
SphereFed: Hyperspherical Federated Learning

Xin Dong1, Sai Qian Zhang1, Ang Li2, and H.T. Kung1

1 Harvard University
2 UT Dallas

xindong@g.harvard.edu

Abstract. Federated Learning aims at training a global model from
multiple decentralized devices (i.e. clients) without exchanging their pri-
vate local data. A key challenge is the handling of non-i.i.d. (indepen-
dent identically distributed) data across multiple clients that may induce
disparities of their local features. We introduce the Hyperspherical Fed-
erated Learning (SphereFed) framework to address the non-i.i.d. issue
by constraining learned representations of data points to be on a unit
hypersphere shared by clients. Specifically, all clients learn their local
representations by minimizing the loss with respect to a fixed classifier
whose weights span the unit hypersphere. After federated training in
improving the global model, this classifier is further calibrated with a
closed-form solution by minimizing a mean squared loss. We show that
the calibration solution can be computed efficiently and distributedly
without direct access of local data. Extensive experiments indicate that
our SphereFed approach is able to improve the accuracy of multiple ex-
isting federated learning algorithms by a considerable margin (up to 6%
on challenging datasets) with enhanced computation and communication
efficiency across datasets and model architectures.

Keywords: Federated learning, efficient classifier calibration.

1 Introduction

Federated learning (FL) is an emerging machine learning paradigm in which
distributed clients learn on private data and communicate with a coordinating
server to train a single global model that generalizes well across local data [51,
69]. One of its major challenges is the the handling of non-i.i.d. (independent
identically distributed) local data across clients [32, 40, 42]. Non-i.i.d. local data
leads to disparity of local models after learning on private data [94]. For instance,
different feature3 extractors in local models may learn biased and discrepant
input-to-feature mapping functions for the same class [18, 41, 89]. This obstructs
the convergence of collaborative training.

Existing federated learning algorithms primarily tackle the non-i.i.d. prob-
lem in two phases: (i) In the local learning phase, regularization terms [2, 43,
80] and additive objectives [41, 84, 97] are used to control distances among local
models via constraining the learning process. (ii) In the post-learning phase, the

3 The terms representation and feature are used interchangeably.

The 17th European Conference on Computer Vision (ECCV 2022),
October 2022

2 X. Dong et al.

Aggregation

Communication

Local learning

Classifier

Feature
Extractor

Fixed and
shared

Learnable

Normalize
...

Non-i.i.d local data

Fe
de

ra
te

d
Tr

ai
ni

ng

Fast Federated Calibration

H
yp

er
sp

he
re

 fo
r F

ea
tu

re
s

(s

pa
nn

ed
 b

y
)

1

2

N
...

1 2 N...
2 2

1 1

N N

...
...

...

Fig. 1. Left : An overview of SphereFed (Hyperspherical Federated Learning). Before
federated training starts, we construct a fixed shared classifier whose weight vectors
span an unit hypersphere. After federated training ends, we calibrate the classifier in a
distributed manner. Middle: All clients share the same hypersphere and learn to map
local samples (markers represent clients) from the same class (colors represent classes)
to the same area on the hypersphere whose centroid (the pentagram) corresponds to a
weight vector. Right : Leveraging the linearity of the classifier, we derive its closed-form
optimum which can be precisely computed by distributed clients. Z⊤Z and Z⊤Y are
computed distributively because a matrix multiplication can be implemented as an
accumulation of outer products and each outer product depends only on one client.

inevitable divergence of local models is corrected with additional information ex-
change [24, 32, 66, 79, 82] and advanced aggregation strategies such as normalized
averaging [76], distillation [39], and so on [3, 5, 60, 87].

In this work, we argue that federated learning can also be improved in the
pre-learning phase; this is a novel research direction complementary to existing
approaches. A key insight is the use of a fixed classifier (e.g., the last fully-
connected layer) that serves as a template of the feature extractor’s output for
all clients. Note the loss function is often computed on the inner product between
the feature vector (i.e., output of the feature extractor) and the classifier’s weight
vectors. During local training, the feature extractor is optimized to project data
from the i-th class to feature vectors that have the maximum inner product with
the i-th of row of the classifier. We refer to the classifier as learning target of the
feature extractor. However, higher data heterogeneity leads to a larger disparity
of classifiers (in terms of both norms and directions) across clients. In this regard,
if the local classifiers can be aligned, clients would have more consistent learning
targets without modifying the learning procedure. Unfortunately, a real-time
classifier synchronization carries prohibitively high communication overhead for
federated learning. To avoid this communication cost, we use instead, for all
clients, a fixed classifier constructed from orthonormal basis vectors.

Motivated by this insight, we propose to construct a classifier whose weight
vectors span an unit hypersphere before the federated training starts. Throughout
federated training, this classifier is fixed and shared by all clients. Meanwhile, we
also normalize the feature representation to the same hypersphere. During local
learning, clients’ feature extractors learn to map data samples from the same
class to the same area on the hypersphere whose centriod is the corresponding
row vector of the classifier. As a result, the learned local features for data be-

SphereFed: Hyperspherical Federated Learning 3

longing to the same class are better aligned and the interference among local
models are reduced, leading to an improved accuracy of the global model.

