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Processes
• A process is a collection of resources

• An address space, which contains:
• Code (i.e., executable instructions)
• Data (i.e., static data like constant strings, dynamic data like the heap)
• Stack (used to support function calls)

• Bookkeeping stuff like . . .
• A process id (PID)
• Open file descriptors (e.g., network sockets, pipes, open disk files)
• A current working directory

• One or more threads of execution
• A thread represents a computation which shares the code, data, and 

bookkeeping stuff inside the process
• Each thread has a separate stack, and a separate set of registers

• A single “application” consists of one or more processes



Inside a 32-bit Address Space on MIPS

0x0

0xffffffff

0x80000000

Kernel space

User space

• Address space: the set of 
virtual addresses that a 
process’s code can access
• A large array of bytes starting at 

0 and extending to 232-1
• Kernel code can access any 

offset
• User-level code can only access 

offsets in [0x0, 0x80000000]

• Physical RAM may be larger or 
smaller than a 232 bytes
• OS must handle the translation 

between virtual addresses and 
physical addresses (i.e., the 
addresses that are sent to the 
memory hardware)

• We’ll discuss this translation in 
detail in a few weeks!



Inside User Space

add t0, t1, t2
lw t4, 16(t0)
sub t0, t4, 8

//At top of .c file
int foo = 42;

Code

Static data

Heap

Stack

void h(){}
void g(){h();}
void f(){g();}
f(); //Stack records pushed,

//popped as functions are
//called and return

char *ptr = malloc(4096);
printf("%p\n", (void *)&ptr);

//“0x7ffd90590168”



Inside User Space

Code

Static data

Heap

Stack
Thread0 stack

Thread1 stack
add t0, t1, t2
lw t4, 16(t0)
sub t0, t4, 8
mul a3, a1, a2

.

.

.

or t2, t0, t1
sw t0, 8(a3)
sw t1, 40(a3)
sw t2, 48(a3)

PC

State of other 
registers

SP

State of other 
registers

PCSP



What Processes Are Running Now?

UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0  2015 ?        00:00:02 init [3]
root         2     1  0  2015 ?        00:00:00 [migration/0]
root         3     1  0  2015 ?        00:00:00 [ksoftirqd/0]

cs161    21085 20995  0 23:43 pts/1    00:00:00 ps -ef
cs161    21086 20995  0 23:43 pts/1    00:00:00 less

On Linux, try “ps -ef | less”:

We created these 
processes!

//Many other processes!

.
 
.
 
.
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Parent Child
child_pid = fork();

//Child starts
//executing.

//Parent does some
//stuff, and then
//does this . . .

int child_status;
waitpid(child_pid,

&child_status);

//waitpid() returns!
printf(“%d”, child_status);
//Displays “42”.

exit(42);

//Later…
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Making Threads On Linux Via clone()
• fork() creates a new child process from a parent process

• The child has a copy of the memory space of the parent, and 
copies of a bunch of other state (e.g., open file descriptors, 
signal handlers, current working directory, etc.)

• clone() creates a new process that might only share *some* 
state with the original process

int clone(int (*fn)(void *),
void *child_stack,
int flags,
void *arg)

The new process will
execute fn(arg)

Ex: a malloc()’d
region in the
calling process

CLONE_VM: Should new
process share the
caller’s addr space?

CLONE_FS: Should new process
share the caller’s current
working directory?



Scheduling Threads
• If the kernel is thread-aware, then the kernel can schedule threads

• Kernel picks a different thread to run when a timer interrupt fires, or when 
a thread makes a blocking IO call, etc.

• Linux pthread API uses clone(), so the kernel is aware of pthread threads

• Threading can also be implemented purely at the user-level!
• A single process can manually create separate stack regions, and explicitly 

switch between different execution contexts (man swapcontext)

• Thread switches might occur when:

• A thread tries to make a system call that might block, e.g., read(); the 
thread manager can use system calls like select() to determine in a 
non-blocking way which file descriptors are ready for IO

• The compiler can also sprinkle code with calls to a thread_yield() 
function; this function diverts control to the thread manager



• Multiple threads from the same 
process can be run simultaneously 
on different cores

• A thread in a process can sleep 
without forcing the entire process 
to sleep

• Thread creation, destruction, 
scheduling require a context switch 
into and out of the kernel (saving 
registers, polluting L1/L2/L3 caches, 
etc.—pure overhead!)

