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And now I se. with eye serene
• The very pulse of the m achin e.

--William Wordsworth

Abstrac t

A systolic system is a network of processors which rhythmically compute and pass
data through the system. Physiologists use the word syst ole” to refer to the
rhythmically recurrent contraction of the heart and arteries which pulses blood
through the body. In a systolic computing system, the function of a processor is
analogous to that of the heart. Every processor regularly pumps data in and out,
each time performing some short computation, so that a regular flow of data is kept
up In the network.

Many basic matrix computations can be pipelined elegantly and efficiently on
systolic networks having an array structure. As an example, hexagonally connected
processors can optimally perform matrix multiplication. Surprisingly, a similar
systolic array can compute the LU-decomposition of a matrix. These systolic arrays
enjoy simple and regular communication paths, and almost all processors used in the
networks are identical. As a result, special purpose hardware devices based on
systolic arrays can be built inexpensively using the VLSI technology.

1. Introduction

t Developments in microelectronics have revolutionized computer design. Integrated
circuit technology has increased the number and complexity of components that can
fit on a chip or a printed circuit board. Component density has been doubling every

one-to-two years and already, a multiplier can V it on a very large scale integrated
(VLSI) circuit chip. As a result , the new technology makes it feasible to build

low-cost special purpose, peripheral devices to rapidly solve sophisticated problems.
Reftocting the changing technology, this paper proposes new multiprocessor

• 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

. 

•

~ ~r -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 
• - -



• 
~~--~~~~~~

w- —
_ _ _  -- - - - -

~~~~~~~~~~~~
- - - - -  -

~~~

structures for processing some basic matrix computations.

~~~ are inter ested in high-performance parallel structures t.b~~ c.~ ~implemented directly ~~ low-cost hardware devices. By performance, we are not
refering to the traditional operation counts that characterize classical analyses of
algorithms, but rather, the throughput obtainable when a special purpose peripheral
device is attached to a general purpose host computer. This implies that time spent
in I/O, cont rol , and data movement as well as arithmetic must all be considered. VLSI
offers excellent opportunities for inexpensive implementation of high performance
devices (Mead and Conway (19783). Thus, in this paper the cost of a device will be
determined by the expense of a VLSI implementation. “Fit the job to the bargain
components ” -- Blakeslee (1975, p. 4].

VLSI technology has made one thing clear. Simple and regular interconnect ions
lead to cheap implement ilions and high densities, and high density implies both high
performance and low overhead for support components. (Sutherland and Mead
(1977] has a good discussion on the importance of having simple and regular
geometries for data paths.) For these reasons, ~~ are interest ed ~ desi~~~ g
mUltiDrOCCSSOt structures which ~~~~ simple ~~~ regular communication paths, We
are also interested ~ emolovin~ pipelining as a general method 

~~ 
using these

structures. By pip.lining, computation may proceed concurrently with input and
output, and consequently overall execution time is minimized. Pipelining plus
multiprocessing at each st age of a pipeline should lead to the best-possible
performance .

Syst olic systems provide a realistic model of computation which captures the
concepts of pipelining, parallelism and interconnection structures. We do not want to
give a formal definition of systolic systems here. For the purpose of this paper, it

suff ices to view a systolic system as a network of processors which rh ’thmically
compute and pass data through the system. The analogy is to the rhythmic
contraction of the heart which pulses blood through the circulatory system of the
body. Each processor in a systolic network can be thought of as a heart tha t pumps
multiple streams of data through itself. The regular beating of these parallel
processors keeps up a constant flow of data throughout the entire network. As a
processor pumps data items through, I t performs some constant-time computation
and may update some of the items.

Unlike the closed-loop circulatory system of the body, a systolic computing system
usually has ports into which inputs flow, and ports where the results of the systolic
computation are retrieved. Thus a systolic system can be a pipelined system - input
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and output occur with every pulsation. This makes them attractive as peripheral
processors attached to the data channel of a host computer. Figure 1—1 illustrates
how a special purpose systolic device might form a part of a POP-i 1 system. A
systolic device may also process a real-time data stream or be a component in a
larger special purpose system. -

~~~~ 
. U N I B U  S

- - 

.
- - t c PuJL~~ ;1I

_ _ _ _ _  _ _ _  EE~~~~ J

Figure 1-1: A syst o lic devic e connected to the UNIBLJS of a POP-Il.

