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Introduction 

Interest in the study of sets of trees, or 
tree languages, has led to the definition of 
finite automata which accept trees [2,11] and of 
transducers which map trees into other trees [7,9, 
i0]. These generalized machines may read trees 
either "top-down" (from the root toward the leaves) 
or "bottom-up" (from the leaves toward the root). 
The classes of top-down and bottom-up nondeter- 
ministlc transductlons as defined by Thatcher and 
by Rounds [7,9,10] have been shown to be incom- 
parable; there are transductions which can be done 
by a bottom-up transducer which cannot be done by 
any top-down transducer, and vice versa. Here it 
is shown that both the class of top-down trans- 
ductions and the class of bottom-up transductions 
can be characterized in terms of two restricted 
classes of tree transductlons. From these 
characterizations, it is shown that the composition 
of any n bottom-up transductions can be realized 
by the composition of n+l top-down transductions, 
and similarly, the composition of any n top- 
down transductions can be realized by the compo- 
sition of n+l bottom-up transductions. 

Next, we study the families of tree languages 
which can be obtained from the recognizable sets 
(sets accepted by finite tree automata) by the 
composition of n top-down or bottom-up trans- 
ductions, n ~ 0. It is shown that these 
families form a single hierarchy in which the 
"bottom-up" families alternate with the "top-down" 
families. We conjecture that each inclusion in 
the hierarchy is proper, but we have as yet been 
unable to prove this conjecture. 

The yield operation, which concatenates the 
leaves of a tree from left to right to form a 
string, is used to obtain a hierarchy of families 
of string languages from the hierarchy of 
families of tree languages. It is shown that each 
family of string languages in this hierarchy is 

tThe results stated here will be included in 
the author's doctoral dissertation (Harvard 
University, in preparation). This research has 
been supported in part by the National Science 
Foundation under Grant NSF-GJ-30409. The results 
were obtained while the author was an NSF Pre- 
Doctoral Fellow at Harvard University. 

properly contained in the family of context-sensi- 
tive languages; this solves an open problem 
proposed by Thatcher [9]. 

Finally, the closure properties of the top- 
down and bottom-up families in both the tree 
hierarchy and the string hierarchy are investigated. 
The conjecture that the tree hierarchy is infinite 
is shown to be equivalent to conjectures that 
certain families in the tree hierarchy are not 
closed under certain tree operations. 

i. Definitions and Notation 

The definitions given here are based on those 
of En~elfriet [3]. 

A finite set of symbols or al~habet A is 
ranked by specifying a function r: A ÷ N, where 
N is the set of nonnegative integers. For n > 0, 
A n = {b e A [ r(b) - n} is the set of symbols'of 

rank n. 

Given a ranked alphabet A, the set of all 
finite trees labeled over the alphabet A is A,, 
defined inductively as follows: 

(i) If b ¢ A0, then b c A,| 

(ii) If n > I, b c AnJ and tl,t20...,t n c A,, 

then b[tl,...,t n] c A,. 

A tree labeled over the alphabet A is thus a 
string in (AU~)*, where w is the set containing 
left and right brackets and comma. A subset of 
A, is called a tree i ~ .  

A relation ~Z, x &,, where Z and & 
are ranked alphabets, is called a tree transfoArma- 
t.!on. If <s,t> e R, then t is a tree obtained 
from s under the transformation R. If R 1 and 

R 2 are tree transformationst then the composition 

of R 1 and R 2 is R2@R 1 = {<s,u> I for some t, 

<s,t> ¢ R 1 and < t , u >  c R2). 

