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Lecture Outline

• Midterm Review
• Project Discussion (1 Page proposals due 1 week

later, April 12th)
• Memory Hierarchy Overview
• Caches
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CPU-DRAM Gap

1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

Why care about the Memory 
Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.
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Memory Hierarchy Design

• Until now we have assumed a very ideal memory
– All accesses take 1 cycle

• Assumes an unlimited size, very fast memory
– Fast memory is very expensive
– Large amounts of fast memory would be slow!

• Tradeoffs
– Cost-speed and size-speed

• Solution:
– Smaller, faster expensive memory close to core “cache”
– Larger, slower, cheaper memory farther away
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• Small, fast storage used to improve average access time 
to slow memory

• Hold subset of the instructions and data used by program
• Exploits spacial and temporal locality

Proc/Regs

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster

What is a cache?
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Caches are everywhere

• In computer architecture, almost everything is a cache!
– Registers “a cache” on variables – software managed
– First-level cache a cache on second-level cache
– Second-level cache a cache on memory
– Memory a cache on disk (virtual memory)
– TLB a cache on page table
– Branch-prediction a cache on prediction information?
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Memory Hierarchy Specs

10MB/s10ms>1GBDisk

4GB/s50ns<4GBMemory

10GB/s20ns<64MBL3 Cache

25GB/s10ns<8MBL2 Cache

50GB/s4ns<64KBL1 Cache

150GB/s1ns<2KBRegister

BandwidthLatency CapacityType
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Program locality is why caches 
work

• Memory hierarchy exploit program locality:
– Programs tend to reference parts of their address space 

that are local in time and space
– Temporal locality: recently referenced addresses are 

likely to be referenced again (reuse)
– Spatial locality: If an address is referenced, nearby 

addresses are likely to be referenced soon

• Programs that don’t exploit locality won’t benefit 
from caches
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Locality Example

j=val1;
k=val2;
For (i=0; i<10000;i++) {
A[i] += j;
B[i] += k;}

• Data Locality: i,A,B,j,k?
• Instruction Locality?
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Terminology

• Higher levels in the hierarchy are closer to the 
CPU

• At each level a block is the minimum amount of 
data whose presence is checked at each level
– Blocks are also often called lines
– Block size is always a power of 2
– Block sizes of the lower levels are usually fixed 

multiples of the block sizes of the higher levels
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Terminology (2)

• A reference is said to hit at a particular level if the 
block is found at that level
– Hit Rate (HR) = Hits/References
– Miss Rate (MR) = Misses/References

• Access time of a hit is the hit time
• The additional time to fetch a block on a miss is 

called the miss penalty
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Terminology (3)

• Miss Penalty = Access Time + Transfer Time

• Access time is a function of latency
• “Time for memory to get request and process it”

• Transfer time is a function of bandwidth
• “Time for all of block to get back”

Miss 
Penalty

Access Time

Transfer
Time

Block Size
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Access vs. Transfer Time

• Miss penalty = A + B + C
• Access Time = A + B
• Transfer Time = C

Cache Memory

A

B

C
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Latency vs. Bandwidth
“There is an old network saying: Bandwidth problems can be cured with money.  
Latency problems are harder because the speed of light is fixed --- you can’t bribe 
God.”

David Clark, MIT

• Recall pipelining: We improved instruction bandwidth, but 
actually made latency worse

• With memory, for bandwidth we can:
– Wider buses, larger block sizes, new DRAM organizations (RAMBUS)

• Latency is still much harder:
– Have to get request from cache to memory (off chip)
– Have to do memory lookup
– Have to have bits travel on wire back on-chip to cache
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Memory Hierarchy Performance

• Misleading indicator of memory hierarchy 
performance is miss rate

• Average memory access time (AMAT) is better, but 
execution time is always the best

• AMAT = Hit Time + Miss Rate * Miss Penalty
Example:

Hit Time = 1ns, Miss Penalty = 20ns, Miss Rate = 0.1
AMAT = 1 + 0.1 * 20 = 3ns

Computer Science 146
David Brooks

Caching Basics

• Most Basic Caching questions:
– How do we know if a data item is in the cache?
– If it is, how do we find it?
– If it isn’t, how do we get it?
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More Detailed Questions

• Block placement policy?
– Where does a block go when it is fetched?

• Block identification policy?
– How do we find a block in the cache?

• Block replacement policy?
– When fetching a block into a full cache, how do we 

decide what other block gets kicked out?

• Write strategy?
– Does any of this differ for reads vs. writes?
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General View of Caches

• Cache is made of frames
– Frame = data + tag + state bits
– State bits: Valid (tag/data there), Dirty (wrote into data)

• Cache Algorithm
– Find frame(s)
– If incoming tag != stored tag then Miss

• Evict block currently in frame
• Replace with block from memory (or L2 cache)

– Return appropriate word within block
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Simple Cache Example
• Direct-mapped cache: Each block has a specific spot in the 

cache.  IF it is in the cache, only one place for it
• Makes block placement, ID, and replacement policies easy

– Block Placement: Where does a block go when fetched?
• It goes to its one assigned spot

– Block ID: How do we find a block in the cache?
• We look at the tags for that one assigned spot

– Block replacement: What gets kicked out?
• Whatever is in its assigned spot

– Write strategy:
• “Allocate on write” More on write strategies later
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Cache Example continued

• 8 locations in our cache
• Block Size = 1 byte
• Data reference stream:
• References to memory locations:

– 0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1

• Entry = address mod cache size

10019
10008
01117
01106
01015
01004
00113
00102
00011
00000

Lower order bits 
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Cache Examples: Cycles 1 - 5
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Cache Examples: Cycles 6-10
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Cache Examples: Cycles 11-15
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Cache Examples: Cycles 16-21
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Example Summary

• Hit Rate = 7/21 = 1/3
• Miss Rate = 14/21 = 2/3 

• Now, what if the block size = 2 bytes?
• Entry = Addr/Block Size  mod Cache Size
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Next Time

• Type and Reasons for Cache Misses
• Improving cache performance
• Write policies