This paper deals largely with systolic systems where the underlying network is
array structured. (See also Kung and Leiserson (19783.) An array network is
attractiv, for it enjoy s simple and regular communication paths. In Section 2, we
describe the basic hardware requirements and interconnection schemes for the
systolic arrays proposed and discuss the feasibility of building them in VLSL Section
3 deals with the matrix-vector multiplication problem. Multiplication of two matrices
Is considered in Section 4. In Section 5, we show that essentially the same systolic
arrays for matrix multiplication in Section 4 can be used to find the
LU-decomposition of a matrix. Section 6 is concerned with solving triangular linear
systems. We show that this problem can be solved by almost the same systolic
array for matrix-vector multiplication described in Section 3. Section 7 discusses
applications and extensions of the results presented in the previous sections. The
applications include the computations of finite impulse response filters, convolutions,
and discrete Fourier transforms. Some concluding remarks are given in the last
section. 

• 
-

The size of each of our systolic array networks is dependent only on the band
width of the band matrix to be proc.ssed, and is independent of the length of the
bend. Thus, a fixed size systoli c array can pipeline band matrices with arbitrarily
long bands. The pipelining aspect of our arrays is, of cours a, most effective for
band matrices with long bands. Band matrices are interesting in their own right,
since many important scientific computations involve band matrices. For these
reasons, most of the results in this paper will be presented in terms of their
app lications to bard matric es. AU the results apply to dense matrices since a d nss
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matrix can be viewed as a band matrix having the maximum-possible band width.

2. The Basic Components and Systolic Array Structures 
-

2.1 The Inner Product Step Processor

The single operation common to all the computations considered in this paper is
• the so-called inner product step, C i- C + A x B. We postulate a processor which

has three registers RA, R8, and RC. Each register has two connections, one for inpuj
and one I or output. Figure 2-1 shows two types of geometries for this processor.

(•) . (bi - 

-

FIgure 2—1: Geometries for th. inner product step processor.