If ~ is a tree transformation and T is a 
set of trees, then R(T) = {t I for some s c T, 
<s,t> e R}. If C is a class of tree transforma- 
tions and F is a family of tree languages, then 
C(F) - {R(T) I R e C and T e F}. 
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Of interest in this paper  are classes of 
tree transformations which are generated by tree 
transducers, which are special automata which read 
trees and output trees. In order to define tree 
transducers, it is necessary to consider alphabets 
Indexed by sets of trees. Given a set S of trees 
over a ranked alphabet A, and another ranked 
alphabet Z. the set of Z-trees Indexed by S is 
Z,(S), defined by 

(i) ZoUS~Z,(s) 
( i t )  I f  n ~ i ,  b ~ En, and t l , . . . , t  n ¢ Z , ( S ) ,  

then  b [ t l , * * * , t  n] ¢ Z , ( S ) .  

We also need to use a special set of variables 
X = {Xl,X2,X3,...}. Let X 0 - ~, and for k ~ i. 

let ~ = {Xl,X2,...,Xk}. 

A nondetermlnlstlc t r e e  transducer is a 
5-tuple 'M~ (Q,'ZDA,'R,P) where . . . . .  

(i) Q is a finite ranked alphabet of statss, such 
that each state has rank i. 

(2) Z i s  a f i n i t e  i n p u t  a l p h a b e t ,  

(3) A is a finite output alphabet, 

(41 P~Q and 

(5) R is a finite set of rule-schemes restricted 
according to whether the transducer is top- 
down or bottom-up. In a top-down transducer, 
each rule-scheme in R is of one of the 
forms 

q[b] ÷ t, where q c Q, b ¢ g0. and 
t ¢ A,,  o r  

q[b[Xl,..,,Xn]] ÷ t, where n > 0, q c Q, 
b ¢ Z , and 

n X 
t ¢ A,(Q[ hi). 

In a bottom-up transducers each rule in B is of 
one of the forms 

b ÷ q[t] where b ¢ Z0, q c Q. and 

t ¢ d , ,  or 

b[ql~],...,qn[Xn]] ÷ q[t] where n > 0, 

b ¢ ~n '  q * q l ' * ' * ' q n  ¢ Q' 
and t ¢ A,[Xn] .  

The rule-schemes in R generate a set of  
r%les S. defined as follows. If M is a top- 
down transducer, then define Range(X) - Z,. If 

is a bottom-up transducer~ define Range(X) - 
A,. Then S = {h(u) ÷ h(v) | h: (ZUAU~ UX)* ÷ 
(ZUAU~)* is a homomorphlsm with h(x i) c 
Range(X) for each i, h(b) - b for 
b c Z UAU~. and u ÷ v is a rule-scheme in 
R}. Note t h a t  t he  s e t  S i s  obtained by 
r e p l a c i n g  the  v a r i a b l e s  i n  t he  r u l e  by t r e e s  i n  
e i t h e r  E, or  A** acco rd ing  to  whe the r  t h e  
t r a n s d u c e r  i s  top-down or  bo t tom-up .  

The t r a n s i t i o n  r e l a t i o n  m> of M i s  
d e f i n e d  as f o l l o w s ,  For any r u l e  a ÷ 8 • S 
and any t r e e s  Cam and ~ ,  ~ => ~ 
( r e c a l l  t h a t  t r e e s  have been d e f i n e d  as a 
special case of strings). Let ~> be the 
transitive reflexive closure of -> ,  

The transductlon performed by M is M - 
{<tilt2 > ¢ Z, x A, I for some q ¢ P, 

q[t I] ~> t 2} if M is top-down, while if M is 

bottom-up it is M - (<tl.t2 > ~ Z, x A, I for some 

q c P,  t I ~> q [ t 2 ] } .  

A t r e e  t r a n s d u c e r  M - (Q,E,A,R,P) i s  

(1) l i n e a r  i f  no v a r i a b l e  occurs  more than  once i n  
t he  r i g h t  s i d e  of  any r u l e - s c h e m e ,  

