Computer Science 146
Computer Architecture

Fall 2019

Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 18: Virtual Memory

Computer Science 146
David Brooks

Lecture Outline

* Review of Main Memory

 Virtual Memory

Computer Science 146
David Brooks

Simple Interleaving

Cycle Addr Bank0 Bank1l Bank2 Bank3 steady
1 12 A A A A
2 A A A A
3 T/B B B B *
4 B T/B B B *
5 T *
6 T *

* 4-word access = 6-cycles
* 4-word cycle = 4-cycles
— Can start a new access in cycle 5
— Overlap access with transfer (and still use a 32-bit bus!)

Computer Science 146
David Brooks

Independent Memory Banks

DIMM Medules

Y

'y
Command J Ie
Data %

DIMM (Dual-Inline Memory Module) Configuration
1 Rank of devices responds to each access

— All devices respond similarly

Single-Sided DIMM
— 4 banks per device => DIMM has 4 banks

512MB DIMM = 8x64Mx8, 4 Banks

Computer Science 146
David Brooks

Independent Memory Banks

RIMM Modules

Row 7751
Column —5 +
Data ——— -

118

*+ RAMBUS modules
* 1-32 devices per RIMM module

— 1 device responds to each access
— Single-device upgrade granularity
— Module bandwidth same as device bandwidth

* Devices are independent
— 8 device RIMM, 16 banks each => RIMM has 128 banks

Computer Science 146
David Brooks

Independent Memory Banks

Standard PC Upgrade Path
— Traditional DIMMS => § devices at a time with 8-bit chips
— Rambus RIMMs => One at a time
PlayStation 2
Rambus: 400MHz, 16-bits per channel, 2-bits per clock

— 1.6GB/sec per channel (only 1 chip needed)
— 2 Rambus Channels in Parallel, 3.2GB/sec memory bandwidth

Traditional:PC100 SDRAM: 100MHz, 1-bit per clock
— Would need 32 chips to achieve 3.2GB/sec bandwidth

Computer Science 146
David Brooks

Virtual Memory

 Point we have been avoiding

— Addresses generated by program are not the addresses
that we use to access the memory (physical memory)

— Why?

Computer Science 146
David Brooks

Virtual Memory: Motivation

 Original Motivation: Allow main memory to “act as a
cache” for secondary storage (disks)
— Physical memory expensive and not very dense (too small)
— Programmers wrote “overlays” to load memory from disk

— Programming nightmare, incompatible code across products

 Current Motivation: Use indirection of VM as a feature
— Physical memories are quite large
— Multiprogramming, sharing, relocation, protection
— Fast program startup

— Memory mapped files, networks

Computer Science 146
David Brooks

Virtual vs. Physical Memory

Virtual Physical
address address
] A 0
4K B 4K c
8K C 8K
12K D 12K Physical
16K A main memory
Virtual memory 20K
24K B
28K

Disk

Computer Science 146
David Brooks

Virtual Memory: Cache Analogy

Cache blocks/lines are called pages or segments
Cache misses are page faults or address faults
Processes use virtual addresses (VA)

Physical memory uses physical addresses (PA)

Addresses divided into page offset, page number
— Virtual: Virtual Page Number (VPN)
— Physical: Page Page Number (PPN)
Addresses translation: system maps VA to PA
— E.g. 4KB pages, 32-bit machine, 64MB physical memory
— 32-bit VA, 26-bit PA (log,64MB), 12-bit page offset (log,4KB)

Computer Science 146
David Brooks

Virtual Memory: Cache Analogy

Parameter

First-Level Cache

Virtual Memory

Block (page) Size

16-128 Bytes

4KB - 64KB

Hit Time

1-3 clock cycles

50-150 clock cycles

Miss Penalty

8-150 clock cycles

IM-10M clock cycles

(access time)

(6-130 clock cycles)

(.8M — 8M clock cycles)

(transfer time)

(2-20 clock cycles)

(.2M - 2M clock cycles)

Miss Rate

0.1-10%

0.00001 —-0.001%

Address Mapping

25-45bit PA to 14-20bit CacheAd

32-64 bit VA to 25-45 bit PA

Replacement Policy

Hardware Replacement

Software Replacement

Total Size

Independent of Address Space

Processor Address Space

Backing Store

Level 2 Cache

Physical Disk

Computer Science 146
David Brooks

System maps VA to PA

» Virtual Page Number (VPN) => Physical: Page Page
Number (PPN)

» OS/Hardware perform the mapping, not processes

» Same VPNs in different processes have different PPNs
— Protection: processes cannot use each other’s PA

— Programming Simplicity: Each process thinks its alone

— Relocation: Program can be run anywhere in memory
» Doesn’t have to be physically contiguous

* Can be paged out, paged back to a different physical location

Computer Science 146
David Brooks

Virtual Memory: 4 Cache Questions

« Same four questions as caches

— Page Placement: fully associative
* Why?