We name our approachHyperspherical Federated Learning (SphereFed), which
is a generic framework compatible with existing federated learning algorithms.
An overview of the framework is illustrated in Fig. 1. SphereFed does not in-
troduce extra hyper-parameters nor requiring additional computation. In fact, a
pre-defined classifier eliminates the need of communication and brings improved
efficiency to the system. Given that the classifiers are frozen during federated
training, we propose to calibrate the classifier after federated training to achieve
its optimum in a provable and lightweight manner. We first derive the closed-form
optimum of the classifier leveraging its linearity and find that this closed-form
solution can be precisely computed in a distributed manner without direct access
to the private features (or data). We name this calibration method Fast Federated
Calibration (FFC), which is provable and efficient compared with state-of-the-art
methods (e.g., [48]) that depend on synthetically generated virtual features.

We conduct extensive experiments to demonstrate that the proposed SphereFed
method is compatible with and complementary to several existing federated
learning algorithms, capable of introducing up to 6% improvement on testing
accuracy. Further experiments show that our proposed calibration achieves a
performance gain comparable to the oracle fine-tuning with real features, veri-
fying its theoretical optimality. A set of ablation studies are further presented
to understand the efficacy of each design component in SphereFed.

2 Related Work

Standard Federated Learning. Federated learning (FL) was originally pro-
posed by [51, 69]. To address the non-i.i.d. problem, works have been pursued in
two directions: imposing additional constraints in the local learning phase [43,
64, 66, 84] and conducting weight correction in the post learning phase [48, 60, 76,
87]. There have also been studies that tackle the non-i.i.d. issue by augmenting
the on-client and on-server data with public [39] or synthetic [85, 97] samples.

Personalized Federated Learning. Personalized federated learning (pFL)
differs from FL, by relaxing the setting of standard FL to allow each client to
have its personalized local model via, e. g., additional local epochs after standard
FL [11, 44]. In general, a personalized local model is more likely to obtain better
accuracy on a local test set than the single global model, but the personalized
local model could be more biased and less general to data from other sources [29,
77]. So, pFL and FL has different use focuses and application scenarios. Inspired
from transfer learning [57, 86], a line of pFL methods learns local private param-
eters for the classifier but uses a shared feature extractor [7, 15, 70]. A concurrent
and most related work is FedBABU which finds that fixing the classifier during
collaborative learning is beneficial to the personalization process. Although this
finding is consistent to our observations to some extent, our contribution is sub-
stantially different from FedBABU. First, we focus on FL while FedBABU focuses
on pFL. Second, we ensure a stable performance gain resulting from an in-depth

4 X. Dong et al.

analysis on the benefit of fixing classifier. Third, we further propose a provable
calibration method to improve the classifier after federated training.

Decoupling Layers for Federated Learning. Dealing layers at different
depth with varying strategies has demonstrated effectiveness for many tasks
in centralized training [23] like few-shot learning [65, 83], domain adaption [28,
75] and meta-learning [55, 59]. Such layer decoupling studies could also benefit
federated learning applications. For instance, parameters from different layers
can be updated and synchronized with different frequency to save communica-
tion cost [12, 13, 16]. FedRecon [68] splits a model into global/local parts and
reconstructs the local part on clients in each round to improve privacy and ef-
ficiency. FedUFO [89] resorts an adversary module to reduce the divergence of
feature extractors on clients. A most related work is CCVR [48] which also fo-
cuses on the classifier. CCVR conducts on-server calibration for the classifier by
fine-tuning it with virtual features sampled from Gaussian distributions. This
work uses fundamentally different methodologies for the classifier and has higher
performance gains and less communication/computation costs against CCVR.

Hyperspherical Representation. To the best of our knowledge, this is the
first work introducing hyperspherical representation to address the non-i.i.d.
challenge in FL. This combination is not trivial but motivated by analytical
justifications and empirical supports as elaborated in the remaining sections.
Hyperspherical representation has been widely adapted by studies on face recog-
nition [45, 95], long-tail recognition [31], regression [52], metric learning [88, 96]
and contrastive learning [33] to enhance the discriminative power of features. In
this work, under the context of FL, we use hyperspherical features with fixed
targets to align the learning objectives and minimize cross-party interference.

3 Federated Learning with Non-i.i.d. Clients

3.1 Terminologies

We consider K clients and a central server in a federated learning system. Each
client k ∈ [K] has a local and private dataset Dk. We focus on the non-i.i.d. data
setting where local datasets could have heterogeneous distributions [40]. The goal
is to train a single global classification model collaboratively which performs well
on the global test set. The loss function is represented using L(·, ·).

For a single training example (x, y), let z = fθ(x) ∈ Rl denote the l-dimension
feature vector given a feature extractor fθ(·) parameterized by θ. The classifier
hW(·) takes z as input and makes the final prediction after a linear transforma-
tion o = hW(z) = Wz + b with a weight matrix W ∈ RC×l, where C is the
number of classes. For simplicity, we omit the bias term b in future equations.

3.2 Non-i.i.d. Data Leads to Inconsistent Local Learning Targets

In each round of standard federated learning, each client optimizes the feature
extractor and the classifier (θ,W) jointly. Then each client sends its updated

SphereFed: Hyperspherical Federated Learning 5

1 10 20 30 40
Number of rounds

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

ila
rit

y
1 10 20 30 40

Number of rounds

0.1

0.2

0.3

No
rm

 d
iff

er
en

ce

Non-IID: Low Non-IID: Medium Non-IID: High Ours

Fig. 2. Direction and norm alignment of classifiers’ weights across clients. For the sake
of simplicity, we train ResNet18 on CIFAR-100 with 10 clients for 50 rounds, using
FedAvg in this empirical study. The non-i.i.d. level is controlled by the concentration
parameter of a Dirichlet distribution [32, 40, 42]. There is a clear negative correlation
between non-i.i.d. level and consistency of classifiers’ weights across clients, which
incurs inconsistent local learning targets.

feature extractor and classifier (θk,Wk) to the central server which aggregates
(e.g., averages [51]) all received local models into a single global one used for the
next round. Prior studies [40] focus on either the local training loss function or
an advanced aggregation strategy.

