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Intreduction

Interest in the study of sets of trees, or
tree languages, has led to the definition of
finite automata which accept trees [2,11] and of
transducers which map trees into other trees [7,9,
10]. These generalized machines may read trees
either "top-down" (from the root toward the leaves)
or "bottom-up" (from the leaves toward the root).
The classes of top-down and bottom-up nondeter-
ministic transductions as defined by Thatcher and
by Rounds [7,9,10] have been shown to be incom=-
parable; there are transductions which can be done
by a bottom-up transducer which cannot be done by
any top=-down transducer, and vice versa., Here it
is shown that both the class of top-down trans-
ductions and the class of bottom-up transductions
can be characterized in terms of two restricted
classes of tree transductions, From these
characterizations, it is shown that the composition
of any n bottom-up transductions can be realized
by .the composition of ntl top-down transductions,
and similarly, the composition of any n top=-
down transductions can be realized by the compo-
sition of n+l bottom=-up transductions,

Next, we study the families of tree languages
which can be obtained from the recognizable sets
(sets accepted by finite tree automata) by the
composition of n top-down or bottom-up trans-
ductions, n > 0, It is shown that these
families form a single hierarchy in which the
"hottom-up" families alternate with the "top-down"
families. We conjecture that each inclusion in
the hierarchy is proper, but we have as yet been
unable to prove this conjecture,

The yield operation, which concatenates the
leaves of a tree from left to right to form a
string, is used to obtain a hierarchy of families
of string languages from the hierarchy of
families of tree languages, It is shown that each
family of string languages in this hierarchy is

*The results stated here will be included in
the author's doctoral dissertation (Harvard
University, in preparation). This research has
been supported in part by the National Science
Foundation under Grant NSF-GJ-30409, The results
were obtained while the author was an NSF Pre-
Doctoral Fellow at Harvard University.
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properly contained in the family of context-sensi-
tive languages; this solves an open problem
proposed by Thatcher [9],

Finally, the closure properties of the top=-
down and bottom-up families in both the tree
hierarchy and the string hierarchy are investigated,
The conjecture that the tree hierarchy is infinite
is shown to be equivalent to conjectures that
certain families in the tree hierarchy are not
closed under certain tree operations,

1, NDefinitions and Notation

The definitions given here are based on those
of Fngelfriet [3].

A finite set of symbols or alphabet A is
ranked by specifying a function r: A + N, where
N 18 the set of nonnegative integers, For n > 0,
An = {becA| r(b) = n} 1s the set of symbols of

rank n,

Given a ranked alphabet A, the set of all
finite trees labeled over the alphabet A 1is
defined inductively as follows:

(1) If b e Ag» then b e Ay}
(i1) If n >1, be An'
then b[tl.....tn] € A,

Ay

and Eiatoseenst € Ays

A tree labeled over the alphabet A 1is thus a
string in (AlJn)*, where 7w 1is the set containing
left and right brackets and comma, A subset of
Ay 1s called a tree lancuage,

A relation RSI, x Ay, where I and 4
are ranked alphabets, 1s called a tree transforma-
tion, If <s,t> ¢ R, then t 1s a tree obtained
from s wunder the transformation R, If Rl and

R2 are tree transformations, then the composition

of Rl and RZ is

<s,t> € By and <t,u> € Ry},

Ry°R; = {<s,u> | for some t,

If R 1is a tree transformation and T 1is a
set of trees, then R(T) = {t | for some s € T,
<g,t> € R}y If C 1is a class of tree transforma=-
tions and F 1is a family of tree languages, then
C(F) = {R(T) | Re € and T e F}.



Of interest in this paper are classes of
tree transformations which are generated by tree
transducers, which are special automata which read
trees and output trees, In order to define tree
transducers, it is necessary to consider alphabets
indexed by sets of treea, Given a set S of trees
over a ranked alphabet A, and another ranked
alphabet I, the set of I~trees indexed by S 1is
Z*(S), defined by

(1) T USEL(S)
(14) If n>1, be En' and tisesast € 1,(8),
then b[tl.....tn] € I(S).

We also need to use a special set of variables

X = {xl.xz.x3....}. Let X, = ¢, and for k> 1,
let X, = {xl.xz.....xk}.