(2) one-state if Q is a singleton set, 
(3) deterministic if (a) no two rule-schemes have 

the same left side, and (b) if M is top- 
down, then P is a singleton set, 

(4) a flnlt,e, tree automaton if Z = d and either 

(a) ~ i s  top-dow n and every  r u l e - s c h e m e  i s  o f  
one of the two forms 

q[b] ~ b, where b ¢ Z0, q ¢ Q or 

q[b[Xl,...,Xn]] ÷ b[ql[Xl]...,,qn[Xn]] , 

where n • 0, b ¢ Zn, 

q , q l ~ . . . , q n  c Q. or  

(b) M is bottom-up and every rule is of one 
of the two forms 

b ÷ q [ b ] ,  where b c ZO, q ¢ Q, or  

b [ q l [ X l ] , . . . , q n [ X n ] ]  ÷ p [ b [ X l , . . . , X n ] ] ,  

where n • 0,  b ¢ Xn, and 

P , q l , . . . , q n  ~ Q. 

A set of trees is recognizable if S - M(Z,) for 
some finite tree automaton M - (Q,Z,ZpR.P), 

2. Tree t r a n s d u c t i o n s  and compos i t i on  

The c l a s s e s  of  top-down ann no , tom-up  
t r a n s d u c t i o n s  a re  incomparab le  [31. I n t u i t i v e l y  t 
the  i n c o m p a r a b i l i t y  i s  d e r i v e d  from the  a b i l i t y  
of  top-down t r a n s d u c e r s  t o  copy i n p u t  t r e e s  and 
then  g e n e r a t e  d i f f e r e n t  ou tpu t  from each copy I 
and the  a b i l i t y  o f  bot tom-up t r a n s d u c e r s  tO produce  
ou tpu t  n o n d e t e r m i n i s t i c a l l y  and then  copy i t .  A 
n a t u r a l  q u e s t i o n  i s  whe ther  t h e s e  i n t u i t i v e  
d i f f e r e n c e s  can be used to  c h a r a c t e r i z e  t h e  
c l a s s e s  of  top-down and bot tom-up t r a n s d u c t i o n s .  
We answer t h i s  q u e s t i o n  in  t he  a f f i r m a t i v e ;  bo th  
top-down end bot tom-up t r a n s d u c t i o n s  can be 
c h a r a c t e r i z e d  in  terms of  d e t e r m i n i s t i c  o n e - s t a t e  
t r a n s d u c t i o n s  (which do the  copying)  and non-  
d e t e r n ~ n i s t i c  l i n e a r  t r a n s d u c t i o n s  (which apply  
the  nonde te rmin i sm) .  

Let NB. NT, NLT. NLB, and DO denote the 
classes of nondetermlnlstlc bottom-up, non- 
deterministic top-down, nondetermlnlstlc linear 
top-down, nondetermlnlstlc linear bottom-up and 
deterministic one-state transductlons~ respec- 
tively. 

'Engelfrlet has shown that the class of 
deterministic one-state top-down transductlons 
is the same as the class of deterministic one- 
state bottom-up transductlons [3]. 
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The oreml. The following classes of transformations 
are identlcal: 

(I) NBs the class of nondetermlnlstlc bottom-up 
transductlons; 

(2) DOoNLBs the class of transformations obtained 
by applying first a nondetermlnlstlc linear 
bottom-up transductlon and then a determin- 
istic one-state transduction| 

(3) DOoNLT, the class of transformations obtained 
by applying first a nondetermlnlstlc linear 
top-down transductlon and then a deterministic 
one-state transductlon. 

Theorem 2. The following classes of transformations 
are identical: 

(I) biT, the class of nondetermlnlstlc top-down 
transductlons; and 

(2) NLToDO s the class of transformations obtained 
by applying first a deterministic one-state 
transductlon and then a nondetermlnlstlc 
linear top-down transduction. 

Note that the class of top-down transductlons 
cannot be characterized in terms of linear bottom- 
up transductlons in Theorem 2s since there are 
linear bottom-up transductlons which are not 
contained in the class of top-down transductlons 
[3 ] .  

Theorem 2 was d i s c o v e r e d  i n d e p e n d e n t l y  by 
E n g e l f r i e t  [3] and t he  a u t h o r ,  and E n g e l f r i e t  a l s o  
o b t a i n e d  a d e c o m p o s i t i o n  theorem c l o s e l y  r e l a t e d  
to Theorem I. 