In this work, we pay special attention to the classifier. A classifier is the closet
layer to the loss function and the i-th row of its weights wk

i acts as a feature
template and the learning target of the i-th class for the feature extractor. As a
result, the disparity of classifiers across clients induces inconsistent local learning
targets and further engenders local feature extractors’ disparity. A performance
degradation may occur after aggregation in the central server.

The above hypothesis is verified by empirical observations. To show that, we
rewrite the output of the classifier as,

Wkz =
[
wk

1z, . . . ,w
k
i z, . . . ,w

k
Cz

]
, where wk

i z = ∥wk
i ∥∥z∥ · cos

(
∠
(
wk

i , z
))

. (1)

∠(·, ·) denotes the angle between two vectors and ∥ · ∥ is the euclidean norm of a
vector. A local feature extractor fk

θ learns to maximize the output of the ground-
truth class, wk

i z, ∀i = y, and minimize outputs of other classes wk
j z, ∀j ̸= y. In

summary, Eq. (1) highlights that both norms and directions of classifier’s weight
vectors impact the optimization of feature extractor and thus (at least partially)
effect the distribution of features generated by the feature extractor.

We empirically find that there is a clear negative correlation between non-
i.i.d. degree and the consistency of classifiers’ weights (in terms of both norm
and direction) across clients. We compute the cosine similarity (Eq. (2) and
Fig. 2, Left) and norm difference (Eq. (3) and Fig. 2, Right) of classifier weight
vectors for the same class but from arbitrary two different clients (k1 ̸= k2 and
1 ≤ k1, k2 ≤ K) using FedAvg [51].

Ec∼[C],k1 ̸=k2

[
wk1

c ·wk2
c

∥wk1
c ∥∥wk2

c ∥

]
(2) Ec∼[C],k1 ̸=k2

[∣∣∥wk1
c ∥ − ∥wk2

c ∥
∣∣] (3)

According to Fig. 2, data with a higher degree of non-i.i.d. is associated with less
direction alignment and larger magnitude difference of classifier weight vectors
among clients, which lead to weaker consistency of the local learning targets.

6 X. Dong et al.

This will further engender non-overlapped feature distributions for the same
class on different clients as illustrated in Fig. 3 (Left).

4 Hyperspherical Federated Learning

4.1 Hyperspherical Representation

A simple yet effective tweak to bypass the aforementioned issue is to align fea-
tures from clients on a hypersphere, aided by a fixed classifier. In Eq. (1), we
show that both the norm and the direction of k-th weight vector wk

i play crucial
roles in the learning of fθk but a non-i.i.d. data distribution causes a disor-
der of norms and directions. To tackle this problem, we consider to construct
Wk = {wk

i }Ci=1 manually, which has a unit norm and orthogonal components,

Wk =
{
wk

i

}C

i=1
, where ∥wk

i ∥ = 1 and wk
i ⊥ wk

j , ∀ i = j. (4)

Note that {wk
i }Ci=1 span an l-dimension unit hypersphere. The orthogonality

among {wk
i }Ci=1 ensures the maximum separation between arbitrary pair of

classes. In addition, the uniformly unit norm guarantees balance in classes. Fea-
ture normalization is further adapted to project feature vectors on the same unit
hypersphere, z̃ = z/∥z∥. Normalizing features enables fk

θ to focus on learning
feature vectors’ directions and makes federated training process more robust to
feature magnitude. Given a data point (x, y), a feature extractor fθk maps the
input x to a feature vector fθk(x)/∥fθk(x)∥ on the unit hypersphere, using the
corresponding weights wk

y as the target of mapping.
To ensure that all clients have the same learning targets (i.e., the same classi-

fier hWk), we share the constructed Wk with all clients and keep the shared Wk

fixed throughout the federated training process. By doing this, local classifiers
become consistent automatically without costly frequent inter-client synchro-
nization. Since all clients now share the same learning targets, different local
feature extractors on clients learn to map local data samples from the i-th class
to the same area on the hypersphere with wk

i as the centroid of that area. As
a result, the norms and directions of local features are aligned with reduced
interference across clients. In addition, the features from different classes have
minimized overlaps and balanced magnitudes. An illustration of hyperspherical
features can be found in Fig. 1 (Middle).

The benefits of adapting the proposed hyperspherical features (and each de-
sign component described above) are revealed in a qualitative evaluation (Fig. 3).
For more detailed ablation study including quantitative results, please refer to
Sec. 5.3. In Fig. 3, we plot a certain class’s features from different clients to visual-
ize local features alignment across clients. Three kinds of methods are compared
including FedAvg [51] (with conventional classifier), standard centralized train-
ing, and SphereFed. We use MobileNetV2 for all three methods. For FedAvg and
SphereFed, we partition the CIFAR-100 dataset to 10 clients according to the
Dirichlet distribution with the concentration parameter α set as 0.1 to simulate
the high non-i.i.d. scenario. For the sake of visualization, we randomly select

SphereFed: Hyperspherical Federated Learning 7

Class 5 Class 7 Class 5 Class 7Class 5 Class 7Client 3
Client 7

FedAvg (high Non-IID) CentralizedFedAvg+SphereFed (high Non-IID)