A nondeterministic tree transducer is a
5-tuple M = (Q,L,A,R,P) where

(1) Q is a finite ranked alphabet of states, such
that each state has rank 1,

(2) £ is a finite input alphabet,
(3) A 1is a finite output alphabet,
(4) PE€Q and

(5)

R is a finite set of rule~-schemes restricted
according to whether the transducer is top-
down or bottom-up, In a top-down transducer,
each rule-scheme in R 1is of one of the

forms

q[b]l + t, wvhere qeQ, bel and

1 ]
ted,, or 0
q[b[xl....,xn]] +t, where n>0, qe€Q,
be En, and
te A*(Q[Xn]) .

In a bottom=up transducer, each rule in R 1is of
one of the forms

b + qlt] where b e Iy Q€ Q, and

ted,, or

b[qlﬁi],...,qn[xn]] + q[t] where n > 0,
be znn Q-Q1n~-0nqn € Q,
and t ¢ A*[xn]‘

The rule-schemes in R generate a set of
rules S, defined as follows, If M is a top-
down transducer, then define Range(X) = I,. If
M 1is a bottom-up transducer, define Range(X)*-

I h: ZUAUTr UX)" »

A,s Then S = {h(u) + h(v)
(UAUT)* is a homomorphism with h(xi) €
Range(X) for each 1, h(b) =b for

beIUAUT, and u -+ v is a rule-scheme in
R}. Note that the set S is obtained by
replacing the variables in the rule by trees in
either I, or 4,, according to whether the’
transducer is top-down or bottom-up,

The transition relation => of M is
defined as follows, For any rule a + 8 ¢ S
and any trees ¢ap and ¢BY, oy => ¢BY
(recall that trees have been defined as a
special case of strings). Let & be the
trangsitive reflexive closure of =>,
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The transduction performed by M is
{<tl,t2> €I, x A, | for some q e P,

qlt,] & t,} if M 1s top~down, while if M {is

bottom—up it 1s M = {<t ,t,> € I, x 4, | for some
%*

q¢e?P, t, = q[:zl}.

M=

A tree transducer M = (0,I,A,R,P) is

(1) linear if no variable occurs more than once in
the right side of any rule-scheme,
(2) one-state if Q 18 a singleton set,

————————

(3) deterministic 1f (a) no two rule-schemes have
the same left side, and (b) 1f M {is top-
down, then P is a singleton set,

(4) a finite tree automaton if I = A and either
(a) M 1is top-down and every rule-scheme is of

one of the two forms

q[b] + b, where b e I qeQ or

o’
q[b[xli".)xn]] -+ b[ql[xll.....qn[xn]],
wvhere n > 0, b ¢ Zn.

QsQqse000q, € Q, or

)

M 1is bottom=up and every rule is of one
of the two forms

b + q[b), where b ¢ Zye 9 €Qy or
b[ql[xll""’qn[xn]] + P[b[xl,....xn]].

where n > 0, b ¢ Zn, and
P:qlo"-.qn e Q.

A set of trees is recognizable 1f S = M(Z,))
some finite tree automaton M = (Q,Z,I,R,P),

for

2, Tree transductions and composition

The classes of top-down and hottom-up
transductions are incomparable [3], Intuitively,
the incomparability i{s derived from the ability
of top~down transducers to copy input trees and
then generate different output from each copy,
and the ability of bottom-up transducers to produce
output nondeterministically and then copy it, A
natural question is whether these intuitive
differences can be used to characterize the
classes of top~down and bottom-up transductions,
We answer this question in the affirmative; both
top~down and bottom-up transductions can be
characterized in terms of deterministic one-state
transductions (which do the copying) and non-
deterministic linear transductions (which apply
the nondeterminism).

Let NB, NT, NLT, NLB, and DO denote the
classes of nondeterministic bottomeup, non-
deterministic top-down, nondeterministic linear
top-down, nondeterministic linear bot*om-up and
deterministic one~state transductions, respec-
tively,

fEngelfriet has shown that the class of
deterministic one~state top-down transductions
is the same as the class of deterministic one-
state bottom=up transductions [3].



Theorem 1, The following classes of transformations
are identical:

(1) NB, the class of nondeterministic bottom-up
transductions;

(2) DOeNLB, the class of transformations obtained
by applying first a nondeterministic linear
bottom=up transduction and then a determin-

igtic one-state transduction;

(3) DOONLT, the class of transformations obtained
by applying first a nondeterministic linear
top-down transduction and then a deterministic

one-state transduction.