According to Theorems 1 and 2, the classes 
of top-down and bottom-up transductlons can be 
decomposed into the same two classes of trans- 
ductlons, DO and NLT, applied in different orders. 
The two theorems show that the difference between 
top-down and bottom-up transductlons lles in the 
relative order of copying (DO) and nondetermlnlstlc 
behavior (NLT). 

Neither top-down nondetermlnlstlc transduc- 
,lens nor bottom-up nondeterminlstlc transductlons 
are closed under composition [3,9]. Theorems 1 
and 2 show that the composition of n bottom-up 
or top-down transductlons can be factored into 
alternating linear top-down and one-state trans- 
ductlons. This observation provides the following 
result. 

Theorem 3. For any n ~ i, NBn~_NT n+l and 

NTn~NBn+i° That Is, the composition of any n 
bottom-up transductions can be realized by the 
composition of n+l top-down transductlonss and 
the composition of any n top-down transductlons 
can be realized by the composition of n+l 
bottom-up transductlons. 

m n 
4. n~iNB - ~iNT n. Thus, the closure Corollary. 

of the class of nondetermlnlstlc bottom-up 
transductlons under composition is the same as 
the closure of the class of nondetermlnlstlc top- 
down transductlons under composition. 

According to Theorem 3s any transformation 
which can be done in one direction by a succession 

of transductlons can also be done in the other 
direction by doing one extra transductlon. From 
the corollary, it may be seen that it makes no 
difference whether trees are read from the root 
toward the leaves or from the leaves toward the 
root, as long as there is no bound on the number 
of transductlons applied. This corollary is 
opposite in spirit to the result of Engelfrlet 
that the classes of top-down and bottom-up trans- 
ductlons are incomparable [3]° 

3. Two h i e r a r c h i e s  

N e i t h e r  top-down n o r  bo t tom-up  t r a n s d u c t i o n s  
in general preserve recognizability [7,9,10], 
This suggests that applying successive trans- 
ductlons to the family of recognizable sets 
generates hierarchies of families of tree 
languages. 

Deflnltlon. Let D O and U 0 denote the family 

of recognizable sets. For any n ~ 0,  define 

Dn+ I = NT(Dn) and Un+ I - NB(Un). 

Thus, for n ~ 0, D n is the family of tree 

languages obtained from the recognizable sets by 
the composition of n top-down tree transductlons. 
For n ~ 0,  U n is the family of tree languages 

obtained from the recognizable sets by the 
composition of n bottom-up tree transduetlons. 

Ogden and Rounds [6] studied the top-down 
families DosDi,D2,.,. and conjectured that for 

every n ~ 0, Dn~Dn+ 1 so that the families 

form an infinite hierarchy. They proved only 
that DieD2| it was known previously that 

D O ~D 1 [7]° Here, we use the bottom-up hierarchy 

Uo,Ui,U2,... to refine both the hierarchy and 

their conjecture. 

Two hierarchies have been defined, one 
generated by top-down transducers and the other 
by bottom-up transducers from the recognizable 
sets, But there is actually only a single 
hierarchy, as demonstrated by the following" 
theorem. Recall that NLT is the class of non- 
deterministic linear top-down transductlons and 
that DO is the class of deterministic one-state 
transductlons (either top-down or bottom-up). 

Theorem 5. For every n ~ 0, D n - NLT(U n) and 

Un+ I - DO(Dn). Therefore, for every n ~ 0, 

Dn~Un+ 1 ~Dn+ 1 • 

From this theorems it may be seen that the 
top-down and bottom-up families alternate in a 
single hierarchy of families of tree languages, 
D0sUi,DiDU2sD2i.... The fact that U 1 - DO(D0) 

was also observed independently by Engelfrlet [3]. 
Now I Ogden and Rounds conjectured that the 
families DoPDisD2,... formed an infinite 

hierarchy, with Dn~Dn+ 1 for every n ~ 0 [6]. 