Kernel threads
Advantages

Disadvantages

User-level threads
Advantages
• A process can implement 

application-specific scheduling 
algorithms

• Thread creation, destruction, 
scheduling don’t require 
context switches . . .

Disadvantages
• . . . but polling for ready file 

descriptors (select(), etc.) does

• Can’t leverage multiple cores, 
since OS only knows how to 
schedule processes



Hybrid Threading

• A single application can use multiple kernel 
threads, and place several user-level threads inside 
each kernel thread

• Example: the goroutines in a single Go program
• GOMAXPROCS environment variable sets the 

number of kernel threads to use for a single Go 
program

• Calls to Go runtime allow goroutine scheduler to run
• Each goroutine gets a 2 KB stack at first
• Each function preamble checks whether there’s 

enough stack space to execute the function; if not, 
runtime doubles the size of the stack, copies old 
stack into new space, updates stack pointer

The Go bison 

or whatever



kern/include/proc.h
/*
* Process structure.
* Note that we only count the number of threads in each process.
* (And, unless you implement multithreaded user processes, this
* number will not exceed 1 except in kproc.)
*/

struct proc {
struct spinlock p_lock;  /* Lock for this structure */
unsigned p_numthreads;   /* Number of threads in this process */
struct addrspace *p_addrspace;  /* virtual address space */

/* ...other stuff... */
};

/* This is the process structure for the kernel and for
* kernel-only threads. */

extern struct proc *kproc;



kern/include/thread.h

/* Size of kernel stacks; must be power of 2 */
#define STACK_SIZE 4096

/* States a thread can be in. */
typedef enum {

S_RUN,          /* running */
S_READY,        /* ready to run */
S_SLEEP,        /* sleeping */
S_ZOMBIE,       /* zombie; exited but not yet deleted */

} threadstate_t;



kern/include/thread.h

struct thread {
threadstate_t t_state;    /* State this thread is in */
void *t_stack;                  /* Kernel-level stack: Used for

* kernel function calls, and
* also to store user-level
* execution context */

struct switchframe *t_context;  /* Saved kernel-level                         
* execution context */

/* ...other stuff... */
}



Kernel Structure: Concurrency and Isolation
• When a thread makes a system call, control flow diverts to 

the kernel
• Kernel code executes to handle the system call (e.g., to initiate an 

IO operation, to retrieve the PID of the thread, etc.)

• Kernel code may need to sleep (e.g., because IO device is slow) . . .

• . . . but we don’t want to busy-wait for wake condition: we want the 
kernel to be able to do other things on that core!

• The kernel needs a protected memory region for code, data, 
stack, and heap
• Ex: Malicious/buggy user-level code should not be able to 

overwrite the kernel’s scheduling queues

• Ex: Malicious/buggy user-level code should not be able to directly 
jump to kernel functions and skip security checks



Kernel Structure: Isolation via Hardware 
Privilege Modes

• An ISA defines privilege modes that determine:
• which instructions are legal to execute

• which virtual addresses are legal to access

• how virtual addresses (i.e., the addresses that programs generate) 
are translated to physical addresses (i.e., the addresses that the 
processor gives to the memory hardware)

• Most ISAs (like MIPS) define two privilege levels
• When a core runs in user-mode, code cannot use sensitive 

instructions (e.g., to directly access IO devices or memory-mapping 
hardware); cannot access privileged registers or privileged areas of 
virtual memory

• In kernel-mode, there are no restrictions



Kernel Structure: Isolation via Hardware 
Privilege Modes

• An ISA defines privilege modes that determine:
• which instructions are legal to execute

• which virtual addresses are legal to access

• how virtual addresses (i.e., the addresses that programs generate) 
are translated to physical addresses (i.e., the addresses that the 
processor gives to the memory hardware)

• Most ISAs (like MIPS) define two privilege levels
• When a core runs in user-mode, code cannot use sensitive 

instructions (e.g., to directly access IO devices or memory-mapping 
hardware); cannot access privileged registers or privileged areas of 
virtual memory