Fig. 3. A qualitative study of Hyperspherical Federated Learning (SphereFed). In the
left and middle sub-figures, dots in different colors represent features of the same class
but generated by local models fθk of different clients. SphereFed encourages consistency
among clients’ features by aligning local learning targets.

two clients (e.g., the 3-rd and 7-th clients in Fig. 3) and use their local models
(at the 90-th round) to generate features of two random classes (e.g., the class 5
and 7 in Fig. 3) . For centralized training, we train MobileNetV2 for 120 epochs
to convergence and use the learnt model to generate features. The dimension
of raw features is 1280 and we use t-SNE [49] to reduce the dimension to 2 for
visualization. According to Fig. 3, in FedAvg, local models learn divergent map-
ping functions and thus features from the same class but different clients are
biased to different distributions (i.e., non-overlapped clusters in Fig. 3). While,
our hyperspherical features aligns well across clients as the centralized training
(i.e., fused clusters in Fig. 3).

4.2 Using Mean Squared Error Loss on Hyperspherical Features

A widely accepted training method for classification tasks is to apply the soft-
max function [6] to the classifier outputWkz before calculating the cross entropy
(CE) loss. Combination of CE and softmax function is known to be sensitive to
the scale of its input [23, 74]. However, in SphereFed, the classifier’s output, has
less-than-one scale because of unit weights and hyperspherical features. To mit-
igate such a scaling issue, prior work for centralized training adopts either a
pre-defined [14, 74] or a learnable [23, 31] scaling parameter τ in τ · Wkz (i.e.,
temperature) to stabilize optimization. Unfortunately, performing a grid search
on the scaling hyper-parameter would add significant communication and com-
putation overheads in the setting of federated learning. A freely learnable scaling
parameter could also aggravate local models’ disparity when the clients have dif-
ferent scaling parameters.

Interestingly, historical [19, 63] and recent [4, 27, 34] studies show competitive
results of mean square error (MSE) [10] compared with CE for classification
tasks on modern deep architectures. We refer readers to [53] and the related
literature [8, 50, 72] for a more in-depth theoretical discussion. In this work, we
use MSE to learn hyperspherical features to bypass the scaling issue of CE, i.e.,

LMSE(W
kz, y) = 1

C ∥Wkz− one hot(y)∥2 = 1
C

∑C
i=1

(
wk

i z− 1(i = y)
)2

, (5)

where 1(i = y) is equal to 1 if and only if i = y, C is the number of classes, and
one hot(·) is the one-hot vector representation of a label.

8 X. Dong et al.

4.3 Fast Federated Calibration (FFC)

Throughout federated training of the hyperspherical representation, the weight
of classifier Wk is fixed to help align learning targets of local features. So nat-
urally, after federated training, a calibration on the classifier could be useful
in improving the accuracy of the resulting global model. We, in turn, fix the
learnt global feature extractor and calibrate the global classifier to boost the
performance of the global model.

An interesting effect of using MSE loss in conjunction with a linear classifier
is that we are able to calculate the unique closed-form optimum of classifier’s
weight matrix given the input of the linear classifier. Formally, the objective of
calibrating the classifier W is,

argminW E(x,y)∼D [LMSE (Wz, y)] , where z = fθ(x)/∥fθ(x)∥ and D =
⋃

k∈[K] Dk . (6)

We temporarily remove the superscripts of (θ,W) to emphasize that we consider
the global feature extractor and global classifier. We refer to D as the whole
dataset which consists of all local training data. Eq. (6) is essentially a least
square problem, which has a closed-form solution, i.e.,

W∗ =
(
Z⊤Z

)−1
Z⊤Y . (7)

The i-th row of Z is the normalized feature vector zi corresponding to the i-
th sample xi in D. Similarly, the i-th row of Y is the one-hot target vector
one hot(yi) corresponding to xi.

Obtaining Z (and Y) requires all clients to upload their features (and corre-
sponding labels). However, in the context of federated learning, sharing features
and labels will cause prohibitively expensive communication overheads and po-
tential model inversion attack [17, 93]. To achieve efficient and privacy-enhanced
calibration, we propose to compute W∗ in a distributed manner. It is inspired by
that matrix multiplication can be implemented by a sum of outer products [92,
46]. Take Z⊤Z as an example. We can rewrite the Z⊤Z as a sum of outer

products between columns of Z⊤ and rows of Z such that

Z⊤Z = z⊤1 ⊗ z1 + · · ·︸ ︷︷ ︸
Client 1

· · · · · · + · · ·︸ ︷︷ ︸
Client k

· · · · · ·+ z⊤|D| ⊗ z|D|︸ ︷︷ ︸
Client K

. (8)

As a result, to calculate Z⊤Z, each client can complete a fraction of sum over
their local features (as shown in Eq. (8)) and upload the intermediate results to
the sever to finish the computation, rather than upload private local features zi.
In addition, the computation of Z⊤Y in Eq. (7) can be calculated in the same
way. See Fig. 1 (Right) for a vivid illustration.

Algorithm. We elaborate the FFC algorithm below:

1. On clients: Each client receives the latest global feature extractor fθ from
the server and computes the Vk ∈ Rl×l, Uk ∈ Rl×C on its local data Dk,

Vk =
∑|Dk|

i=1 z⊤i zi, Uk =
∑|Dk|

i=1 z⊤i one hot(yi) , (9)

SphereFed: Hyperspherical Federated Learning 9

Table 1. Comparison of communication and computation costs for the classifier over 10
clients for 100 rounds. We assume that communicated weights are in 32-bit. The number
of FLOPs is computed by considering both clients (“(C)”) and the server (“(S)”). Since
all approaches require forward of the classifier, we exclude it from calculation. “Every”
(and “Once”) means communicating at every round (and only once).