— Page Identification: address translation
* Indirection through one or two page tables

— Page Replacement: Sophisticated LRU + Working set
* Why?

— Write Strategy: Always write-back + write allocate
* Why?

Computer Science 146
David Brooks

Why?

» Backing store to main memory is disk
— Memory is 50-100x slower than processor
— Disk is 20-100 thousand times slower than memory
» Diskis 1 to 10 Million times slower than processor
* VA miss (page fault) is expensive
— Minimize at all costs

— Fully associative + Software Replacement reduce miss
rate

— Write-back reduces disk traffic
— Large page sizes (4KB — 16KB) amortize reads

Computer Science 146
David Brooks

Page ID: Address Translation

* OS performs address translation using page table
— Each process has its own page table
* OS knows address of each process’s page table
— Page table is an array of Page Table Entries
* One entry for each VPN of each process, indexed by VPN
— Each PTE contains

« Phys. Page Number Virtual Address

Virtual Page Number‘ Page Offset ‘

e Permissions

* Dirty bit
« LRU Page > Main
* ~4bytes total Table Memory

Computer Science 146
David Brooks

Page Table Size

» Page Table Size
— Example #1: 32-bit VA, 4KB pages, 4-byte PTE
* 1M Pages, 4MB Page Table
— Example #2: 64-bit VA, 4KB pages, 4-byte PTE
* 4P Pages, 16PB page table

» Page table reduction techniques
— Multi-level page tables
— Inverted page tables

Computer Science 146
David Brooks

Multi-Level Page Tables

» Most processes use only a tiny portion of total VA space
» Tree of page tables
— L1 table points to L2 tables (and more if needed)
« Different VPN bits are offsets at different levels
— Save space: not all tables at all levels need to exist
— Slow: Multi-hop chains of translations (space savings outweigh)

»

PT Root VPN g
L

»
»

A\ 4

A\ 4

1st Level PT) i 2nd Tevel PTs

Computer Science 146
David Brooks

Multi Level Page Tables

» 32-bit address space, 4KB pages, 4 byte PTEs
* 2 level virtual page table
 2nd_Jevel tables are each the size of 1 data page
* Program uses only upper and lower 1MB of address space
* How much memory does page table take?

— 4GB VM / 4KB pages => 1M pages

— 4KB pages / 4B PTEs => 1K pages per 2" level table

— 1M pages / 1K pages per 2™ level table => 1K 2"-level tables

— 1K 2" level tables + virtual page table => 4KB first level table
IMB VA space + 4KB pages => 256 PTEs => 1 2™ [evel table
Memory = 1 level table (4KB) + 2 * 2" [evel table (4KB) = 12KB

Computer Science 146
David Brooks

Inverted Page Table

* Observation: don’t need more PTEs than physical
memory pages

* Apply hashing function to VA
— Hash virtual addresses into array of PTEs
* (hash collisions are chained)
— Table is proportional to memory size (not VA size)
* Page table size = (memory size / page size) * (PTE size + pointer)

— Slow searches => PTE pointer chasing

Computer Science 146
David Brooks

Address Translation

* How does address translation really work?

» Two-level mapped page tables

— Several levels of indirection: 3 memory accesses for 1
virtual memory access (slow!)