Here we refine this conjecture. 
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Contec tu re  6. For n ~ 0, Dn~Un+i~Dn+ 1. 

Although we have as yet been unable to prove 
this conjecture, we present the following related 
theorem. 

Theorem 7. For every n ~ 0, if Dn~Un+l, 

then Un+l~Dn+l. 

We conjecture that it is also true that for 
any n ~ 0, if Un~Dn, then DnSUn+i0 A 

proof of this conjecture together with Theorem 7 
and the fact that D0~U 1 would prove that the 

hierarchy is infinite. While the question of 
whether the hierarchy is infinite remains un- 
solved, we have refined the result of Ogden and 
~ounds that D0~Di~D 2 by showing that 

D o ~ U 1 5 D i ~ U 2 ~ D  2" 
The above h i e r a r c h y  i s  a h i e r a r c h y  of  

famllles of  tree l anguages ,  There is a related 
hierarchy of families of string languages, 
obtained from the tree hierarchy by the yield 
operation. However, by our definition of trees, 
the empty word cannot be obtained by the yield 
operation. It is desirable to let the empty 
string appear in the families in the hierarchy, 
since with this a d d i t i o n  the families in the 
string hierarchy become closed under arbitrary 
homomorphlsm (Section 5). Therefore, we define 
an ex tended  yield operation on families of tree 
languages. 

Definition. Let F be a family of tree languages. 
Define YIELD(F) - {yleld(T), yleld(T) U(e} [ 
T e F). 

Thus, YIELD(D0) , YIELD(U1) , YIELD(D1), 

YIELD(U2),... form a hierarchy of families of 

string languages. Agaln, we conjecture that for 
n ~ 0, YIELD(Dn)~YIELD(Un+I)~YIELD(Dn+i), but  

we do no t  have a p r o o f  of  t h i s  c o n j e c t u r e .  

We a re  a b l e ,  however,  to  produce  a bound on 
the complexity of the languages in the tree 
hierarchy and the YIELD hierarchy. It is known 
that every recognlzable set is context-free 
(recall that trees have been defined as a special 
kind of string ) [i]. Also, the yield of every 
recognizable set is context-free [8]. Now, bo th  
yleld(Dl) and yleld(U I) contain non-context- 

free languages [7,9,10]. Thatcher [9] posed the 
question of whether yleld(D 1) contains only 

context-sensltlve languages. Ogden and Rounds [6] 
were able to show that for any n, yleld(D n) is 

recurslve. Here we strengthen this result 
considerably and answer Thatcher's question 
affirmatively in the following theorem. 

Theorem 8. For every  n ~ 0 ,  Un, Dn, 

YIELD(Un) , and YIELD(D n) a r e  p r o p e r l y  con-  

t a i n e d  in  the  f ami ly  of  c o n t e x t - s e n s l t l v e  
languages. 

It is natural to ask what the tree families 
and string families in these two hierarchies are 
llke. In particular, what are the differences 
between the top-down end the bottom-up familles? 
Sections 4 and 5 investigate the properties of 
the families in the tree hierarchy and the YIELD 
hierarchy, respectively. 

4. P r o p e r t i e s  of the tree h i e r a r c h y  

Several properties of the families in the 
tree hierarchy can be obtained by showing that 
certain properties of tree families are preserved 
by tree transductlon. The next proposition states 
that closure of a family of tree languages under 
linear top-down transductlons is preserved by the 
class of nondetermlnlstlc top-down transductlons. 

P!oppsltlon 9. If F is a family of tree 
lanFuages closed under linear top-down (bottom-up) 
transduetlons, then NT(F) is also closed under 
llnear top-down (bottom-up) transductlons. 

Since  the  family D O is c l o s e d  under linear 

top-down transductlons [9], we obtain the following 
corollary. 

Corollary I0. For n > 0,  D i s  c l o s e d  under  
- n 

l i n e a r  top-down t r a n s d u c t l o n s  and l i n e a r  bo t tom-  
up t r a n s d u c t l o n s .  