Method
Communication Computation

Accuracy
Objects Frequency Size (MB) Operation FLOPs (G)

FedAvg W ∈ Rl×C Every 102
Update W (S)

Avg (S)
1.9 × 104 68.78

CCVR

W ∈ Rl×C Every

758
GMM fitting (C)

Sampling&Tukey (S)

Fine-tuning (S)

2.1 × 104 69.14µ ∈ Rl×C

Once
Σ ∈ Rl×l×C

SphereFed
(Ours)

U ∈ Rl×C

Once 7
Eq. (9) (C)

Eq. (10) (S)
1.7 × 102 71.85

V ∈ Rl×l

where zi = fθ(xi)/∥fθ(xi)∥ and (xi, yi) ∼ Dk.
2. On server: The server receives all {(Vk,Uk) | k ∈ [K]} from clients and

computes the closed-form weights optimum,

W∗ =
(∑K

k=1 V
k
)−1 (∑K

k=1 U
k
)
. (10)

Communication and Computation. FFC introduces much lighter communi-
cation and computation overhead to clients/server compared with state-of-the-
art calibration methods like CCVR [48]. For instance, computing Eq. (9) on one
client requires 2l|Dk|(l + C) FOLPs which is less than the total computation
of the classifier’s local training for one round. In addition, the communication
amount of FFC is l(l + C) parameters. In Tab. 1, we compare the communica-
tion and computation amount for the classifier of FFC against baselines (e.g.,
FedAvg [51] and CCVR [48]) over 100 rounds with MobileNetV2 and CIFAR-
100. As depicted in Tab. 1, SphereFed and FFC are more efficient than both
FedAvg and CCVR in terms of communication and computation. In Sec. 5.4, we
also provide latency comparison measured on a real embedded hardware.

5 Experiments

5.1 Experimental Setup

Baselines. Our proposed methods (i.e., SphereFed and FFC) are compatible
with and complementary to several existing federated learning algorithms like
FedAvg [51], FedProx [43], FedNova [76], FedOpt [60] and so on. We refer to
those algorithms as “base algorithms” in the remaining of this paper. We test
five widely used models including a seven-layer ConvNet [85, 90] and other mod-
ern deep architectures like MobileNetV2 [62], ResNet18 [22], VGG13 [36, 67],
SENet [26]. For all models, we refer to the last fully-connected layer as the
classifier and all the other layers as the feature extractor.

10 X. Dong et al.

Benchmarks. Following prior literature [40, 41, 84], we consider two represen-
tative and challenging image classification tasks for federated learning, CIFAR-
100 [35] and TinyImageNet [37]. CIFAR-100 has 50,000 training samples from
100 classes. Prior method [48] obtains relatively small improvement against base
algorithms on CIFAR-100 because the virtual features sampled from the class-
wise Gaussian Mixture Model (GMM) are less separable when the number of
class increases, thereby constraining its practicality for realistic applications. In
this work, we show that our proposed methods are able to achieve superior per-
formance for such many-class classification tasks. For example, we evaluate our
methods on TinyImageNet which is larger than CIFAR-100 in terms of the input
size, the number of samples, and the number of classes, as a more challenging
dataset. Empirical results indicate that our proposed methods provide consistent
improvements across multiple base algorithms, model architectures and datasets.

Like previous studies [20, 30, 41], we partition the training set of CIFAR-100
and TinyImageNet to K clients according to a Dirichlet distribution with a con-
centration parameter α to simulate the data distribution of federated learning.
The default number of client is set toK = 10. A smaller concentration parameter
will result in higher non-i.i.d. degree of partitioning. For example, when α = 0.1,
one client could have less than ten data samples in some classes. We consider
three different non-i.i.d. degrees for CIFAR-100 to study how data heterogene-
ity degree impacts methods’ performance. For fair comparison, we use exactly
the same partitioning for all methods. The original test sets of CIFAR-100 and
TinyImageNet are used to measure the resulted global model’s testing accuracy.

Implementation. We use the SGD optimizer with a momentum 0.9 and a
weight decay 10−5 for all approaches. Since we change the loss function from
cross entropy to mean square error and these two loss functions have different
magnitude, we tune the learning rate for both baselines and our methods using
grid search. We note that SphereFed and FFC do not introduce any extra hyper-
parameter to base algorithms. In addition, we observe that our methods are more
robust to various learning rates than base algorithms in Sec. 5.3. For baselines
with extra hyper-parameters, we either use the recommended values from their
papers [48, 76] or carefully tune them [60, 43]. To tune hyper-parameters, we use
a 15% of training data for validation. We train all approaches for 100 rounds
and decay the learning rate every round using a cosine annealing schedule [47].
We use B = 64 local batch size and E = 10 local epochs unless otherwise stated.
In Appendix A, we further test our methods on different federated learning
settings by varying local training epochs, number of clients, clients’ participating
rate, and learning rate scheduling strategies, similar trends are observed as shown
in the following sections.

