compute z
∗(i)
J by z(i)J,k:=z

(i)
J,k + α · ε(i) · wk ∀i, k

7: else
8: Compute z

∗(i)
J = DJ+1y

∗(i)
J+1 ∀i

9: end
10: Estimate y

∗(i)
J from z

∗(i)
J via putback ∀i

11: end
12: end
13: subalgorithm Up-propagation
14: for J := I to L− 2
15: if J == I
16: Compute D∗I by Eq. (8)
17: Compute y

†(i)
I by sparse coding with D∗I ∀i

18: Compute z
†(i)
I by max pooling ∀i

19: else
20: Compute D∗J by Eq. (9)
21: Compute y

†(i)
J by sparse coding with D∗J ∀i

22: Compute z
†(i)
J by max pooling ∀i

23: end
24: end
25: Retrain classifier hw with {z†(i)L−2, l

(i)} ∀i
26: end
27: until converged

IV. EXPERIMENTS

We present a comparative performance analysis of single-
layer sparse coding, deep stacked autoencoder (SAE) [13],
and DSN on the multi-class image classification task using
CIFAR-10. Both SAE and DSN have 4 layers.

5

A. Data processing and training for sparse coding

Instead of using the full CIFAR-10 dataset, we uniformly
sample 20,000 images and cut to five folds for cross validation.
We use four folds for training and the remaining fold for
testing. We enforce exactly 2,000 images per class. For output
layer, we have trained a 1-vs-all linear classifiers for each
of ten classes in CIFAR-10. Each datum in CIFAR-10 is a
32×32×3 color image. We consider a per-image feature vector
from densely overlapping patches drawn from a receptive field
with width w = 6 pixels and stride s = 2. Thus, each patch
(vectorized) has size N = 3 × 6 × 6 = 108. We preprocess
patches by ZCA-whitening before sparse coding. We use a
couple of different sparsity configurations for each LARS and
OMP. We configure hidden layer 1 sparse coding more densely
with λ = 0.1 (regularization penalty) for LARS and S = 0.2N
(sparsity bound) for OMP. For hidden layer 2, we use λ = 0.2
and S = 0.1N .

Figure 4 illustrates sparse coding and max pooling at hidden
layer 1. Each image is divided into four quadrants. For each
quadrant, there are four (pooling) groups of 9 patches. Hidden
layer 1 uses a dictionary size K1 = 4N = 432 and max pool-
ing factor M1 = 9. Hidden layer 1 produces {z(1)I , . . . , z

(4)
I },

{z(5)I , . . . , z
(8)
I }, {z

(9)
I , . . . , z

(12)
I }, and {z(13)I , . . . , z

(16)
I } (4

pooled sparse codes per quadrant), which will be passed to
hidden layer 2.

Figure 5 illustrates sparse coding and max pooling at hidden
layer 2. We use K2 = 2K1 = 864 and M2 = 4. To
prevent further expansion of features, we have computed the
two averages and encoded the final per-image feature vector
φDSN = [mean(z

(1)
II , z

(2)
II);mean(z

(3)
II , z

(4)
II)]. Thus, the final

feature vector for DSN has a dimensionality 2K2 = 1, 728.
For single-layer sparse coding, we have averaged z

(i)
I ’s per

quadrant and stacked them to form the final per-image feature
vector φSLSC , which also has 1,728 features.

B. Data processing and training for autoencoder

For fairness, we have matched the total number of trained
weights between the DSN and SAE schemes. Given an input
x ∈ RN , an autoencoder layer [1] trains a set of encoding
weights that transforms x into the activations a ∈ RH and
a set of decoding weights that recovers x̂, an estimate of
x, from a, all through backpropagation. Similar to sparse
coding, we use the encoding a as the feature vector for x. If
H < N , the autoencoder layer is forced to learn a compressed
representation of the input. Also, even when H > N (i.e.,
more hidden units than input dimension), we can still learn
meaningful features by imposing a sparsity constraint on a
such that only S � H neurons are activated. We have
experimented with both approaches and will report the best
result of the two for deep SAE.

TABLE I
AVERAGE 1-VS-ALL CLASSIFICATION ACCURACY FOR SINGLE-LAYER

SPARSE CODING AND AUTOENCODER

Classification accuracy
Autoencoder 69.8%
OMP (S = 0.1N) 75.3%
OMP (S = 0.2N) 76.9%
LARS (λ = 0.2) 78.4%
LARS (λ = 0.1) 80.1%

TABLE II
AVERAGE 1-VS-ALL CLASSIFICATION ACCURACY COMPARISON BETWEEN

DSN AND SAE

Classification accuracy
Deep SAE (pretraining only) 71.8%
Deep SAE (pretraining+backprop) 78.9%
DSN-OMP (pretraining only) 79.6%
DSN-OMP (pretraining+backprop) 84.3%
DSN-LARS (pretraining only) 83.1%
DSN-LARS (pretraining+backprop) 87.5%

C. Results

We report cross-validated 1-vs-all classification accuracy of
single-layer sparse coding, DSN, and deep SAE. In Table I,
we present the single-layer autoencoder and sparse coding
performances. For classification, we have used two standard,
off-the-shelf algorithms, SVM and logistic regression. The
table summarizes the better of the two. LARS with λ = 0.1
has achieved the best single-layer accuracy at 80.1%.