Theorem 2, The following classes of transformations
are identical:

(1) NT, the class of nondeterministic top-down
transductions; and

(2) NLT°DO, the class of transformations obtained
by applying first a deterministic one-state
transduction and then a nondeterministic
linear top-down transduction,

Note that the class of top-down transductions
cannot be characterized in terms of linear bottom-
up transductions in Theorem 2, since there are
linear bottom-up transductions which are not
contained in the class of top-down transductions

(3l.

Theorem 2 was discovered independently by
Engelfriet [3] and the author, and Engelfriet also
obtained a decomposition theorem closely related
to Theorem 1.

According to Theorems 1 and 2, the classes
of top-down and bottom=up transductions can be
decomposed into the same two classes of trans-
ductions, DO and NLT, applied in different orders.
The two theorems show that the difference between
top-down and bottom-up transductions lies in the
relative order of copying (DO) and nondeterministic
behavior (NLT),

Neither top~down nondeterministic transduc-
tions nor bottom-up nondeterministic transductions
are closed under composition [3,9], Theorems 1
and 2 show that the composition of n bottom-up
or top-down transductions can be factored into
alternating linear top-down and one-state trans-
ductions. This observation provides the following
result,

1

+
Theorem 3, For any n > 1, NB“EE,NTn and

NT“E;NB“+1. That is, the composition of any n

bottom-up transductions can be realized by the
composition of n+l top-down transductions, and
the composition of any n top-down transductions
can be realized by the composition of n+l
bottom=up transductions,

Corollary 4. é:{NBn = é;&NTn. Thus, the closure

of the class of nondeterministic bottom=-up
transductions under composition is the same as
the closure of the class of nondeterministic top-
down transductions under composition,

According to Theorem 3, any transformation
which can be done in one direction by a succession

of transductions can also be done in the other
direction by doing one extra transduction., From
the corollary, it may be seen that it makes no
difference whether trees are read from the root

. toward the leaves or from the leaves toward the

root, as long as there is no bound on the number
of transductions applied. This corollary is
opposite in spirit to the result of Engelfriet
that the classes of top~down and bottom=-up trangs
ductions are incomparable [3].

3. Two hierarchies

Neither top=down nor bottom-up transductions
in general preserve recognizability [7,9,10].
This suggests that applying successive trans-
ductions to the family of recognizable sets
generates hierarchies of families of tree
languages,

Definition, Let D0 and UO denote the family
of recognizable sets, For any n > 0, define
Dn+1 = NT(Dn) and Un+l - NB(Un).

Thus, for n > 0, D, is the family of tree

languages obtained from the recognizable sets by
the composition of n top~down tree transductions.
For n > 0, Un is the family of tree languages

obtained from the recognizable sets by the
composition of n bottom~up tree transductions,

Ogden and Rounds [6] studied the top-down
families DO'Dl'DZ"" and conjectured that for

every n> 0, D GD ., so that the families

form an infinite hierarchy., They proved only
that Dlg;nzg it was known previously that

D, 0y [71.
U U PO

Here, we use the bottom-up hierarchy
to refine both the hierarchy and
their conjecture,

Two hierarchies have been defined, one
generated by top~down transducers and the other
by bottom=up transducers from the recognizable
sets, But there is actually only a single
hierarchy, as demonstrated by the following®
theorem, Recall that NLT is the class of non=-
deterministic linear top-down transductions and
that DO is the class of deterministic onewstate
transductions (either top-down or bottom-up).

Theorem 5, For every n >0, D = NLT(Un) and

Un+1 = DO(Dn). Therefore, for every n > O,
=2 e

Dn‘mﬂl’mwr

From this theorem, it may be seen that the

top=down and bottom-up families alternate in a

single hierarchy of families of tree languages,

DsU sP s lsDypees o The fact that U, = DO(D;)

was also observed independently by Engelfriet [3].
Now, Ogden and Rounds conjectured that the

families DO'DI'DZ"" formed an infinite
hierarchy, with DnEiDn+1 for every n > 0 [6],

Here we refine this conjecture,



Conjecture 6, For n > 0, Dn$Un+1$Dn+1.

Although we have as yet been unable to prove
this conjecture, we present the following related
theorem,

Theorem 7.

then Un +1§ D e+

For every n > 0, if Dngiu

n+l?