5.2 Results

We present in Tab. 2 the test accuracy of various base algorithms before and
after applying our methods (i.e., SphereFed and FFC) and two state-of-the-art

SphereFed: Hyperspherical Federated Learning 11

Table 2. Accuracy (%) on CIFAR-100 and TinyImageNet with different degrees of non-
i.i.d. . “+” means applying a considered method (CCVR, BABU and Ours) to a base
FL algorithm (FedAvg, FedProx, FedNova and FedOpt). “↑” (and “↓”) means accuracy
improvement (and degradation) compared with the corresponding base algorithm.

Model Method IID α = 0.5 α = 0.1 TinyImageNet

MobileNetV2

FedAvg 71.86 68.78 63.90 29.95

+ CCVR 72.09 (↑ 0.23) 69.14 (↑ 0.36) 64.05 (↑ 0.15) 31.41 (↑ 1.46)

+ BABU 71.84 (↓ 0.02) 69.35 (↑ 0.57) 64.91 (↑ 1.01) 28.38 (↓ 1.57)

+ Ours 73.56 (↑ 1.72) 71.85 (↑ 3.07) 66.52 (↑ 2.62) 34.72 (↑ 4.76)

ResNet

FedProx 70.19 67.50 65.63 30.55

+ CCVR 71.31 (↑ 0.12) 67.89 (↑ 0.39) 66.09 (↑ 0.46) 32.56 (↑ 2.01)

+ BABU 71.66 (↑ 1.47) 69.62 (↑ 2.12) 67.90 (↑ 2.27) 31.87 (↑ 0.32)

+ Ours 73.41 (↑ 3.22) 72.20 (↑ 4.70) 69.19 (↑ 3.56) 35.21 (↑ 4.66)

VGG13

FedNova 62.12 60.49 57.20 39.63

+ CCVR 62.53 (↑ 0.41) 61.61 (↑ 1.12) 58.13 (↑ 0.93) 40.12 (↑ 0.49)

+ BABU 62.03 (↓ 0.09) 60.54 (↑ 0.05) 58.95 (↑ 1.75) 40.87 (↑ 1.24)

+ Ours 65.50 (↑ 3.38) 65.12 (↑ 4.63) 62.54 (↑ 5.34) 45.21 (↑ 5.58)

SENet

FedOpt 61.89 59.60 57.46 24.29

+ CCVR 61.97 (↑ 0.08) 60.42 (↑ 0.82) 57.93 (↑ 0.47) 25.01 (↑ 0.72)

+ BABU 62.27 (↑ 0.38) 59.69 (↑ 0.09) 56.75 (↓ 0.71) 25.34 (↑ 1.05)

+ Ours 65.15 (↑ 3.26) 65.69 (↑ 6.09) 62.61 (↑ 5.15) 29.84 (↑ 5.55)

baselines (i.e., CCVR [48] and BABU [54]). Our proposed methods improve
these base algorithms consistently across model architectures and datasets.

CCVR estimates Gaussian Mixture Model (GMM) for features on the class
granularity on clients and samples virtual features from the GMM to fine-tune
the classifier on the server. However, when the number of classes is relatively large
(e.g., 100 for CIFAR-100 and 200 for TinyImageNet), class-wise GMMs are not
sufficiently separable to facilitate the fine-tuning. As a result, the improvement
brought by CCVR is relatively small [48].

BABU [54] keeps the classifier fixed after random initialization during fed-
erated training and then fine-tunes on each client’s local dataset individually
for personalization. Two evaluation metrics are considered in BABU: (i) initial
accuracy which is calculated with the single global model on the global test set
and (ii) personalized accuracies measured with personalized models on local test
sets over clients. As mentioned previously, we focus on the former (i.e., initial
accuracy) rather than personalized federated learning, while an analysis on how
our method helps personalized federated learning is provided in Appendix B.

An interesting finding is that our methods tend to bring more accuracy gain
when the non-i.i.d. degree is higher. This confirms our observation that a higher
non-i.i.d. degree leads to more severe issues on classifier disparity and incon-
sistent local learning targets. With our methods, the performance gap between
i.i.d. and non-i.i.d. data is reduced. For instance, the performance gap between
“IID” and “α = 0.1” is 4.92% for base algorithm FedNova, while this gap is
reduced to 2.96% after applying the proposed approaches.

12 X. Dong et al.

Table 3. Quantitative ablation study of Hyperspherical Federated Learning
(SphereFed). We investigate the effectiveness of each design component by applying
them individually using FedAvg as the base algorithm on MobileNetV2 and CIFAR-100
(α = 0.5). “Fix (R)” (“Fix (OU)”) means fixing the classifier with random (orthogonal
and unit-norm) initialization. “Norm” represents normalizing features.

FedAvg + Fix (R) + Fix (OU) + Norm + Fix (OU) +Norm

CE 68.78 69.35 (↑ 0.57) 69.65 (↑ 0.87) 69.76 (↑ 0.98) 70.87 (↑ 2.09)

MSE 66.42 (↓ 2.36) 67.05 (↓ 1.73) 67.21 (↓ 1.57) Diverging 71.85 (↑ 3.07)

5.3 Ablation Studies

Besides overall effectiveness, we perform several ablation experiments which help
understand the significance of each component in the proposed method.

The Importance of Ortho-normalization. In Tab. 3, we first compare dif-
ferent initializations of the fixed classifier. For the orthogonal and unit-norm
initialization (“+ Fix (OU)”), we generate orthogonal weight matrix via the classic
Gram-Schmidt process [1, 58]. Other generation methods [71, 52] are also consid-
ered in the appendix and no significant differences are observed. For the random
initialization (“+ Fix (R)”), we instantiate it with He Initialization [21] which is
the default initialization method in widely used packages such as PyTorch [56].
Random initialization achieves a comparable but slightly lower accuracy gain be-
cause two random vectors tend to be more orthogonal when their dimensionality
increases [38, 54], while orthogonal initialization directly ensures that.