Type (a) geometry will be used for matrix-vector multiplication and solution of
triangu lar linear systems (Sections 3 and 6), whereas type (b) geometry will be used
for matrix multiplication and LU-decomposition (Sections 4 and 5). The processor is
capable of performing the inner product step and is called the 

~~~~ 
product ~~~~

processor. We shall define a basic time unit in terms of the operation of this
processor. In each unit time interval, the processor shifts the data on its input lines

denoted by A, 8 and C into RA, - RB and P0 respectively, computes
.- R~ + x R5, and makes the input values !or RA and P8 together with the

new value of R
~ 

availabl, as outputs on th, output lines denoted by A, 8 and C,
respectively. All outputs are latched and the logic is clocked so that when one
processor is connected to another, the changing output of one during a unit time
Interval will net interfere with the input to another during this time interval. This is
not the only processing element we shall make use of, but It will be the work horse.
A special processor for performing division will be specified later when it is used.
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4( 2.2 Systolic Arrays

A systolic device is typically composed of many interconnected inner product step
processors. The basic network organization we shall adopt is the mesh-connected
scheme in which all connections from a processor are to neighboring processors.
(See Figure 2-2-)

I H I I I  Li -

(a) linearly connected -

c4’j~~~~~~~~
;o 

- 

(b) orthogonafly connected

(C) hexagonally connected

• Flgyre 2-2: Mesh-connected systolic arrays.

-4

The most widely known system based on this organization is the ILLIAC IV (Barnes
ce .1. (1968)). II diagonal connections are added in one direction only, we shall call

the resulting scheme hexa~onallv mesh-connected or hex-connected for short. We
shall demonstrate that linearly connected and hex-connected arrays are naturai for
matrix problems.

Processors lyin~ on the boundary of the systolic array may have external
connections to the host memory. Thus, an input /output data path of a boundary

• processor may sometime s be designat ed as an external input /output connection for
the device. A boundary processor may receive input from the host memory through
such an external connection, or it may receive a fixed val ue such as zero. On the
other hand, a boundary pr ocessor can send data to the host memory through an
external output connection. An output of a boundary processor may sometimes be

Ignored. This will be designated by omitting the corresponding output tine.
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In this paper we assume that the processors in a systolic array are synchronous
as described in Section 2.1. However, it is possible to view the processors being

r asynchronous, each computing its output values when all its inputs are available, as

in a data flow model. For the results of this paper we believe the synchronous
approach to be more direct and intuitiye.

The hardware demands of the systolic arrays in this paper are readily seen to be
modest. The processing elements are uniform4 interprocessor connections are simple
and regular, and external connections are minimized. It is our belief that
construction of these systolic arrays will prove to be cost-effective using, f o r

instance, the modern VLSi technology. 
-

3. Matrix—Vector Multiplication on a Linear Systolic Array

We consider the problem of multiplying a matrix A — (a,1) with a vector
x — (xj,...,x~)T. The elements in the product y — ~~~~~~~ can be computed by the
following recurrences.

y~1) — 0,

y~k+l)_ y~k)  + alkx kl 
. 

-

Yi — ~(n+1)

Suppose A is an nxn band matrix with band width w — p+q-1. (See Figure 3-1 for
the case when p — 2 and q — 3.) Then the above recurrences can be evaluated by
pipelining the x 1 and y~ through a systolic array consisting of w linearly connected
inner product step processors. We illustrate the operation of the systolic array fo
the band matrix-vector multiplication problem in Figure 3-1. For this case the
linearly connected systolic array has four inner product step processors. See
Figure 3-2. -

The general scheme of the comp utation can be viewed as follows. The 
~ ,. 

which
are initially zero, are pumped to the left while the x

~ are pumped to the right and
th. a11 are marching down. (For the general problem of computing Axed where
dul4dLp..Idn)T is any given vector , y , should be initialized as d1). All the moves are
synchronized. It turns out that each Yj is able to accumulate all its terms, namely, a1
I—2x1_2, ai,,_ lx i_ l , aj ,j xj and a1,,~1x 1~1, before it leaves the network. Figure 3-3
illustrates the first seven pulsations of the systolic array. Not. that when y 

~ 
and

are output they have the correct values. Observe also that at any given time
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Figure 3-1: Multiplication o :  vector by. band rn:tr,z with p. 2 and q • 3
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Figure 3-2: The linearly connected systolic array for the matrix—vector
multiplication problem in Figure 3—1.
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Pulse Configuration Comments
Number

•.u
—

~~
- -

r .i IJ j~ 
initialized as zero,

is pumped into the fourtho ER H______ ______ 

processor.

• x, La pumped into the first

______ ~~~~ 

—j
~ 

processor while y, is moved
1 

~~ 
I—i left one place . (From now

— on the x and y, keep movingI,  ~‘1 right aa~t left , respectively.)

a,, enters the second
LF y l.4 1I Y~J 

pr~cessor where y, is
2 

Hx
a ut

_~~ 
updated by y’ y, + 

~~ 
X1 .

_____  _____  _____  _____  Thus y~ 
— a~ x , .

S

a,~~and a59 enter the first
and third processors,

x a ,, j~~ -, x a~~”J~~~~~~~~~~~
j

Y u I~tI respectively. y, — a,,x,+ ~~~~1 
_ _ _  _ _ _  _ _ _______ ______ ______ ______ 

and y~~ a~,x1.

~ •~l LI y,kI itl ~31 ~ is pumped out
7: - 112 X 1+ a~Lx~4 Ax, a,, rEx 3s — 

~~

______ _____~~~
x ~3H I ~~ 

— 
~~~~~~ 

8ZZX;+ IdC3*
5 ~ a,, L~ — a,, I~ l i Y3 

— 8~ X 1+ a3l~
c5.

- • ‘ _ii 7 I I  I

I~J y .1 y~is pumped out.y, .,~J6 
i~~~~~~~~iL H’~ ’ y.~ a,~

c,.
y, a31x 1+ ~~i~~+ a~z 3 .

Figure 3-3: Th. first seven pulsat ions of th. linear systolic array in Figur. 3-2.

alternate processors are idle. Indeed, by coalescing pairs of adjacent processors, I t

is possible to use w/2 processors in the network for a general band matrix with
band width w.
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We now specify the operation of thc ystolic array more precisely. Assume that
the processors are numbered by integers 1, 2,..., w fr om the left end processor to
the right end processor. Each processor has three registers , 

~A’ Rx and R~, which
will hold entries in A, x and y, respectively. Initially, all registers contain zeros. -

• Each pulsation of the systolic array consists of the following operations, but for odd
numbered pulses only odd numbered processors are activated and for even
numbered pulses only e~’en numbered processors are activa ted.

1. Shif t.

— RA gets a new element in the band of matrix A.

— R
~ gets the contents of register R

~ 
fr om the left neighboring

node. (The R
~ 

in processor 1 gets a new component of x.)

- - R~ gets the contents of register R
~ from the right neighboring

node. (Processor 1 outputs its contents and the Ry in
processor w gets zero.)

2. MultipLy and Add.

Ry $ R y + R A X R x.

