
CS 161: Lecture 2

1/31/17

Processes

Processes
• A process is a collection of resources

• An address space, which contains:
• Code (i.e., executable instructions)
• Data (i.e., static data like constant strings, dynamic data like the heap)
• Stack (used to support function calls)

• Bookkeeping stuff like . . .
• A process id (PID)
• Open file descriptors (e.g., network sockets, pipes, open disk files)
• A current working directory

• One or more threads of execution
• A thread represents a computation which shares the code, data, and

bookkeeping stuff inside the process
• Each thread has a separate stack, and a separate set of registers

• A single “application” consists of one or more processes

Inside a 32-bit Address Space on MIPS

0x0

0xffffffff

0x80000000

Kernel space

User space

• Address space: the set of
virtual addresses that a
process’s code can access
• A large array of bytes starting at

0 and extending to 232-1
• Kernel code can access any

offset
• User-level code can only access

offsets in [0x0, 0x80000000]

• Physical RAM may be larger or
smaller than a 232 bytes
• OS must handle the translation

between virtual addresses and
physical addresses (i.e., the
addresses that are sent to the
memory hardware)

• We’ll discuss this translation in
detail in a few weeks!

Inside User Space

add t0, t1, t2
lw t4, 16(t0)
sub t0, t4, 8

//At top of .c file
int foo = 42;

Code

Static data

Heap

Stack

void h(){}
void g(){h();}
void f(){g();}
f(); //Stack records pushed,

//popped as functions are
//called and return

char *ptr = malloc(4096);
printf("%p\n", (void *)&ptr);

//“0x7ffd90590168”

Inside User Space

Code

Static data

Heap

Stack
Thread0 stack

Thread1 stack
add t0, t1, t2
lw t4, 16(t0)
sub t0, t4, 8
mul a3, a1, a2

.

.

.

or t2, t0, t1
sw t0, 8(a3)
sw t1, 40(a3)
sw t2, 48(a3)

PC

State of other
registers

SP

State of other
registers

PCSP

What Processes Are Running Now?

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 2015 ? 00:00:02 init [3]
root 2 1 0 2015 ? 00:00:00 [migration/0]
root 3 1 0 2015 ? 00:00:00 [ksoftirqd/0]

cs161 21085 20995 0 23:43 pts/1 00:00:00 ps -ef
cs161 21086 20995 0 23:43 pts/1 00:00:00 less

On Linux, try “ps -ef | less”:

We created these
processes!

//Many other processes!

.

.

.

Ready

Sleeping

Zombie

Process States

Running

Ready

Sleeping

Zombie

Process States

Running

Scheduler
Ready queue FIFO?

Priorities?

Scheduler Algorithms

Ready

Sleeping

Zombie

Process States

Running

Scheduler
Ready queue Blocked queue

Ready

Sleeping

Zombie

Process States

Running

Scheduler
Ready queue Blocked queue

Parent Child
child_pid = fork();

//Child starts
//executing.

//Parent does some
//stuff, and then
//does this . . .

int child_status;
waitpid(child_pid,

&child_status);

//waitpid() returns!
printf(“%d”, child_status);
//Displays “42”.

exit(42);

//Later…

Tim
e flo

w
s d

o
w

n

Process
Termination

Making Threads On Linux Via clone()
• fork() creates a new child process from a parent process

• The child has a copy of the memory space of the parent, and
copies of a bunch of other state (e.g., open file descriptors,
signal handlers, current working directory, etc.)

• clone() creates a new process that might only share *some*
state with the original process

int clone(int (*fn)(void *),
void *child_stack,
int flags,
void *arg)

The new process will
execute fn(arg)

Ex: a malloc()’d
region in the
calling process

CLONE_VM: Should new
process share the
caller’s addr space?

CLONE_FS: Should new process
share the caller’s current
working directory?

Scheduling Threads
• If the kernel is thread-aware, then the kernel can schedule threads

• Kernel picks a different thread to run when a timer interrupt fires, or when
a thread makes a blocking IO call, etc.