In addition, SphereFed also normalizes features before feeding them to the
classifier (denoted “Norm” in Tab. 3). After normalization, features are in the
same unit hypersphere as the row vectors of classifier’s weight and the feature
extractor can focus on learning features’ directions with the guidance of the
fixed classifier. Applying feature normalization for the “Fix (OU)” completes the
construction of hyperspherical representation and leads to about 1.22 accuracy
gain. More importantly, we show that “Fix (OU)” and feature normalization work
better with MSE than CE in the following discussion.

The Superiority of Mean-Square-Error Loss. We evaluate both CE and
MSE loss functions in Tab. 3 to validate our choice of MSE loss. We confirm
that replacing CE with MSE improves the accuracy by a considerable margin.
The reasons are stated in Sec. 4.3 that MSE avoids the scaling issue and fully
exploits the benefit of “Fix (OU) +Norm”. For “CE +Fix (OU) +Norm”, we find that
it is quite sensitive to the scaling hyper-parameter (i.e., temperature). Although
we carefully tune the scaling factor τ and report the best result in Tab. 3, it is
difficult and expensive to find the optimal τ in practice.

The Robustness of SphereFed Training. Compared with base algorithms,
SphereFed does not introduce any extra hyper-parameters. Since the CE and
MSE losses have different magnitudes, we tune their learning rates respectively
from a set of candidate learning rates. Interestingly, we observe that SphereFed is
more robust than the corresponding base algorithm. In Fig. 4, we test three differ-

SphereFed: Hyperspherical Federated Learning 13

1 25 50 75 100

Communication rounds
10

20

30

40

50

60

Ac
cu

ra
cy

Ours-0.5
Ours-0.1
Ours-0.05
Base-0.1
Base-0.05
Base-0.01

Fig. 4. The impact of differ-
ent learning rates for “FedNova”
and “FedNova + SphereFed”. Af-
ter applying SphereFed, training
becomes more robust to different
learning rates.

Table 4. Ablation study for FFC. Both CCVR
and FFC methods exhibit performance gain on
non-i.i.d. data. For sanity check, we collect local
train sets to fine-tune the classifier. FFC is able
to achieve a larger accuracy improvement than
CCVR with significantly less communication and
computation overheads (Tab. 1).

Calibration IID α = 0.1

W/o 65.07 61.66

CCVR 65.03 (↓ 0.04) 62.09 (↑ 0.43)

FFC 65.15 (↑ 0.08) 62.61 (↑ 0.95)

Sanity check 65.17 (↑ 0.10) 62.64 (↑ 0.98)

ent learning rates for “FedNova” (as the base algorithm) and “FedNova + SphereFed”

with VGG13 on CIFAR-100 (α = 0.1). It is observed that “FedNova + SphereFed”

is less sensitive to different learning rates.

How beneficial is FFC? In this set of experiments, we investigate how the
closed-form classifier calibration (i.e., FFC) improves test accuracy. We apply
CCVR and FFC individually for the classifier of SENet on CIFAR-100 after
federated learning with “FedOpt + SphereFed”. As a sanity check, we collect all
local train sets to fine-tune the classifier only. To ensure the sanity check truly
reveals the upper bound of classifier calibration, we experiment different loss
functions (i.e., CE and MSE) and learning rates for the sanity fine-tuning and
report the best results we get. It can be seen from Tab. 4 that both CCVR and
FFC achieve performance gains on non-i.i.d. data while FFC is able to improve
accuracy more. CCVR estimates a GMM distribution for each class’s features
and sample virtual features for model fine-tuning on the server. However, such a
class-wise method has relatively high communication and computation complex-
ities (which scale linearly with number of classes). Moreover, GMMs of different
classes could be less separable when the number of classes increases, thereby fur-
ther limiting its effectiveness. In contrast, FFC, with provable formulations, is
agnostic to number of classes and more suitable for realistic many-class federated
learning tasks [25, 81]. It is expected that FFC obtains comparable results as the
sanity check because solving a linear classifier with either closed-form equations
or SGD will converge to similar optimums [9, 61].

5.4 Efficient Communication and Computation

Besides accuracy gain, Hyperspherical Federated Learning also brings commu-
nication and computation savings depending on the size of classifier.

In Tab. 1, we compare the communication and computation costs related to
the classifier for FedAvg, CCVR and our methods on MobileNetV2 and CIFAR-
100. As seen in Tab. 1, SphereFed eliminates the need of updating and communi-

14 X. Dong et al.

ConvNet
MBNetV2

ResNet
0.7

0.8

0.9

1.0 1.0 1.0 1.0

0.85

0.97
0.997

(a) Communication

ConvNet
MBNetV2

ResNet
0.5
0.6
0.7
0.8
0.9
1.0 1.0 1.0 1.0

0.92 0.9
0.93

(b) Memory

ConvNet
MBNetV2

ResNet
0.5
0.6
0.7
0.8
0.9
1.0 1.0 1.0 1.0

0.897
0.864

0.951

(c) Latency (Training)

ConvNet
MBNetV2

ResNet
0.5
0.6
0.7
0.8
0.9
1.0 1.0 1.0 1.0

0.922 0.909 0.917

(d) Latency (Cali.)