Using the type (a) inner product step processor postulated in section 2, we note
that the three shift operations in step 1 can be done simultaneously, and that each
pulsation of the systolic array takes a unit of time. Suppose the bandwidth of A is
w . peg-i. It is readily seen that after w units of time the components Of the
pr oduc t y — Ax are pumped out frcm the left end processor at the rate of one
output every two units of time. Therefore. y

~jz~
g, our systolic network all thc. ~components of ~ c~n be computed ~ 2n+w time u~i!s as compared to the O(wn) time

needed for ! seouential algorithm on a uniprocesspr computer.

4. Matrix Multiplication on a Hexagonal Systolic Array -

This section considers the problem of multiplying two nxn matrices. Il ls easy to
see that the matrix product C — (c

~
) of A — (a~) and B — (b1~) can be computed by

the following recurrences.

— 0,

cfju1).. cli’) + alkbkJ.

—

___________ 
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Let A and B be nxn band matrices of band width w 1 and w 2, respective ly. We show
how the recurrences above can be evaluated by pipelining the 

~~ ~~ and c
~

through a sys tolic array having w 1w 2 hex-connec ted inner product step processors.
We illustrate the general scheme by considering the matrix multiplication problem

• depic ted in Figure 4-1. The diamond shaped systolic array for this case is shown in
Figure 4-2, where processors are hex-connected and data flows are indicated by
arrows.

a ,, a 1, a b,, b,, b,, c ,1 c , C ,, C ,4

a,, a,, a,, b,, b,, b,, b,, • c ,, c,, c,, c,,
a ,, a,, a,, a,, b,, b,, b,, b,, 

= 
c,, C,, c~~~c,,

a,, . b,, . c,, c,, .-

_ o 
• 

.

.•

— 
_ o

•• 

.

.

-

• 

_ o 
.

~~~~~~
._j

A • B  C

• Figure 4—1 : Band matrix multiplication.

The elements in the bands of A, B and C are pumped through the systolic network in
three directions synchronously. Each c~ is initialized to zero as it enters the
network through the bottom boundaries. (For the general problem of computing
AB+D where D~(d,~) is any given matrix 1 c1~ should be initialized as 

~~~ One can

easily see that with the type (b) inner product step processors described in Section
2, each c~ is able to accumulate all its terms before it leaves the network through
the upper boundaries. Figure 4-3 shows four consecutive pulsations of the
hexagonal systolic array. The reader is invited to study the data flow of this
problem more closely by making tranparencies of the band matrices shown in the
f igures , and moving them over the network picture as described above.

nxn ~~~~ matrices 
~~ ~~~~~ width ~~ ~~~ 

resoectively . fl2p~~!
systolic array Qj. w 1w2 hex-connected processors ~~ pipeline ~~~ matrix
myltiolicatipn AxB j~ 3n.min(w 1. ~~~ ~~~ ~~~ Note that in any row or column of
the network, out of every three consecutive processors, only one is active at given

time. It is ’ possible to use about (*1w2)/3 processors in the network for multiplying
two band matrices with band widths w 1 and w2.
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S
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S • $
S • S

S
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. 

• I • 

C3, C,, 

~

I
C,5, CII, C11,

5 5

Figure 4—2: The hex-connected systolic array for the matrix multiplication problem
• in Figure 4-1.
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.
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(c)
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• It
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•