We conjecture that it is also true that for
any n > 0, if Ungbn, then DnsUn+1. A

proof of this conjecture together with Theorem 7
and the fact that Dos;Ul would prove that the

hierarchy is infinite., While the question of
whether the hierarchy is infinite remains un-
solved, we have refined the result of Ogden and
Rounds that Dos D1 $D2 by showing that

D0$l11$!')1$U2$DZ.

The above hierarchy is a hierarchy of
families of tree languages, There is a related
hierarchy of families of string languages,
obtained from the tree hierarchy by the yield
operation, However, by our definition of trees,
the empty word cannot be obtained by the yield
operation, It is desirable to let the empty
string appear in the families in the hierarchy,
since with this addition the families in the
string hierarchy become closed under arbitrary
homomorphism (Section 5). Therefore, we define
an extended yield operation on families of tree
languages,

Definition, Let F be a family of tree lanTuages.
Define YIELD(F) = {yield(T), yield(T)U({e}
T ¢ F},

Thus, YIELD(D,), YIELD(U;), YIELD(D,),
YIELD(U,),.+s form a hierarchy of families of

string languages, Again, we conjecture that for
n 2 0, YIELD(D )EYIELD(U_,,)&YIELD(D ), but

we do not have a proof of this conjecture.

We are able, however, to produce a bound on
the complexity of the languages in the tree
hierarchy and the YIELD hierarchy, It is known
that every recognizable set 1s context-~free
(recall that trees have been defined as a special
kind of string ) [1]. Also, the yield of every
recognizable set is context-free [8]. Now, both
yield(Dl) and yield(Ul) contain non-context-

free languages [7,9,10], Thatcher [9] posed the
question of whether yield(Dl) contains only

context=-sensitive languages. Ogden and Rounds [6]
were able to show that for any n, yield(Dn) is

recursive, Here we strengthen this result
considerably and answer Thatcher's question
affirmatively in the following theorem,
Theorem 8. n?
YIELD(Un), and YIELD(Dn) are properly con~
tained in the family of context-gensitive
languages.

For every n > 0, Un' D
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It is natural to ask what the tree families
and string families in these two hierarchies are
like. 1In particular, what are the differences
between the top-~down and the bottom-up families?
Sections 4 and 5 investigate the properties of
the families in the tree hierarchy and the YIELD
hierarchy, respectively.

4, Properties of the tree hierarchy

Several properties of the families in the
tree hierarchy can be obtained by showing that
certain properties of tree families are preserved
by tree transduction., The next proposition states
that closure of a family of tree languages under
linear top-down transductions is preserved by the
class of nondeterministic top-down transductions,

Proposition 9. If F 1is a family of tree
lanpguages closed under linear top~down (bottom-up)
transductions, then NT(F) is also closed under
linear top-down (bottom=-up) transductions,

Since the family Dy 1is closed under linear
top~down transductions [9], we obtain the following

corollary,

is closed under

Corollarz 10,

linear top-down transductions and linear bottom=-
up transductions,

For n>0, D
- n

The next group of results is concerned with
tree-substitution and string=-substitution, which
are defined as follows,

Definition, For an alphabet I and a family
of string languages, an & ~string-substitution on
L 1is a function 1: I -+ Z. The function 7t 1is

extended to L* by defining t(e) = e and

T(al...an) - r(al)...r(an) for 815000y, €I,
n > 1, For a language LSEX*, define

(L) = éE{r(w). The string-substitution t 1s
nonerasing 1f for each a € I, e ¢ t(a).

Recall that trees have been defined to be a
special class of strings, Suppose that F is a
family of tree languages, t 1is a tree, and 1
is an F-string-substitution which "preserves"
symbols of rank greater than one and symbols in
7. In this case, the string language t(t) {is
also a set of trees, and Tt 18 called a tree
substitution, The above conditions are stated
formally in the following definition of tree
substitution,

Definition, Let F be a family of tree languages,
I a ranked alphabet, and Tt an F-string-
substitution on I Uw, If for any symbol b ¢ In,

w(b) = {b).

F-tree~substitution on Zo.
We say that a family F of string (tree)

languages is closed under string-substitution

n>1, and any symbol b e w,
T 18 also an

then

'ggreefgybstitution) if for every L ¢ F and

every F-string~-substitution (F-tree-substitution)
Ty, t(L) ¢ F, A family F of tree languages is
closed under tree-substitution into the




recopnizable sets if for every recognizable set
L and every F-tree-substitution T, T(L) e F.