• Linux pthread API uses clone(), so the kernel is aware of pthread threads

• Threading can also be implemented purely at the user-level!
• A single process can manually create separate stack regions, and explicitly

switch between different execution contexts (man swapcontext)

• Thread switches might occur when:

• A thread tries to make a system call that might block, e.g., read(); the
thread manager can use system calls like select() to determine in a
non-blocking way which file descriptors are ready for IO

• The compiler can also sprinkle code with calls to a thread_yield()
function; this function diverts control to the thread manager

• Multiple threads from the same
process can be run simultaneously
on different cores

• A thread in a process can sleep
without forcing the entire process
to sleep

• Thread creation, destruction,
scheduling require a context switch
into and out of the kernel (saving
registers, polluting L1/L2/L3 caches,
etc.—pure overhead!)

Kernel threads
Advantages

Disadvantages

User-level threads
Advantages
• A process can implement

application-specific scheduling
algorithms

• Thread creation, destruction,
scheduling don’t require
context switches . . .

Disadvantages
• . . . but polling for ready file

descriptors (select(), etc.) does

• Can’t leverage multiple cores,
since OS only knows how to
schedule processes

Hybrid Threading

• A single application can use multiple kernel
threads, and place several user-level threads inside
each kernel thread

• Example: the goroutines in a single Go program
• GOMAXPROCS environment variable sets the

number of kernel threads to use for a single Go
program

• Calls to Go runtime allow goroutine scheduler to run
• Each goroutine gets a 2 KB stack at first
• Each function preamble checks whether there’s

enough stack space to execute the function; if not,
runtime doubles the size of the stack, copies old
stack into new space, updates stack pointer

The Go bison

or whatever

kern/include/proc.h
/*
* Process structure.
* Note that we only count the number of threads in each process.
* (And, unless you implement multithreaded user processes, this
* number will not exceed 1 except in kproc.)
*/

struct proc {
struct spinlock p_lock; /* Lock for this structure */
unsigned p_numthreads; /* Number of threads in this process */
struct addrspace *p_addrspace; /* virtual address space */

/* ...other stuff... */
};

/* This is the process structure for the kernel and for
* kernel-only threads. */

extern struct proc *kproc;

kern/include/thread.h

/* Size of kernel stacks; must be power of 2 */
#define STACK_SIZE 4096

/* States a thread can be in. */
typedef enum {

S_RUN, /* running */
S_READY, /* ready to run */
S_SLEEP, /* sleeping */
S_ZOMBIE, /* zombie; exited but not yet deleted */

} threadstate_t;

kern/include/thread.h

struct thread {
threadstate_t t_state; /* State this thread is in */
void *t_stack; /* Kernel-level stack: Used for

* kernel function calls, and
* also to store user-level
* execution context */

struct switchframe *t_context; /* Saved kernel-level
* execution context */

/* ...other stuff... */
}

Kernel Structure: Concurrency and Isolation
• When a thread makes a system call, control flow diverts to

the kernel
• Kernel code executes to handle the system call (e.g., to initiate an

IO operation, to retrieve the PID of the thread, etc.)

• Kernel code may need to sleep (e.g., because IO device is slow) . . .

• . . . but we don’t want to busy-wait for wake condition: we want the
kernel to be able to do other things on that core!

• The kernel needs a protected memory region for code, data,
stack, and heap
• Ex: Malicious/buggy user-level code should not be able to

overwrite the kernel’s scheduling queues

• Ex: Malicious/buggy user-level code should not be able to directly
jump to kernel functions and skip security checks

Kernel Structure: Isolation via Hardware
Privilege Modes

• An ISA defines privilege modes that determine:
• which instructions are legal to execute

• which virtual addresses are legal to access

• how virtual addresses (i.e., the addresses that programs generate)
are translated to physical addresses (i.e., the addresses that the
processor gives to the memory hardware)

• Most ISAs (like MIPS) define two privilege levels
• When a core runs in user-mode, code cannot use sensitive

instructions (e.g., to directly access IO devices or memory-mapping
hardware); cannot access privileged registers or privileged areas of
virtual memory

• In kernel-mode, there are no restrictions

Kernel Structure: Isolation via Hardware
Privilege Modes

• An ISA defines privilege modes that determine:
• which instructions are legal to execute

• which virtual addresses are legal to access

• how virtual addresses (i.e., the addresses that programs generate)
are translated to physical addresses (i.e., the addresses that the
processor gives to the memory hardware)