The next group of results is concerned with 
tree-substltutlon and strlng-substltutlon, which 
are defined as follows. 

Deflnlt.Ipn. For an alphabet Z and a family 
of strln~ Isnguagesj an ~-strlng-substltutlon on 
Z is a function T: Z ÷ ~. The function z is 
e--xtended to Z* by defining T(e) - e and 

T ( a l . . . a  n) = T ( a l ) . . . T ( a  n) f o r  a l , . . . , a  n ¢ Z, 

n ~ I .  For a language L ~ Z * ,  d e f i n e  

T(L) =wz~T(W). The string-substltutlon x is 

ngneraSlng if for each a ¢ Z, e ~ T(a). 

Recall that trees have been defined to be a 
special class of strings, Suppose that F is a 
family of tree languagesj t is a tree, and T 
is an F-strlng-substltutlon which "preserves" 
symbols of rank greater than one and symbols in 
~. In this case I the string language T(t) is 
also a set of trees~ and T is called a tree 
substitution, The above c o n d i t i o n s  are stated 
formally i n  the following definition of tree 
substitution. 

Deflnltlon. Let F be a family of tree languages, 
Z a ranked alphabet, and T an F-strlng- 
substitution on Z Uw. If for any symbol b e Zn, 

n ~ i, and any symbol b ¢ ~, T(b) - {b}, then 
z is a l s o  an F - t r ~ e - s u b g t l t u t l o n  on Z 9. 

We say t h a t  a fami ly  F of  s t r i n g  ( t r e e )  
languages  i s  c l o s ed  undex s t r l n z - s u b s t l t u t i o n  

( t r e e - s u b s t l t u t l o n ~  i f  f o r  every  L ¢ F and 
every  F - s t r i n g - s u b s t i t u t i o n  ( F - t r e e - s u b s t i t u t i o n )  
T, T(L) ¢ F. A fami ly  F of  t r e e  l anguages  i s  
closed, under t!ee-subst~tutign i n t o  .the 
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recognlzable sets if for every recognizable set 
L and every F-t{ee-substltutlon T, T(L) e F. 

Now, we investigate the extent to which 
closure under tree substitution is preserved by 
certain classes of transductlons. 

Theorem Ii. (1) Let F be a family of tree 
languages Which contains the recognizable sets 
and is closed under tree-substltutlon, Then 
NT(F) is also closed under tree-substltution. 

(il) Let F be a family of tree languages 
which is closed under tree substitution into the 
recognizable sets and contains the recognizable 
sets. Then DT(F) is also closed under tree- 
substitution into the recognizable sets. 

(ill) Let F be  a family of tree languages 
which is closed under tree-substitution into the 
recognizable sets and contains the recognizable 
sets. Then DO(F) is also closed under tree- 
substitution into the recognizable sets. 

Thatcher and Wright [ii] have shown that the 
family of recognizable sets is closed under an 
operation of tree "concatenation" which is a 
restricted form of tree substitution. From this 
fact it is easy to show that D O is closed 
under tree substitution. Thus, we obtain the 
following corollary. 

Corollary 12. For every n ~ O# the family D n 
is closed under tree substitution. For every 
n • O, the family U n is closed under tree 
su~stitutlon into the recognizable sets, 

The next theoramwas discovered independently 
by Engelfrlet [3] and the author. 

Theorem 13. DB.NBC_NB, that is, the class of 
nondeterminlstlc bottom-up transductlons is 
closed under composition with deterministic 
bottom-up transductions. 

From the definition of the families U n as 

U n - NB(Un. I) and the above theorem, we obtain 

the following corollary. 

Corollary 14. For n • 0, U n is closed under 

deterministic bottom-up transductions. 

Ogden and Rounds have shown that for n • 0, 
the family D n is closed under intersectlon'with 

the recognizable sets [6]. An argument similar 
to theirs shows that for n ~ O, the family U 

n 

is closed under intersection with the recognizable 
sets. 