Now, we investigate the extent to which
closure under tree substitution is preserved by
certain classes of transductions,

Theorem 11, (1) Let F be a family of tree
languages which containg the recognizable sets
and is closed under tree-substitution. Then
NT(F) 1is also closed under tree-gubstitution,

(11) Let F be a family of tree languages
which is closed under tree substitution into the
recognizable sets and contains the recognizable
sets, Then DT(F) 1is also closed under tree-
substitution into the recognizable sets.

(111) Let F be a family of tree languages
which is closed under tree-substitution into the
recognizable sets and contains the recognizable
sets, Then DO(F) is also closed under tree-
substitution into the recognizable sets,

Thatcher and Wright [11] have shown that the
family of recognizable sets 1s closed under an
operation of tree "concatenation" which is a
restricted form of tree substitution. From this
fact it is easy to show that Dy 1s closed
under tree substitution, Thus, we obtain the
following corollary.,

Corollary 12, For every n > 0, the family D,
is closed under tree substitution, For every

n > 0, the family U, is closed under tree
substitution into the recognizable sets.

The next theorem was discovered independently
by Engelfriet [3] and the author,

Theorem 13, DBeNBENB, that is, the class of
nondeterministic bottom-up transductions is
closed under composition with deterministic
bottom-up transductions,

From the definition of the families U, as

Un - NB(Un 1) and the above theorem, we obtain

the following corollary,

For n > 0, Un is closed under

Corollary 14,

deterministic bottom~up transductions,

Ogden and Rounds have shown that for n >0,
the family D, 1s closed under intersection with

the recognizable sets [6]. An argument similar
to theirs shows that for n > 0, the family Un

1s closed under intersection with the recognizable
sets,

One of the differences between the known
closure properties of the top-down families and
the known closure properties of the bottom-up
families is that for each n, D 1is known to be

closed under tree substitution, while Un’

n > 0, 1is only known to be closed under tree
sutstitution into the recognizable sets, We
conjecture that in fact, for n > 0, Un is not

closed under tree substitution, In particular,
this conjecture is equivalent to the conjecture
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that for n > 0, Dn$Un+1$Dn+l'
Theorem 15, TFor every n >0,

if and only if U
substitution,

Dn ¢ Un+1 5- I)n+1
ol 1s not closed under tree

Further, from our characterization of the
families in the hierarchy as Dn - NLT(Un) and

Un+1 - DO(Dn). it 15 obvious that the conjecture

that the hierarchy is infinite is equivalent to
the conjecture that each Dn is not closed under

deterministic one-state transductions and each
Un is not closed under linear top~down transe

ductions,

Proposition 16, For every n >0, Dngiun+l if

and only if Dn 18 not closed under deterministic

one-state transductions. For every n > 0,
UngDn if and only if Un is not closed under

nondeterministic linear top-down transductions,

5. Properties of.the YIELD hierarchy

In order to use the closure properties of the
families Dn and Un to obtain information about

the closure properties of the families YIELD(Dn)
and YIELD(Un)

relationships between certain tree operations and
certain string operations, First, we reveal the
connection between tree substitution and string
substitution under the yield operation,

for n > 0, we investigate the

Definition, If 5?1 and 5?2 are families of

string languages, define SubN(Z’l,Qz) -

{t@wy | L e &, and 1 a nonerasing Z,=string-
substitution}, If F, and F, are families of
tree languages, define SubT(Fl’F2) = {7(L) |
LeF, and 1 an Fl-tree-substitution}.

Theorem 17, Let Fl and F2 be families of
tree languages, Then

YIELD(subT(Fl,FZ)) - SubN(YIELD(Fl) »YIELD(F,)).