- (ci) _ c 33

Figuro 4-3: Four pulsations of lhc. hnxagonal Cy~toti~ array in Fi~urn 4-2. •

_ _ _ _ _  

• 

13

4~ ~~~~~~ -
_ 
,- -..-~~~- •

~~~~
,• 

• 
• 

—
~~~~~~2Ø~~~~~~~ — —•- - LL~ 

~~~~~~
—7, 

— •0• r ~~ 
— 

“
• _ • ~ • • . r_ WW _ 

~~ • ,~~~~~~~~~
_. -•



5. The LU-Decomposition of a Matrix on a Hexagonal Systolic Array

The problem of factoring a matrix A into lower and upper triangular matrices I

and U is called LU-decomposition. Figure 5-1 illustrates the LU-decomposition of a

band matrix with p — 4 and q — 4. Once the L and U factors are known, It is

relatively easy to invert A or solve the linear system Ax — b. We deal with the

latter problem in section 6~ This section describes a hexagonal systolic array for

computing LU-decompositions.

a,, a,, 
~, 

a,4 o • 
1 U,~ U,5, U,, U,, 0

• a,I sn a,, s2l a,, ~S 1 0 u,,U,, U,, U,,
t,, l,, 1

• 

• 
• 

$5~ •13 41 = liii 11$ ~ 1 -

0

0 . 

• 

0

• A 
- • 

L U

• Figure 5—1: The LU-decomposition of a band matri x .

We assume that matrix A has the property that its LU-decomposition can be done 3
by Gaussian eliminat ion without pivoting. (This is true, or example , when A Is a

• symmetric positive-defin~te, or an irreducible, diagonally dominant matrix.) The
triangular matrices L — (I~) and U — (ui3) are evaluated according to the following i 

-

r curr.nc.s. 
-

.1?’ — a1~

af i’ ’1)— aIr) + 11k lSkj I
- 

( 0  f l i C k,
Ij — ~~1 • if I.k,

~ a~~uj~ if l)Ii,

• Uk ~~0 if k’j ,
I 

~. •~ ) If

We show that th. evaluation of these recurrences can be pipelirsed on a
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hex-connected ~y~tolic array of hex-connected processors. A global view of this
pipelined. computation is shown in Figure 5-2 for the LU-decomposition problem
depicted in Figure 5-1. The syst olic array in Figure 5-2 is constructed as follows.
The processors below the upper boundaries are the standard type (b) inner product
step processors and are hex-connected exactly same as the matrix multiplication
network presented in Section 4. The processor at the top, denoted by a circle, is a
special processor. It computes the reciprocal of its, input and pumps the result
southwest, and also pumps the same input northward unchanged. The other
processors on the upper boundaries are again type (b) inner product step
processors, but their orientation is changed: the ones on the upper left boundary
are rotated 120 degrees clockwise; the ones on the upper right boundary are
rotated 120 degrees counterclockwise.

The flow of data on the systolic array is indicated by arrows in the figure. As in
the hexagonal syst olic array for matrix multiplication , each processor only operates
every third time pulse. Figure 5-3 illustrates four consecutive pulsations of the
systolic array. Note that in the figure, because A is a band matrix with p — 4 and

• q — 4 we have that a~~j ,j — ~~~~ and a~~ 3— aI,~+3 for 1 � k � i and i ~ 2. Thus a52,
• for example, can be viewed as a~J when it enters the network.

• There are several eguivateni systolic arrays that reflect only minor changes to
• the network presented in this section. For example, the elements of 1. and U can be

retrieved as output in a number of different ways. Also, the a-I- input to the
network can be changed to a ‘I” if the special processor at the top of the network
computes minus the reciprocal of its input.

Jj~ ~ 
nxn ~~~~~ matrix ~~j fl ~~~~ width w — o.o-L g systolic array having ~~

snore !i~~ ~g, hex-connected processors ç,~~ compute !h~. LU—decpmpositioI~ ~j  A in

3r1+min(D.Q) ~~~~ ~j  ~~~~ If A is an nxn dense matrix , this means that
hex-connected processors can compute the L and U matrices in 4n units of time
which includes I/O time.

The remarkable fact that the matrix multiplication network forms a major part of
the LU-decomposition network is due to the similarit y of their defining recurrences.
In any row or column of the LU-decomposition systolic array, only one out of every
three consecutive processors Is activ , at a given time. As we observed for m.trix
multiplication, the number of processors can be reduced to about pq/3.
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6. Solving a Triangular Linear System on a Linear Systolic Array

Suppose that we want to solve a linear system Ax — b. Then after having done
the LU-decomposition of A (e.g., by methods described in Section 5), we still have to
solve two triangular linear systems Ly — b and Ux — y. This section concerns itself
with the solution of triangular linear systems. An upper triangular linear system can
always be rewritten as a lower triangular linear system. Without loss of generality,
this section deals exclusively with lower triangular linear systems.

- 

Let A — (a11) be a nonsingutar nxn band lower triangular matrix. Suppose that A
and an n-vec tor b — (b1~..,b~)T are given. The problem is to compute x — (x1,...,x~)T

— such that Ax b. The vector x can be computed by forward substitution:

yf i) — 

- 

0,

y~k+I)u. y}k) 
+

- 
- x1 ‘~~ (b1—y~~)/a~. -

• a ,, • 
• 

— 

b ,
• a,, a,, x , b,

0 ba,, a,, a ,, x , •

L a,, a,, a,, a 
=

a,, a,, a,, a,, x, • b,

a,, • 
. S

0
- L

A x b

Figure 6—1 : Th. band (lower ) triangular linear system where q • 4.

Suppose that A is a band matrix with band width w — q. (Se. Figure 6-1 for the
case when q — 4.) Then the above recu rrences can be evaluated by • systolic array
similar to that used (or band matrix -vector multi plication in Section 3. (Observe the
similarity of the defining recurrences for these two problems.) We illustrat. our
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result by considering the linear system problem in Figure 6-1. For this case, the
systolic array is described in Figure 6-2.

I I

. : •w l
I 

- 
I

I I

: 1,, a ,
$ I
I I
I _ ,

• a:’, -

a,,
I • I
• I
I # 1  I
I a,,,’ I
I — I

- I a’ I
I I
• a’ $ I Is a lt ,, I I 

>x , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figur. 6-2: Th. linearly connected systolic array for soh4ng
the triangular linear system in Figure 6-1.

Th. y~ which are initially zero, are forced icftward through the systolic •rray
while the x,, a11 •nd b1 are pumped as Indicated In Figure 6-2. The l•ft end
processor is special In that It performs x,.-(bj-yi)/a~,. (in fact, the special processor
introduced in section 5 to soive the LU-decomposition problem I. a special case of
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this more general processor.) Each y1 accumulati.s inner product terms in the rest of
the processors as it moves to the left. At the time y1 reaches the left end processor
it has the value aIj x i+a~2x 2+...+a~,~ ix~..j, and, consequently, the x1 computed by
x~-(b1-y~)/a1~ at the processor will have the correct value. Figure 6-3 demonstrates
the first seven pulsations of the systolic array. From the figure one can check that
the final values of x 1, x2, x3 and x4 are all correc t. ~~j f l  ~~~ syst olic array we can
solve an nxn band trianRular linear system ~~~ ~~~~ width w — o in 