• In kernel-mode, there are no restrictions

x86 defines four 

privilege levels 

(Ring 0—3)



Changing Privilege Levels
• Privilege mode changes during traps and 

return-from-traps

• In OS161 (and many other OSes):
• User-mode execution keeps call state on a 

per-thread user-level stack

• Kernel-mode execution keeps call state on a 
per-thread kernel-level stack

• In OS161, a thread’s kernel stack is 
defined by struct thread::void 
*t_stack

User-mode code

Static data

Heap

User-mode stack

Kernel-mode stack

Kernel-mode code (e.g.,

to handle sys calls)

Kernel-mode static data

Virtual address 

space

Kernel-mode heap



Changing Privilege Levels

User-mode code

Static data

Heap

User-mode stack

Kernel-mode stack

Kernel-mode code (e.g.,

to handle sys calls)

Kernel-mode static data

PC

State of other 
registers

SP

Time

Virtual address 

space

Kernel-mode heap

During user-mode execution, a 

thread’s PC and SP point to user 

memory



Changing Privilege Levels

User-mode code

Static data

Heap

User-mode stack

Kernel-mode stack

Kernel-mode code (e.g.,

to handle sys calls)

Kernel-mode static data

PC

State of other 
registers

SP

Time

PC

State of other 
registers

SP

Virtual address 

space

Kernel-mode heap

syscall instruction changes privilege 

mode to “kernel,” and jumps to well-

known kernel location; kernel saves 

user-mode execution context, starts 

executing kernel code using thread’s 

kernel stack



Changing Privilege Levels

User-mode code

Static data

Heap

User-mode stack

Kernel-mode stack

Kernel-mode code (e.g.,

to handle sys calls)

Kernel-mode static data

PC

State of other 
registers

SP

Time

PC

State of other 
registers

SP

Virtual address 

space

PC

State of other 
registers

SP

Kernel-mode heap

To return from the system call, the kernel:
• restores the user-level execution context 

(except PC, which is placed in k1)

• executes rfe (return from exception) to 
restore old privilege mode

• Executes jr k1 to jump to the next 
user-level instruction to execute



What If A Thread Needs To Wait?
• Previous example assumed a system call that returns immediately 

(e.g., getpid()) . . .

• . . . but sometimes, a thread must wait in the kernel for something 
to happen
• Ex: A blocking read() on an IO device like a disk

• Ex: A call to lock_acquire(lock) if lock is already owned by 
another thread

• In these cases, the kernel must mark the thread as “sleeping,” and 
add the thread to a wait queue

• The kernel pulls a new thread from the ready queue to run

• Later, when the waited-upon condition becomes true, the kernel 
moves the original thread from the wait queue to the ready queue

• At some point, the kernel pulls the original thread from the ready 
queue and actually schedules it on a core



OS161 wchans (“Wait Channels”)

/* Wait channel. A wchan is protected by
* an associated, passed-in spinlock. */
struct wchan {

const char *wc_name; /* name for this channel */
struct threadlist wc_threads;  /* waiting threads */

};



/*
* Yield the cpu to another process, and go to sleep, 
* on the specified wait channel WC, whose associated 
* spinlock is LK. Calling wakeup on the channel will 
* make the thread runnable again. The spinlock must
* be locked. The call to thread_switch unlocks it; we 
* relock it before returning.
*/

void
wchan_sleep(struct wchan *wc, struct spinlock *lk){

/* may not sleep in an interrupt handler */
KASSERT(!curthread->t_in_interrupt);

/* must hold the spinlock */
KASSERT(spinlock_do_i_hold(lk));

/* must not hold other spinlocks */
KASSERT(curcpu->c_spinlocks == 1);

thread_switch(S_SLEEP, wc, lk); //Adds this thread
//to wc->wc_threads

spinlock_acquire(lk);
}



/*
* Wake up one thread sleeping on a wait channel.
*/
void
wchan_wakeone(struct wchan *wc, struct spinlock *lk){

struct thread *target;

KASSERT(spinlock_do_i_hold(lk));
target = threadlist_remhead(&wc->wc_threads);
if (target == NULL) { /* Nobody was sleeping. */

return;
}
thread_make_runnable(target, false); /* Adds to ready

* queue! */
}


