
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Fall 2019
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 18: Virtual Memory

Computer Science 146
David Brooks

Lecture Outline

• Review of Main Memory
• Virtual Memory

2

Computer Science 146
David Brooks

Simple Interleaving

• 4-word access = 6-cycles
• 4-word cycle = 4-cycles

– Can start a new access in cycle 5
– Overlap access with transfer (and still use a 32-bit bus!)

T/B

B

A

A

Bank1

T

B

B

A

A

Bank2

T

B

B

A

A

Bank3

*6

*5

*B4

*T/B3

A2

A121

steadyBank0AddrCycle

Computer Science 146
David Brooks

Independent Memory Banks

• DIMM (Dual-Inline Memory Module) Configuration
• 1 Rank of devices responds to each access

– All devices respond similarly

• Single-Sided DIMM
– 4 banks per device => DIMM has 4 banks

• 512MB DIMM = 8x64Mx8, 4 Banks

3

Computer Science 146
David Brooks

Independent Memory Banks

• RAMBUS modules
• 1-32 devices per RIMM module

– 1 device responds to each access
– Single-device upgrade granularity
– Module bandwidth same as device bandwidth

• Devices are independent
– 8 device RIMM, 16 banks each => RIMM has 128 banks

Computer Science 146
David Brooks

Independent Memory Banks

• Standard PC Upgrade Path
– Traditional DIMMS => 8 devices at a time with 8-bit chips
– Rambus RIMMs => One at a time

• PlayStation 2
• Rambus: 400MHz, 16-bits per channel, 2-bits per clock

– 1.6GB/sec per channel (only 1 chip needed)
– 2 Rambus Channels in Parallel, 3.2GB/sec memory bandwidth

• Traditional:PC100 SDRAM: 100MHz, 1-bit per clock
– Would need 32 chips to achieve 3.2GB/sec bandwidth

4

Computer Science 146
David Brooks

Virtual Memory

• Point we have been avoiding
– Addresses generated by program are not the addresses

that we use to access the memory (physical memory)
– Why?

Computer Science 146
David Brooks

Virtual Memory: Motivation
• Original Motivation: Allow main memory to “act as a

cache” for secondary storage (disks)
– Physical memory expensive and not very dense (too small)
– Programmers wrote “overlays” to load memory from disk
– Programming nightmare, incompatible code across products

• Current Motivation: Use indirection of VM as a feature
– Physical memories are quite large
– Multiprogramming, sharing, relocation, protection
– Fast program startup
– Memory mapped files, networks

5

Computer Science 146
David Brooks

Virtual vs. Physical Memory

Computer Science 146
David Brooks

Virtual Memory: Cache Analogy

• Cache blocks/lines are called pages or segments
• Cache misses are page faults or address faults
• Processes use virtual addresses (VA)
• Physical memory uses physical addresses (PA)
• Addresses divided into page offset, page number

– Virtual: Virtual Page Number (VPN)
– Physical: Page Page Number (PPN)

• Addresses translation: system maps VA to PA
– E.g. 4KB pages, 32-bit machine, 64MB physical memory
– 32-bit VA, 26-bit PA (log264MB), 12-bit page offset (log24KB)

6

Computer Science 146
David Brooks

Virtual Memory: Cache Analogy

Physical DiskLevel 2 CacheBacking Store
Processor Address SpaceIndependent of Address SpaceTotal Size
Software ReplacementHardware ReplacementReplacement Policy
32-64 bit VA to 25-45 bit PA25-45bit PA to 14-20bit CacheAdAddress Mapping
0.00001 –0.001%0.1-10%Miss Rate

(.2M – 2M clock cycles)(2-20 clock cycles)(transfer time)
(.8M – 8M clock cycles)(6-130 clock cycles)(access time)

1M-10M clock cycles8-150 clock cyclesMiss Penalty
50-150 clock cycles1-3 clock cyclesHit Time
4KB – 64KB16-128 BytesBlock (page) Size
Virtual MemoryFirst-Level CacheParameter

Computer Science 146
David Brooks

System maps VA to PA

• Virtual Page Number (VPN) => Physical: Page Page
Number (PPN)

• OS/Hardware perform the mapping, not processes
• Same VPNs in different processes have different PPNs

– Protection: processes cannot use each other’s PA
– Programming Simplicity: Each process thinks its alone
– Relocation: Program can be run anywhere in memory

• Doesn’t have to be physically contiguous
• Can be paged out, paged back to a different physical location

7

Computer Science 146
David Brooks

Virtual Memory: 4 Cache Questions

• Same four questions as caches
– Page Placement: fully associative

• Why?