• Most ISAs (like MIPS) define two privilege levels
• When a core runs in user-mode, code cannot use sensitive

instructions (e.g., to directly access IO devices or memory-mapping
hardware); cannot access privileged registers or privileged areas of
virtual memory

• In kernel-mode, there are no restrictions

x86 defines four

privilege levels

(Ring 0—3)

Changing Privilege Levels
• Privilege mode changes during traps and

return-from-traps

• In OS161 (and many other OSes):
• User-mode execution keeps call state on a

per-thread user-level stack

• Kernel-mode execution keeps call state on a
per-thread kernel-level stack

• In OS161, a thread’s kernel stack is
defined by struct thread::void
*t_stack

User-mode code

Static data

Heap

User-mode stack

Kernel-mode stack

Kernel-mode code (e.g.,

to handle sys calls)

Kernel-mode static data

Virtual address

space

Kernel-mode heap

Changing Privilege Levels

User-mode code

Static data

Heap

User-mode stack

Kernel-mode stack

Kernel-mode code (e.g.,

to handle sys calls)

Kernel-mode static data

PC

State of other
registers

SP

Time

Virtual address

space

Kernel-mode heap

During user-mode execution, a

thread’s PC and SP point to user

memory

Changing Privilege Levels

User-mode code

Static data

Heap

User-mode stack

Kernel-mode stack

Kernel-mode code (e.g.,

to handle sys calls)

Kernel-mode static data

PC

State of other
registers

SP

Time

PC

State of other
registers

SP

Virtual address

space

Kernel-mode heap

syscall instruction changes privilege

mode to “kernel,” and jumps to well-

known kernel location; kernel saves

user-mode execution context, starts

executing kernel code using thread’s

kernel stack

Changing Privilege Levels

User-mode code

Static data

Heap

User-mode stack

Kernel-mode stack

Kernel-mode code (e.g.,

to handle sys calls)

Kernel-mode static data

PC

State of other
registers

SP

Time

PC

State of other
registers

SP

Virtual address

space

PC

State of other
registers

SP

Kernel-mode heap

To return from the system call, the kernel:
• restores the user-level execution context

(except PC, which is placed in k1)

• executes rfe (return from exception) to
restore old privilege mode

• Executes jr k1 to jump to the next
user-level instruction to execute

What If A Thread Needs To Wait?
• Previous example assumed a system call that returns immediately

(e.g., getpid()) . . .

• . . . but sometimes, a thread must wait in the kernel for something
to happen
• Ex: A blocking read() on an IO device like a disk

• Ex: A call to lock_acquire(lock) if lock is already owned by
another thread

• In these cases, the kernel must mark the thread as “sleeping,” and
add the thread to a wait queue

• The kernel pulls a new thread from the ready queue to run

• Later, when the waited-upon condition becomes true, the kernel
moves the original thread from the wait queue to the ready queue

• At some point, the kernel pulls the original thread from the ready
queue and actually schedules it on a core

OS161 wchans (“Wait Channels”)

/* Wait channel. A wchan is protected by
* an associated, passed-in spinlock. */
struct wchan {

const char *wc_name; /* name for this channel */
struct threadlist wc_threads; /* waiting threads */

};

/*
* Yield the cpu to another process, and go to sleep,
* on the specified wait channel WC, whose associated
* spinlock is LK. Calling wakeup on the channel will
* make the thread runnable again. The spinlock must
* be locked. The call to thread_switch unlocks it; we
* relock it before returning.
*/

void
wchan_sleep(struct wchan *wc, struct spinlock *lk){

/* may not sleep in an interrupt handler */
KASSERT(!curthread->t_in_interrupt);

/* must hold the spinlock */
KASSERT(spinlock_do_i_hold(lk));

/* must not hold other spinlocks */
KASSERT(curcpu->c_spinlocks == 1);

thread_switch(S_SLEEP, wc, lk); //Adds this thread
//to wc->wc_threads

spinlock_acquire(lk);
}

/*
* Wake up one thread sleeping on a wait channel.
*/
void
wchan_wakeone(struct wchan *wc, struct spinlock *lk){

struct thread *target;

KASSERT(spinlock_do_i_hold(lk));
target = threadlist_remhead(&wc->wc_threads);
if (target == NULL) { /* Nobody was sleeping. */

return;
}
thread_make_runnable(target, false); /* Adds to ready

* queue! */
}