One of the differences between the known 
closure properties of the top-down families and 
the known closure properties of the bottom-up 
families is that for each n, D is known to be 

n 

closed under tree substitution, while %, 

n • 0, is only known to be closed under tree 
sutstltution into the recognizable sets. We 
conjecture that in fact, for n • 0, U n is not 

closed under tree substitution. In particular, 
this conjecture is equivalent to the conjecture 

that for n • O, Dn~Un+l~Dn+l. 

Theorem 15. For  e v e r y  n ~ 0, Du~Un+i~Dn+ 1 

i f  and  o n l y  i f  i s  n o t  c l o s e d  u n d e r  t r e e  
substitution. Urrbl 

Further, from our characterization of the 
families in the hierarchy as D n - NLT(U n) and 

Un+ I " DO(Dn), it i~ obvious that the conjecture 

that the hierarchy is infinite is equivalent to 
the conjecture that each D is not closed under 

n 

deterministic one-state t r a n s d u c t i o n s  and  e a c h  
% is not closed under linear top-down trans- 

d u c t l o n s .  

P ropositlo n 16. For every n ~ 0, Dn~Un+ 1 if 

and only if D n is not closed under deterministic 

one-state transductlons. For every n • 0, 
Un~D n if and only if U n is not closed under 

nondetermlnlstlc linear top-down transductlons. 

5. Properties of.the YIELD hierarchy 

In order to use the closure properties of the 
families D n and U n to obtain information about 

the closure properties of the families YIELD(Dn) 

and YIELD(Un) for n ~ 0, we investigate the 

relationships between certain tree operations and 
certain string operations. First, we reveal the 
connection between tree substitution and string 
substitution under the yield operation. 

Definition. If ~I and ~2 are familles of 

string languages, define SUbN(oq~l,~2) . 

{T(L) ( L c ~2 and  T a noneraslng ~l-string. 

substitution}. If F 1 and F 2 are families of 

tree languages, define SUbT(Fi,F 2) - {T(L) [ 

L ¢ F 2 and T an Fl-tree-substitution}. 

l~neor.em %7. Let F 1 and F 2 be families of 

tree languages, Then 

YIELD(SUbT(Fi,F2) ) - SUbN(YIELD(Fi),YIELD(F2)) , 

C_g!ollary 18. If a family F of tree languages 
is closed under tree substitution, then YIELD(F) 
is closed under nonerasing string substitution. 
If a family F of tree languages is closed under 
tree substitution into the recognizable sets, then 
YIELD(F) is closed under union, concatenation, 
and Kleene *. 

N e x t ,  we c o n s i d e r  how a b o t t o m - u p  t r a n s d u c e r  
c an  p e r f o r m  a homomorph ism .on t h e  y i e l d s  o f  i t s  
i n p u t  t r e e s ,  

I t  i s  e a s y  t o  s e e  t h a t  a n o n e r a s i n g  
homomorph i sm c a n  be  p e r f o r m e d  by  a d e t e r m i n i s t i c  
l i n e a r  b o t t o m - u p  t r a n s d u c e r  w h i c h  d o e s  a l o c a l  
transformation at each leaf. In fact, the 
ability of bottom-up transducers to delete sub- 
trees enables them to carry out homomorphlsms 
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which erase. 

Theorem 19. Let F be a family of tree languages. 
For any tree language T in F and any 
homomorphlsm h, there is a deterministic linear 
bottom-up transducer M such that h(yield(T)) = 
yleld(M(T)) if e is not in h(yleld(T)), and 
h(yield(T)) = yleld(M(T))U{e), otherwise. 
Consequently, if F is closed under deterministic 
linear bottom-up transductions, then YIELD(F) is 
closed under arbitrary homomorphism. 