In Table II, we compare the performance of DSN against
deep SAE in various configurations. All DSN schemes show
improvements from their respective single-layer configura-
tions. Optimization by backpropagation over the whole net-
work is critical for deep SAE as evidenced in the accuracy
gain of 7.7%, which is significantly higher than the 2%
gain from multilayering. For DSN, multilayering improves
about 3%, and the proposed backpropagation additional 4%.
Importantly, DSN-OMP with only pretraining is already 0.7%
better than the backpropagation-finetuned deep SAE. DSN-
OMP improves by 4.7% on backpropagation whereas the
improvement is slightly less for DSN-LARS with a 4.4% gain.
Overall, we find DSN-LARS the best performer.

V. CONCLUSION

Motivated by superior feature learning performance of
single-layer sparse coding, we have presented Deep Sparse-
coded Network (DSN), a deep architecture for sparse coding.
We have discussed the benefit of DSN and described training
methods including a novel backpropagation algorithm that
effectively traverses and optimizes multiple layers of sparse
coding and max pooling.

We stress that this paper limits to report an evaluation
of DSN that confirms superior classification accuracy in a

6

!"#$%&'()*+,-./'"01$&'

!"#$%&% !"#$%'%

!"#$%(% !"#$%)%

2134'561781#9'41:''
;'<==%"#$'$8=6<:'=>'?'<1934&:'

!<18:&'3=7"#$'

@1A'<==%"#$'

*B.CD*BEFC'

+IB.C'

,IB.CD,IBEFC'

+IBGC' +IBEC' +IB;C'!"#$%&%

!<18:&'3=7"#$'

@1A'<==%"#$'

+IBHC' +IBFC' +IBIC' +IBJC'!"#$%'%

!<18:&'3=7"#$'

@1A'<==%"#$'

+IB?C' +IB./C' +IB..C' +IB.GC'!"#$%(%

!<18:&'3=7"#$'

@1A'<==%"#$'

+IB.EC' +IB.;C' +IB.HC' +IB.FC'!"#$%)%

*BEICD*BIGC'

*BIECD*B./JC'

*B./?CD*B.;;C'

,IBEICD,IBIGC'

,IBIECD,IB./JC'

,IB./?CD,IB.;;C'

!'K'E'B,LMC'

Fig. 4. Sparse coding and max pooling at hidden layer 1 for single CIFAR-10 image

!""#$%&'()*'$&+"%$'&,*"-&$)+.&/0)%*)12&,"*-&(""#314&4*"0('&)2&.3%%$1&#)5$*&6&

7()*'$&+"%314&

8)9&(""#314&

!II:;<=!II:><&

"I:;<="I:><&

"II:;<& "II:6<& "II:?<& "II:><&

"I:@<="I:A<& "I:B<="I:;6<& "I:;?<="I:;C<&

!II:@<=!II:A<& !II:B<=!II:;6<& !II:;?<=!II:;C<&

Fig. 5. Sparse coding and max pooling at hidden layer 2

medium-sized setup with CIFAR-10 images. We are currently
experimenting with DSN more rigorously using larger datasets
CIFAR-100, Caltech-101, and Caltech-256. In future work, we
will test DSN in broader scope for text, sound, and wireless
signal classification tasks.

ACKNOWLEDGMENTS
This work is supported in part by gifts from the Intel Corporation and

in part by the Naval Supply Systems Command award under the Naval
Postgraduate School Agreements No. N00244-15-0050 and No. N00244-16-
1-0018.

REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of
Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[2] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann
Machines for Collaborative Filtering,” in ICML, 2007.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” in Proc. of the IEEE,
vol. 86, no. 11, 1998, pp. 2278–2324.

[4] A. Coates, A. Y. Ng, and H. Lee, “An Analysis of Single-layer Networks
in Unsupervised Feature Learning,” in AISTATS, 2011.

[5] Y. Karklin and M. S. Lewicki, “Learning Higher-order Structures in
Natural Images,” Network, vol. 14, no. 3, pp. 483–99, 2003.

[6] C. Cadieu and B. A. Olshausen, “Learning Transformational Invariants
from Natural Movies,” in NIPS, 2008.

[7] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,”
Journal of Royal Statistical Society, Series B, vol. 58, pp. 267–288,
1994.

[8] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least Angle
Regression,” Annals of Statistics, vol. 32, pp. 407–499, 2004.

[9] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal Match-
ing Pursuit: Recursive Function Approximation with Applications to
Wavelet Decomposition,” in Asilomar Conference on Signals, Systems
and Computers, 1993.

[10] B. Olshausen and D. Field, “Sparse Coding with an Overcomplete Basis
Set: Strategy Employed by V1?” Vision research, 1997.

[11] G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm for
Deep Belief Nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[12] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algorithm for
Designing Overcomplete Dictionaries for Sparse Representation,” IEEE
Trans. on Sig. Proc., vol. 54, no. 11, 2006.

[13] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked Denoising Autoencoders: Learning Useful Representations in
a Deep Network with a Local Denoising Criterion,” Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