~~~~ 
units g.L

!irn~ As we observed for the matrix-vector multiplication problem, the number of
processors required by the array can be reduced to w/2.

7. Applications and Comments

7.1 Variants of the Systolic Array

If more information is available about the specific matrices involved, an optimized
version of the systolic arrays presented above can be used. It is important that the
reader understands the basic principles so that he can construct appropriate
variants for his specific problems. No attempt is made here to list all the possible
variants.

As pointed out in Section 1, although most of our illustrations are of band
matrices, all the systolic arrays work for regular nxn dense matrices. In - this case
the band width of the matrix is w — 2n-1. If the band width of a matrix is so large
that it requires more processors than a given array provides, then one should
decompos, the matrix and solve each subproblem on the network. Thus, for

example, the matrix multiplication of two nxn matrices or the LU-decomposition of an
nxn matrix can be don. in 0(n3/k2) time on a lcxk systolic array.

One can often reduce t he number of processors required by a systolic array if the
matrix is known to be sparse or symmetric. For example, the matrices arising from a
set of finite differences or finite elements approximations to differential equations
are usually “sparse band matrices”. These are band matrices whose nonzero entries
appear only in a few of those lines in the band which are parallel to the diagonal. In
this case by introducing proper delays to each processor for shifting its data to its• I neighbors, the number of processors required by the systolic array in Section 3 can
be reduced to the number of these diagonals which contain nonzero entries. This
variant is useful for performing iterative methods involving spars , band matrices.
Another example concerns the LU-decomposition problem considered In Section 5. If
matrix A is symm.trlc positive definite, then it is possible to use only the left portion
of the hex-connected network, since in this case U is simply OL~ wh re 0 is the
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• Pulse Configuration Comments
Number -

o •. — -  
‘ 7~ enters processor 4.

1 
- (I)[II~[II~’ 1III] moves left one position.

2 — y
~ 

enters processor 4.

a,, 
~ 

— (b,- y~)/a~.
~~l 

— (z, — , since y, — 0.)

yl .. 
— vs

~ — mu

5 ( ,,~F( ~~jX
UII’I

1~ ( l~
: Ya —

• 
~~~~~~~~~~~~~~~~~~~~~~~~ 

Y & ~~X + m~ Xe..

- x1 is pumped out

7 ~~~~ ~~~~~~~~~~~~ ~~~x, ;~:~~:~?t~.

• (
‘ a*III4 I14~

aII~ 
;~: ~~ 

s
~~

x
~+ s.~ x3.

• 
~~~~ P~mP~d~o

&;;

• ____  ____  ____  • •7~ a~~X~~+ £~3 X3.

.
.

