
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 14: Introduction to Caches

Computer Science 146
David Brooks

Lecture Outline

• Midterm Review
• Project Discussion (1 Page proposals due 1 week

later, April 12th)
• Memory Hierarchy Overview
• Caches

2

Computer Science 146
David Brooks

CPU-DRAM Gap

1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

Why care about the Memory
Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”

Computer Science 146
David Brooks

Memory Hierarchy Design

• Until now we have assumed a very ideal memory
– All accesses take 1 cycle

• Assumes an unlimited size, very fast memory
– Fast memory is very expensive
– Large amounts of fast memory would be slow!

• Tradeoffs
– Cost-speed and size-speed

• Solution:
– Smaller, faster expensive memory close to core “cache”
– Larger, slower, cheaper memory farther away

3

Computer Science 146
David Brooks

• Small, fast storage used to improve average access time
to slow memory

• Hold subset of the instructions and data used by program
• Exploits spacial and temporal locality

Proc/Regs

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster

What is a cache?

Computer Science 146
David Brooks

Caches are everywhere

• In computer architecture, almost everything is a cache!
– Registers “a cache” on variables – software managed
– First-level cache a cache on second-level cache
– Second-level cache a cache on memory
– Memory a cache on disk (virtual memory)
– TLB a cache on page table
– Branch-prediction a cache on prediction information?

4

Computer Science 146
David Brooks

Memory Hierarchy Specs

10MB/s10ms>1GBDisk

4GB/s50ns<4GBMemory

10GB/s20ns<64MBL3 Cache

25GB/s10ns<8MBL2 Cache

50GB/s4ns<64KBL1 Cache

150GB/s1ns<2KBRegister

BandwidthLatency CapacityType

Computer Science 146
David Brooks

Program locality is why caches
work

• Memory hierarchy exploit program locality:
– Programs tend to reference parts of their address space

that are local in time and space
– Temporal locality: recently referenced addresses are

likely to be referenced again (reuse)
– Spatial locality: If an address is referenced, nearby

addresses are likely to be referenced soon

• Programs that don’t exploit locality won’t benefit
from caches

5

Computer Science 146
David Brooks

Locality Example

j=val1;
k=val2;
For (i=0; i<10000;i++) {
A[i] += j;
B[i] += k;}

• Data Locality: i,A,B,j,k?
• Instruction Locality?

Computer Science 146
David Brooks

Terminology

• Higher levels in the hierarchy are closer to the
CPU

• At each level a block is the minimum amount of
data whose presence is checked at each level
– Blocks are also often called lines
– Block size is always a power of 2
– Block sizes of the lower levels are usually fixed

multiples of the block sizes of the higher levels

6

Computer Science 146
David Brooks

Terminology (2)

• A reference is said to hit at a particular level if the
block is found at that level
– Hit Rate (HR) = Hits/References
– Miss Rate (MR) = Misses/References

• Access time of a hit is the hit time
• The additional time to fetch a block on a miss is

called the miss penalty

Computer Science 146
David Brooks

Terminology (3)

• Miss Penalty = Access Time + Transfer Time

• Access time is a function of latency
• “Time for memory to get request and process it”

• Transfer time is a function of bandwidth
• “Time for all of block to get back”

Miss
Penalty

Access Time

Transfer
Time

Block Size

7

Computer Science 146
David Brooks

Access vs. Transfer Time

• Miss penalty = A + B + C
• Access Time = A + B
• Transfer Time = C

Cache Memory

A

B

C

Computer Science 146
David Brooks

Latency vs. Bandwidth
“There is an old network saying: Bandwidth problems can be cured with money.
Latency problems are harder because the speed of light is fixed --- you can’t bribe
God.”