The last general result relating closure of 
families of tree languages under tree operations 
and closure of families of string languages under 
string operations is the following. Recall that 
a full abstract family of languages (full AFL) is 
a family of string languages which is closed under 
union, concatenation, Kleene *, arbitrary 
homomorphlsm, inverse homomorphlsm, and inter- 
section with regular sets. 

Theorem 20. Let F be a family of tree languages 
which contains the recognizable sets and is 
closed under deterministic linear bottom-up tree 
transduetions and under tree substitution. Then 
YIELD(F) is a substltutlon-closed full AFL. 
Thus, YIELD(F) is closed under union, 
concatenatlon~ Kleene *, arbitrary homomorphlsm, 
inverse homomorphlsm, intersection with regular 
sets, and string substitution. 

Finally, the above results can be applied to 
the families in the tree hierarchy to obtain 
closure properties of the families in the string 
hierarchy. In particular, since each D n 
contains the recognizable sets and is closed 
under linear bottom-up transductlons and under 
tree substitution, Theorem 20 is applicable to 
the the top-down families in the hierarchy. 

• Theorem 21. For every n • 0, the family 
YIEL~ n) is a substitutiOn-closed full AFL. 

Thus, YIELD(D n) is closed under union, 

concatenation, Kleene *, arbitrary homomorphlsm, 
inverse homomorphism, intersection with regular 
sets, and string substitution. 

The fact that for n • 0, yield(D_) is 
closed under intersection ~ith regular ~ets was 
known previously [6]. 

Since each Un, n • 0, is closed under 
deterministic bottom-up transductions and under 
tree substitution into the recognizable sets, we 
obtain the following result, 

Theorem 22. For every n > 0, YIELD(U n) is 
closed under substitution into the context-free 
sets, union, concatenation, Kleene *, arbitrary 
homomorphlsm, and intersection with regular sets. 

It is not known whether for n • 0, 
YIELD(I~) is closed under inverse homomorphism 
or under string substitution. If w ¢ A* and 
h: E* ÷ A* is a homomorphlsm, then there may be 
several ways of factoring w as w = 
h(al)h(a2).,.h(an) for some al,...,a n e Z. 

Given a tree language T 1 EUn, there does not 

seem to be any intuitive way of obtaining another 
tree language T 2 ¢ U n with yleld(T2) - 

h'l(yleld(Tl)) , since the copying needed to 

obtain the overall structure of T 1 seems to 

interfere with obtaining all possible factorlngs 
of yleld(Tl). Therefore, we conjecture that for 

n > 0, YIELD([~) is not closed under inverse 

homomorphlsm and that it is therefore not an AFL. 
A proof of this conjecture would prove that both 
the tree hierarchies and the string hierarchies 
are infinite, since for n • 0, YIELD(D ) is 

- n 
closed under inverse homomorphlsm (by Theorem 21). 

6. Conclusions 

Although the classes of top-down and bottom- 
up transductions have been shown by Engelfrlet [3] 
to be incomparable, we have shown that the two 
classes are closely related; the composition of 
n transductlons in one direction can always be 
realized by the composition of n+l transduetlons 
in the other direction. From this fact it was 
shown that there is a single hierarchy of families 
of tree languages obtained from the recognizable 
sets by the composition of top-down or bottom-up 
transductlons. Although we have as yet been 
unable to prove that the hierarchy is infinite, our 
conjecture that the inclusion of each family of the 
hierarchy in the next is proper has been found to 
be equivalent to conjectures that certain families 
in the hierarchy are not closed under certain 
tree operations, 

A hierarchy of families of string languages 
was obtained from the tree hierarchy by an 
extended yield operation, An open quest<on 
suggested by Thatcher [9] was answered by showing 
that each family in the YIELD hierarchy is 
properly contained in the family of context- 
sensitive languages. Finally, the top-down and 
bottom-up families in both the tree hierarchy and 
the YIELD hierarchy were shown to be closed under 
a number of operations. Since many of the results 
in this paper do not depend on any specification of 
the families of languages involved, but rather on 
properties of the familles, they are also 
applicable to families other than those in the 
hierarchies studied here, 
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