Flgur. 6-3: Salving a lower band triangular system ,
- - i
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diagonal matrix 
~~~~~~ -

The optimal choice of the size of the systolic network to solve a particular
problem depends upon not only the problem but also the memory bandwidth to the
host computer. For achieving high performance, it is desirable to have as many
processors as possible in the network, provided they can all be kept busy doing
useful computations.

It is possible to use ou~, systolic arrays to solve some nonnumerical problems
when appropriate interpretations are given to the addition (+) and multiplication (x)

• operations. For example, some pattern matching problems can be viewed as matrix
problems with comparison and Goolean operations. It is possible to store a
dynamically cha:~ging data structure in a systolic array so that an order statistic can
always be determined in constant time. We shall report these results in a future
paper. It can be instructive to view the + and x operations as operations in an
abstract algebraic structure such as a semiring and then to examine how our results
hold in such an abstract setting.

7.2 Convolution, Filter, and Discrete Fourier Transform

There are a number of important problems which can be formulated as
matrix-vector multiplication problems and thus can be solved rapidly by the systolic
array in Section 3. The problems of computing convolutions, finite impulse response
(FIR) filters, and discrete Fourier transforms are such examples. If a matrix has the

• property that the entries on any line parallel to the diagonal are all the same, then
the matrix is a Toeplitz matrix. The convolution problem is simply the matrix-vector
multiplication where the matrix is a triangular Toeplitz matrix (see Figure 7— 1).

A p—tap FIR filter can be viewed as a matrix-vector multiplication where the
matrix is an band upper triangular Toepl itz matrix with band width w — p. Figure 7-2
represents the computation of a 4-tap filter.

• Qn the other hand, an n-point discrete Fourier transform Is the matrix-vector
multiplication, where the (i,j) entry of the matrix is and w is a primitive

~th root of unity. (See Figur. 7-3).

Therefore using a linearly connected systolic array of size n both the convolution
of two n-vectors and the n-point discrete Fourier transform can be computed In 0(n)
units of time, rather than 0(n log n) as required- by the sequential FFT algorithm.
Moreover, note that for the convolution and filter problems each processor has to
receive an entry of the matrix only once, and this entry can be shipped to the

TI. • 
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a , 
• — 

x , b,

a, a , 
- 

x. b,

a, a, a , 0 x, b,

a4 a, a, a x4 — b1

a, a a, a, a, x, •

Figure 7-1: Th. convolution of vectors a and x.

a , a, a , • a 
- 

x , .
0a , a, a, a x,

a , a, a, a, 
• 

x, Y,

a , •~ ~ •, x, — y,

0

A x y

FIgure 7-2: A 4-tap FIR filter with co.fficients a1, ~2’ a3, and s
~
.
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1 1 1 1 1 • x l b,

1 w 0’ O’~~ Cl’ x, b,

1 C~~
’ 0’ 0’ wI x , b,

1 w3 
0’ C )  0” x b4 = a

1 W’ 0 W~~~~CI’~ x bS I

Figur. 7-3: The discrete Fourier transform of vector x.

processor through horizontal connections and stay in the processor during the rest
of the computation. For the discrete Fourier transform problem each processor can
in fa ct generate on-the-fly the powers of w It requires. As a result, for these three
problems it is not necessary for each processor in the network to hays the external
Input connection on the top of the processor, as depicted in Figure 3-2.

In the following we describe how the powers of w can be generated on-the-fly
during the process of computing an n-point discrete Fourier transform. The
requirem ent is that if a processor ~s i units apart f~owi the n~idd e processor then at
time I + 2j the processor must have the value of wJ • ~J for all I, j. This requirement
can be fulfilled by using the algorithm below. We assume that each processor has

one additional register R~. All processors except the middle one perform the
following operations in each step, but for odd (respectively, even) numbered time
steps only processors which are odd (even) units apart from the middle processor
are activated. For alt processors except the middle one the contents of both RA and

are initially zero.

1. Shift. If the processor is in the left (respectively, right ) hand side of the
middle processor then

- — 

~A gets the contents of register RA from the right (respectively,
left) neighboring processor.

- 

~t gets the contents of register R~ from the right (respectively,
left ) neighboring processor.
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2. MuLtiply. 
-

RA .-RA X R I.

Th. middle processor is special; il performs the following operations at every
ever numbered time step. For this processor the contents of both 

~A a~d Rt are

initially one.

1. RA ‘ ~A ~ ~t2 X (4.

2. R~ ‘- Rt x 0. 
-

7.3 The Common Memory Access Pattern

Note that all the systolic arrays given in this paper store and retrieve elements of
the matrix in the same order.. (See Figures 3-2, 4-2, 5-2, and 6-2.) Therefore, we