David Clark, MIT

• Recall pipelining: We improved instruction bandwidth, but
actually made latency worse

• With memory, for bandwidth we can:
– Wider buses, larger block sizes, new DRAM organizations (RAMBUS)

• Latency is still much harder:
– Have to get request from cache to memory (off chip)
– Have to do memory lookup
– Have to have bits travel on wire back on-chip to cache

8

Computer Science 146
David Brooks

Memory Hierarchy Performance

• Misleading indicator of memory hierarchy
performance is miss rate

• Average memory access time (AMAT) is better, but
execution time is always the best

• AMAT = Hit Time + Miss Rate * Miss Penalty
Example:

Hit Time = 1ns, Miss Penalty = 20ns, Miss Rate = 0.1
AMAT = 1 + 0.1 * 20 = 3ns

Computer Science 146
David Brooks

Caching Basics

• Most Basic Caching questions:
– How do we know if a data item is in the cache?
– If it is, how do we find it?
– If it isn’t, how do we get it?

9

Computer Science 146
David Brooks

More Detailed Questions

• Block placement policy?
– Where does a block go when it is fetched?

• Block identification policy?
– How do we find a block in the cache?

• Block replacement policy?
– When fetching a block into a full cache, how do we

decide what other block gets kicked out?

• Write strategy?
– Does any of this differ for reads vs. writes?

Computer Science 146
David Brooks

General View of Caches

• Cache is made of frames
– Frame = data + tag + state bits
– State bits: Valid (tag/data there), Dirty (wrote into data)

• Cache Algorithm
– Find frame(s)
– If incoming tag != stored tag then Miss

• Evict block currently in frame
• Replace with block from memory (or L2 cache)

– Return appropriate word within block

10

Computer Science 146
David Brooks

Simple Cache Example
• Direct-mapped cache: Each block has a specific spot in the

cache. IF it is in the cache, only one place for it
• Makes block placement, ID, and replacement policies easy

– Block Placement: Where does a block go when fetched?
• It goes to its one assigned spot

– Block ID: How do we find a block in the cache?
• We look at the tags for that one assigned spot

– Block replacement: What gets kicked out?
• Whatever is in its assigned spot

– Write strategy:
• “Allocate on write” More on write strategies later

Computer Science 146
David Brooks

Cache Example continued

• 8 locations in our cache
• Block Size = 1 byte
• Data reference stream:
• References to memory locations:

– 0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1

• Entry = address mod cache size

10019
10008
01117
01106
01015
01004
00113
00102
00011
00000

Lower order bits

11

Computer Science 146
David Brooks

Cache Examples: Cycles 1 - 5

0

0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1

1
0

2
1
0

3
2
1
0

4
3
2
1
0

Miss Miss Miss Miss Miss

Computer Science 146
David Brooks

Cache Examples: Cycles 6-10

5
4
3
2
1
0

0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1

6
5
4
3
2
1
0

6
5
4

7

3
2
1
0

6
5
4

7

3
2
1
8

6
5
4

7

3
2
9
8

Miss Miss Miss Miss Miss

12

Computer Science 146
David Brooks

Cache Examples: Cycles 11-15

6
5
4

7

3
2
9
0

0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1

6
5
4

7

3
2
9
0

6
5
4

7

3
2
9
0

6
5
4

7

3
2
9
0

6
5
4

7

3
2
9
0

Miss Hit (0) Hit (0) Hit (2) Hit (2)

Computer Science 146
David Brooks

Cache Examples: Cycles 16-21

6
5
4

7

3
2
9
0

0,1,2,3,4,5,6,7,8,9,0,0,0,2,2,2,4,9,1,9,1

6
5
4

7

3
2
9
0

6
5
4

7

3
2
9
0

6
5
4

7

3
2
1
0

6
5
4

7

3
2
9
0

Hit(2) Hit (4) Hit(9) Miss Miss

6
5
4

7

3
2
1
0

Miss

13

Computer Science 146
David Brooks

Example Summary

• Hit Rate = 7/21 = 1/3
• Miss Rate = 14/21 = 2/3

• Now, what if the block size = 2 bytes?
• Entry = Addr/Block Size mod Cache Size

Computer Science 146
David Brooks

Next Time

• Type and Reasons for Cache Misses
• Improving cache performance
• Write policies