Corollary 18. 1If a family F of tree languages
is closed under tree substitution, then YIELD(F)
is closed under nonerasing string substitution,

If a family F of tree languages 1s closed under
tree substitution into the recognizable sets, then
YIELD(F) 1s closed under union, concatenation,
and Kleene *,

Next, we consider how a bottom~up transducer
can perform a homomorphism .on the yilelds of its
input trees,

It is easy to see that a nonerasing
homomorphism ecan be performed by a deterministic
linear bottome-up transducer which does a local
transformation at each leaf, 1In fact, the
ability of bottom-up transducers to delete sub-
trees enables them to carry out homomorphisms



which erase,

Theorem 19, Let ¥ be a family of tree languages,
For any tree language T in F and any
homomorphism h, there is a deterministic linear
bottom=up transducer M such that h(yield(T)) =
yvield(M(T)) 1f e 1s not in h(yield(T)), and
h(yield(T)) = yield(M(T))U{e}, otherwise,
Consequently, if F 1is closed under deterministic
linear bottom-up transductions, then YIELD(F) is
closed under arbitrary homomorphism,

The last general result relating closure of
families of tree languages under tree operations
and closure of families of string languages under
string operations is the following. Recall that
a full abstract family of languages (full AFL) is
a family of string languages which is closed under
union, concatenation, Kleene *, arbitrary
homomorphism, inverse homomorphism, and inter-
section with regular sets,

Theorem 20, Let F be a family of tree languages
which contains the recognizable sets and is

closed under deterministic linear bottom-up tree
transductions and under tree substitution., Then
YIELD(F) 1is a substitution-closed full AFL,

Thus, YIELD(F) 1s closed under union,
concatenation, Kleene *, arbitrary homomorphism,
inverse homomorphism, intersection with regular
sets, and string substitution.

Finally, the above results can be applied to
the families in the tree hierarchy to obtain
closure properties of the families in the string
hierarchy, 1In particular, since each Dp
contains the recognizable sets and 18 closed
under linear bottom-up transductions and under
tree substitution, Theorem 20 is applicable to
the the top~down families in the hierarchy.

" Theorem 21,

For every n > 0, the family

YIELD(D,) 1s a substitution-closed full AFL,
Thus, YIELD(Dn) is closed under union,

concatenation, Kleene *, arbitrary homomorphism,
inverse homomorphism, intersection with regular
sets, and string substitution,

The fact that for =n > 0, yield(Dn) is
closed under intersection with regular sets was
known previously [6].

Since each U,, n > 0, is closed under
deterministic bottom=up transductions and under
tree substitution into the recognizable sets, we
obtain the following result,

Theorem 22, For every n > 0, YIELD(Un) is
closed under substitution into the context~free
sets, union, concatenation, Kleene *, arbitrary
homomorphism, and intersection with regular sets.

It 1s not known whether for n > 0,
YIELD(U,) 1s closed under inverse homomgrphism
or under string subgtitution. If w ¢ A and
h: £¥ » A* is a homomorphism, then there may be
several ways of factoring w as w =
h(al)h(az)...h(an) for some a;,.4.,2 € L.

Given a tree language T1 € Un’ there does not
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seem to be any intuitive way of obtaining another
tree language T2 € Un with yield(Tz) -
h-l(yield(Tl)), since the copying needed to
obtain the overall structure of T1
interfere with obtaining all possible factorings
of yield(Tl). Therefore, we conjecture that for

n >0, YIELD(U)

seems to

is not closed under inverse

homomorphism and that it is therefore not an AFL.
A proof of this conjecture would prove that both
the tree hierarchies and the string hierarchies
are infinite, since for n > 0, YIELD(D ) 1is
closed under inverse homomorphism (by Theorem 21),

6., Conclusions

Although the classes of top-~down and bottom=
up transductions have been shown by Engelfriet [3]
to be incomparable, we have shown that the two
classes are closely related; the composition of
n transductions in one direction can always be
realized by the composition of n+l transductions
in the other direction, From thisg fact it was
shown that there is a single hierarchy of families
of tree languages obtained from the recognizable
sets by the composition of top-down or hottom-up
transductions., Although we have as yet been
unable to prove that the hierarchy is infinite, our
conjecture that the inclusion of each family of the
hierarchy in the next is proper has been found to
be equivalent to conjectures that certain families
in the hierarchy are not closed under certain
tree operations,

A hierarchy of families of string languages
was obtained from the tree hierarchy by an
extended yield operation. An open question
suggested by Thatcher [9] was answered by showing
that each family in the YIELD hierarchy is
properly contained in the family of context-
sengitive languages, Finally, the top=-down and
bottom=up families in both the tree hierarchy and
the YIELD hierarchy were shown to be closed under
a number of operations., Since many of the results
in this paper do not depend on any specification of
the families of languages involved, but rather on
properties of the families, they are also
applicable to families other than those in the
hierarchies studied here,
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