– Page Identification: address translation
• Indirection through one or two page tables

– Page Replacement: Sophisticated LRU + Working set
• Why?

– Write Strategy: Always write-back + write allocate
• Why?

Computer Science 146
David Brooks

Why?

• Backing store to main memory is disk
– Memory is 50-100x slower than processor
– Disk is 20-100 thousand times slower than memory

• Disk is 1 to 10 Million times slower than processor

• VA miss (page fault) is expensive
– Minimize at all costs
– Fully associative + Software Replacement reduce miss

rate
– Write-back reduces disk traffic
– Large page sizes (4KB – 16KB) amortize reads

8

Computer Science 146
David Brooks

Page ID: Address Translation
• OS performs address translation using page table

– Each process has its own page table
• OS knows address of each process’s page table

– Page table is an array of Page Table Entries
• One entry for each VPN of each process, indexed by VPN

– Each PTE contains
• Phys. Page Number
• Permissions
• Dirty bit
• LRU
• ~4bytes total

Virtual Page Number Page Offset
Virtual Address

Page
Table

Main
Memory

Computer Science 146
David Brooks

Page Table Size

• Page Table Size
– Example #1: 32-bit VA, 4KB pages, 4-byte PTE

• 1M Pages, 4MB Page Table

– Example #2: 64-bit VA, 4KB pages, 4-byte PTE
• 4P Pages, 16PB page table

• Page table reduction techniques
– Multi-level page tables
– Inverted page tables

9

Computer Science 146
David Brooks

Multi-Level Page Tables

• Most processes use only a tiny portion of total VA space
• Tree of page tables

– L1 table points to L2 tables (and more if needed)
• Different VPN bits are offsets at different levels

– Save space: not all tables at all levels need to exist
– Slow: Multi-hop chains of translations (space savings outweigh)

PT Root VPN

1st Level PT 2nd Level PTs

Computer Science 146
David Brooks

Multi Level Page Tables

• 32-bit address space, 4KB pages, 4 byte PTEs
• 2 level virtual page table
• 2nd-level tables are each the size of 1 data page
• Program uses only upper and lower 1MB of address space
• How much memory does page table take?

– 4GB VM / 4KB pages => 1M pages
– 4KB pages / 4B PTEs => 1K pages per 2nd level table
– 1M pages / 1K pages per 2nd level table => 1K 2nd-level tables
– 1K 2nd level tables + virtual page table => 4KB first level table
– 1MB VA space + 4KB pages => 256 PTEs => 1 2nd level table
– Memory = 1st level table (4KB) + 2 * 2nd level table (4KB) = 12KB

10

Computer Science 146
David Brooks

Inverted Page Table

• Observation: don’t need more PTEs than physical
memory pages

• Apply hashing function to VA
– Hash virtual addresses into array of PTEs

• (hash collisions are chained)

– Table is proportional to memory size (not VA size)
• Page table size = (memory size / page size) * (PTE size + pointer)

– Slow searches => PTE pointer chasing

Computer Science 146
David Brooks

Address Translation

• How does address translation really work?
• Two-level mapped page tables

– Several levels of indirection: 3 memory accesses for 1
virtual memory access (slow!)

– Processes do not read page table + translate: system does

• Hardware involvement: Translation Lookaside
Buffer
– Cache dedicated to these translations

11

Computer Science 146
David Brooks

Fast Translation: Virtual Caches

• First-level caches are “virtually addressed”
• L2 and main memory are “physically addressed”
• Address translation only on a miss (not critical)
• Why not?