— Processes do not read page table + translate: system does

o Hardware involvement: Translation Lookaside
Buffer

— Cache dedicated to these translations

Computer Science 146
David Brooks

Fast Translation: Virtual Caches

First-level caches are “virtually addressed”
L2 and main memory are “physically addressed”

Address translation only on a miss (not critical)| cpy
Why not? v 1
— Protection: xlate checks page level protection

— Context switch: Cache flush required (PID tags?)
— 1/O: typically uses PAs (would need

L2

conversion to access L1 cache)

— Synonyms: 2 VAs => 1 PA (2 copies in cache)

Computer Science 146
David Brooks

Synonyms: Another problem
with Virtual Caches

* VA => PA is not always unique (sharing among
processes)

« Memory location could be fetched into the cache by
two different virtual addresses: consistency problem
 Solutions
— Eliminate/Restrict sharing
— Restrict sharing within a process, flush on context switch
— Search all possible synonymous sets in parallel

— Restrict page placement in OS such that index(VA) =
index(PA)

Computer Science 146
David Brooks

Fast Translation: Physical Caches
with Translation Buffers

 Solution #2: First level caches are physical

— Address translation before every cache access

— Works fine with I/O, address space changes (iPU

— SLOW TB

« Solution #2a: Cache recent translations in TB __v
L1

— Only go to page table on TB miss

* Hit time problem: still 2 serial accesses

A

L2

Computer Science 146
David Brooks

Fast Translation: Physical Caches

with Translation Lookaside Buffers

» Solution #3: Address translation & L1 cache
access in parallel

CPU
— Translation lookaside buffer (TLB))

— Fast (one step access) TLB L1

— No problems changing VA spaces

— Keeps I/0 coherent 3
L2

Computer Science 146
David Brooks

Cache: Virtual Index, Physical Tag

 Physical cache with virtual address
— Only cache index matters for access
— Only part of virtual address changes during translation

— Make sure index is in untranslated part
* Index is within page offset

* Virtual index == physical index Virtual Address

’ Virtual Page Number | Page Offset ‘

— Fast ’ Tag

— Restricts cache size (Block size * #sets <= page size)
— Use associativity to increase size

Computer Science 146
David Brooks

Basic TLB Organization

Virtual Address State\ﬂ ‘ Tag ‘ PTEJ
/ Entries in TLB
| L | [<- '>@
\-\Compare Tags/Select PTE
H1t/M1ss
Physical Address

Fully Associative Structure

Example: VA = 44bits, Page Size = 4MB, PA Space = 1GB

VPN bits = bits (VA) - log,(page size) = 44 — 22 =22 bits
Physical Addr. = log,(PA Size) = 30 bits (8 PPN + 22 Page Offset)

Computer Science 146
David Brooks

Selecting Page Size

» Larger Page Size
— Page table is smaller (inversely proportional to page size)

— Larger page size may allow larger caches with virtually indexed,
physically tagged caches (larger page offset)

— Page transfers can be more efficient
— More efficient TLB => reduces number of TLB misses

* Smaller Page Size

— Internal fragmentation: contiguous region of virtual memory not a
multiple of the page size

— Process startup time (load in large pages for small processes)
* Multiple Page Sizes

— Some processors support multiple choices => larger pages are powers
of 2 times the smaller page sizes

Computer Science 146
David Brooks

Protection Basics

* Processes should not interfere with each other in
multiprogramming environments

Simplest Scheme: Two registers: Base + Bound
(Base + Address) < Bound
How to modify these registers?

* Programs can’t modify or they can cheat!

Computer Science 146
David Brooks

Protection: Requirements

» OS kernel mode: special privileges available
— Can access memory via physical addresses
— Deals with base offset registers
— System calls jump from user mode to kernel mode
— User process says what it wants done, kernel does it
* More robust scheme:
— Maintain separate VA spaces (page tables) per process
— Must access memory through address translation
— Do not know about address translation mechanism

(page table)
Computer Science 146
David Brooks
| Virtual address <64]
I Overall Memory
| Virtual page number <51> | Page offset <13> |
System

| TLB tag compare address <43>] TLB index <8] | L1 cache index <7> | Block offset <6 |

To CPU

TLB data <28>

L1 cache tag <43> L1 data <512>

L1 tag compare address <28>

| Physical address <41> |

| L2 tag compare address <19> | L2 cache index <16> | Block offset <6 |

Page Size: 8KB
256-entry TLB
8KB L1 Cache
4MB L2 Cache
VA 64 bits
PA 41 bits

| To CPU

L2 cache tag <19> L2 data <512=

To L1 cache or CPU

Memory Summary

* Main Memory
— DRAM is slow but dense
— Interleaving/banking for high bandwidth

 Virtual Memory, Address Translation, Protection

— Larger memory, protection, relocation,
multiprogramming

— Page tables

— TLB: cache translations for speed
» Access in parallel with cache tags

Computer Science 146
David Brooks