recommend that matrices be alw ays arranged in memory according to this particular
ordering so that they can be accessed efficiently by any of th. systolic structures.

7.4 Tb. Pivoting Problem, and Orthogonal Factorization

In section 5 we assume that th. matrix A has the property that there is no need
of using pivoting when Gaussian elimination is applied to A. What should one do if A
does not have this nice property? (Note that Gaussian elimination becomes very
inefficient on mesh-connect processors if pivoting is necessary.) This question
motivated us~ to consider Givens’ transformation (see; for example, Hammering
(1974D for triangularizing a matrix, which is known to be a numerically stab le
method. It turns out that, like Gaussian elimination witho~jt pivoting, the orthogonal
factorization based on Gavens’ transformation can be implemented naturally on
mesh-connected processors, although a pip&in.d systolic array Implementation
appears to be more complex. Our results on Givens’ transformation will be reported
In another paper. (Sameh and Kuck (1978] considers parallel linear system solvers
based on Givens’ transformation, but they do not give solutions to the processor
communication problem considered in this paper.) • 

-

8. Concluding Remarks -

Systolic structures provide a model of computation for studying parallel algorIthms
for VLSI. Th, model takes into account issues such as 1(0, control, and

Interprocessor communication. In a systolic system oioelinint can ov•rlap I~O with
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computation to ensure high throughput. Since loading of data into the network
• occurs naturally as computation proceeds, no ex tra control logic is required. Nor is

initialization logic needed. Communication among processors is through fixed data

L 
paths. For a low cost and high performance implementation in VLSI (or even printed
circuit technology), it is desireable that these paths have simple and regular
geometries. These reasons make systolic arrays considered in this paper especially
attractive. Indeed, interconnection structures other than arrays exist which satisfy
these constraints. Future work will examine some of these connection schemes and
demonstrate that systolic systems generalize beyond simple cellular structures.

We have discovered that some data flow patterns are fundamental in matrix
computations. For example, the two-way flow on the linearly connected network is
common to both matrix-vector multiplication and solution of triangular linear systems
(Sections 3 and 6), and the three-way flow on the hexagonally mesh-connected
network is common to both matrix multiplication and LU-decomposition (Sections 4
and 5). A practical implication of this fact is that one systolic device may be used
for solving many different problems. Moreover, we note that almost all the
processors needed in any of these devices are the inner product step processor
postulated in Section 2. A careful desi gn of this processor is desirable since it is
the work horse for all the devices presented.

Research in interconnection networks and algorithms has been frequently
- motivated by parallel array computers such as ILLIAC IV. (See, for example, Kuclc

(1968, 1977] and Stone (1975].) Although th, results presented in this paper were
motivated by the advance is VLSI, they reach beyond. The systolic arrays in this
paper can be implemented as efficient algorithms on traditional parallel array
machines.

For the important problem of solving a dense system of n linear equations ifl 0(n)
time on n2 mesh-connected processors, we have improv•d upon the recent results
of Kant and Kimura (1978). The basis of their results is an theorem on determinants
which was known to J. Sy lvester in 1851. Their algorithm requires that the matrix
be “strongly nonsingular ” in the sense that every square submatrix is nonsingular.
It is sufficient for our algorithms that the matrix be symmetric positive —definit , or
irreducible diagonally dominant.

loire (1977), and Thurber and Weld (1975) describe some matrix multiplication
algorithms on an orthogonally connected processor array. Unlike our results, their
algorithms require that one or more of the three matric es invølved In matrix
multiplication stay in the array statically during the computat ion. This introduces

27

I

I

~~ ~ r’~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
-
~i’~ ~~~~~~~~ -

-4*. 
__.

,

l__ ~~~~ ‘~

- ‘ - -______ ________



- - - -- - - - — - ~~~~ - - - --- ~~~~~~- ---—~~~~ -

overheads in 1/0 time and control logic for loading the array with the static matrix.
Our systolic array makes use of the hexagonal connections to pipeline all three
matrices. - -

Processor communication will likely dominate the cost of parallel algorithms and

systems. Communication paths inherently require more space and energy than
processing elements do. We regard the problem of minimizing communication costs
as fundamental, and we believe systolic structures provide models that can bridge
th, gap between theory and practice. Systolic arrays ç~~ be built in VLSI.
Connected to a standard Von Neumann computer, a systolic device provides
inexpensive but massive computation power.
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