– Protection: xlate checks page level protection
– Context switch: Cache flush required (PID tags?)
– I/O: typically uses PAs (would need

conversion to access L1 cache)
– Synonyms: 2 VAs => 1 PA (2 copies in cache)

CPU

L1

L2

xlate

Main Memory

Computer Science 146
David Brooks

Synonyms: Another problem
with Virtual Caches

• VA => PA is not always unique (sharing among
processes)

• Memory location could be fetched into the cache by
two different virtual addresses: consistency problem

• Solutions
– Eliminate/Restrict sharing
– Restrict sharing within a process, flush on context switch
– Search all possible synonymous sets in parallel
– Restrict page placement in OS such that index(VA) =

index(PA)

12

Computer Science 146
David Brooks

Fast Translation: Physical Caches
with Translation Buffers

• Solution #2: First level caches are physical
– Address translation before every cache access
– Works fine with I/O, address space changes
– SLOW

• Solution #2a: Cache recent translations in TB
– Only go to page table on TB miss

• Hit time problem: still 2 serial accesses

CPU

TB

L2

xlate

Main Memory

L1

Computer Science 146
David Brooks

Fast Translation: Physical Caches
with Translation Lookaside Buffers

• Solution #3: Address translation & L1 cache
access in parallel
– Translation lookaside buffer (TLB)
– Fast (one step access)
– No problems changing VA spaces
– Keeps I/O coherent

CPU

TLB

L2

xlate

Main Memory

L1

13

Computer Science 146
David Brooks

Cache: Virtual Index, Physical Tag

• Physical cache with virtual address
– Only cache index matters for access
– Only part of virtual address changes during translation
– Make sure index is in untranslated part

• Index is within page offset
• Virtual index == physical index

– Fast
– Restricts cache size (Block size * #sets <= page size)
– Use associativity to increase size

Virtual Page Number
Virtual Address

Tag

Page Offset

Index Offset

Computer Science 146
David Brooks

Basic TLB Organization

Virtual Address
VPN offset

Compare Tags/Select PTE

Hit/Miss

Tag PTEstate

Physical Address
PPN page offset

• Fully Associative Structure
• Example: VA = 44bits, Page Size = 4MB, PA Space = 1GB
• VPN bits = bits (VA) - log2(page size) = 44 – 22 = 22 bits
• Physical Addr. = log2(PA Size) = 30 bits (8 PPN + 22 Page Offset)

Entries in TLB

14

Computer Science 146
David Brooks

Selecting Page Size
• Larger Page Size

– Page table is smaller (inversely proportional to page size)
– Larger page size may allow larger caches with virtually indexed,

physically tagged caches (larger page offset)
– Page transfers can be more efficient
– More efficient TLB => reduces number of TLB misses

• Smaller Page Size
– Internal fragmentation: contiguous region of virtual memory not a

multiple of the page size
– Process startup time (load in large pages for small processes)

• Multiple Page Sizes
– Some processors support multiple choices => larger pages are powers

of 2 times the smaller page sizes

Computer Science 146
David Brooks

Protection Basics

• Processes should not interfere with each other in
multiprogramming environments

• Simplest Scheme: Two registers: Base + Bound
(Base + Address) < Bound

• How to modify these registers?
• Programs can’t modify or they can cheat!

15

Computer Science 146
David Brooks

Protection: Requirements
• OS kernel mode: special privileges available

– Can access memory via physical addresses
– Deals with base offset registers
– System calls jump from user mode to kernel mode
– User process says what it wants done, kernel does it

• More robust scheme:
– Maintain separate VA spaces (page tables) per process
– Must access memory through address translation
– Do not know about address translation mechanism

(page table)

Overall Memory
System

Page Size: 8KB
256-entry TLB
8KB L1 Cache
4MB L2 Cache
VA 64 bits
PA 41 bits

16

Computer Science 146
David Brooks

Memory Summary

• Main Memory
– DRAM is slow but dense
– Interleaving/banking for high bandwidth

• Virtual Memory, Address Translation, Protection
– Larger memory, protection, relocation,

multiprogramming
– Page tables
– TLB: cache translations for speed

• Access in parallel with cache tags