ConvNet
MBNetV2

ResNet
50

60

70

53.3

68.8
65.6

54.2

69.8

66.1

57.5

71.9
69.2

(e) Accuracy
FedAvg
CCVR
Ours

Fig. 5. Efficiency comparison measured on a neural network accelerator [78, 91] with
three models and CIFAR-100. (a) The normalized total communication amount. (b)
The normalized peak memory consumption during local training. (c) The normalized
latency for one-round local training. (d) The normalized latency for classifier calibra-
tion. (e) The test accuracy.

cating (neither uploading nor downloading), resulting over two orders of magni-
tude communication and computation savings compared to FedAvg and CCVR.
Figure 5 depicts the relative computational savings of different approaches dur-
ing the federated training process, measured on a DNN training accelerator built
on Xilinx VC707 FPGA evaluation board [78, 91]. Detailed settings about the
DNN training accelerator are described in the appendix. SphereFed enables us to
skip gradient computing for the classifier and thus to release some intermediate
tensors used by gradient computing earlier. Overall, SphereFed achieves up to
10.5% and 13.6% savings on memory consumption and processing latency com-
pared with FedAvg, respectively. SphereFed achieves a greater saving of training
latency on MobileNetV2 than ConvNet and ResNet. This is because the com-
putation workload associated with the convolutaional layers are smaller in Mo-
bileNetV2 due to the usage of the depthwise separable operations [62], leading
to a greater relative savings when the classifier is skipped during the local train-
ing. We also measure the latency of classifier calibration using CCVR and our
Fast Federated Calibration in Fig. 5 (d). Since calibration-related computation
happens on both clients and the server, the reported latency consists of both the
average latency on one client and the on-server latency. Our closed-form cali-
bration saves up to 9.1% latency against CCVR and this efficiency improvement
will be more pronounced when number of classes increases as analysed above.

6 Conclusions

We presented the Hyperspherical Federated Learning (SphereFed) framework to
address the non-i.i.d. issue. The proposed method focuses on the pre-learning
phase and complementary to existing federated learning methods. The hyper-
spherical representation is learned using an orthonormal basis of the weights of
the frozen classifiers and the classifiers are calibrated post training. We show
that a mean squared loss is more suitable to hyperspherical representation as
opposed to cross-entropy due to the scaling issues. A Fast Federated Calibration
(FFC) approach is proposed based on the mean squared loss. Extensive exper-
iments indicate that SphereFed improves multiple existing federated learning
algorithms by a considerable margin.

SphereFed: Hyperspherical Federated Learning 15

References

1. Torch.linalg.qr¶, https://pytorch.org/docs/stable/generated/torch.linalg.qr.html
2. Acar, D.A.E., Zhao, Y., Matas, R., Mattina, M., Whatmough, P.,

Saligrama, V.: Federated learning based on dynamic regularization.
In: International Conference on Learning Representations (2021),
https://openreview.net/forum?id=B7v4QMR6Z9w

3. Acar, D.A.E., Zhao, Y., Zhu, R., Matas, R., Mattina, M., Whatmough, P.,
Saligrama, V.: Debiasing model updates for improving personalized federated train-
ing. In: International Conference on Machine Learning. pp. 21–31. PMLR (2021)

4. Achille, A., Golatkar, A., Ravichandran, A., Polito, M., Soatto, S.: Lqf: Linear
quadratic fine-tuning. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 15729–15739 (2021)

5. Al-Shedivat, M., Gillenwater, J., Xing, E., Rostamizadeh, A.: Federated learning
via posterior averaging: A new perspective and practical algorithms. In: Interna-
tional Conference on Learning Representations (ICLR) (2021)

6. Anzai, Y.: Pattern recognition and machine learning. Elsevier (2012)
7. Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning

with personalization layers. arXiv preprint arXiv:1912.00818 (2019)
8. Belkin, M.: Fit without fear: remarkable mathematical phenomena of deep learning

through the prism of interpolation. arXiv preprint arXiv:2105.14368 (2021)
9. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge univer-

sity press (2004)
10. Brier, G.W., et al.: Verification of forecasts expressed in terms of probability.

Monthly weather review 78(1), 1–3 (1950)
11. Bui, D., Malik, K., Goetz, J., Liu, H., Moon, S., Kumar, A., Shin, K.G.: Federated

user representation learning. arXiv preprint arXiv:1909.12535 (2019)
12. Chen, C., Xu, H., Wang, W., Li, B., Li, B., Chen, L., Zhang, G.: Communication-

efficient federated learning with adaptive parameter freezing. In: 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS). pp. 1–11.
IEEE (2021)

13. Chen, Y., Sun, X., Jin, Y.: Communication-efficient federated deep learning with
layerwise asynchronous model update and temporally weighted aggregation. IEEE
transactions on neural networks and learning systems 31(10), 4229–4238 (2019)

14. Cheraghian, A., Rahman, S., Fang, P., Roy, S.K., Petersson, L., Harandi, M.:
Semantic-aware knowledge distillation for few-shot class-incremental learning. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 2534–2543 (2021)

15. Collins, L., Hassani, H., Mokhtari, A., Shakkottai, S.: Exploiting shared representa-
tions for personalized federated learning. In: International Conference on Machine
Learning. pp. 2089–2099. PMLR (2021)

16. Diao, E., Ding, J., Tarokh, V.: Heterofl: Computation and communication efficient
federated learning for heterogeneous clients. International Conference on Learning
Representations (2021)

17. Dong, X., Yin, H., Alvarez, J.M., Kautz, J., Molchanov, P.: Deep neural net-
works are surprisingly reversible: A baseline for zero-shot inversion. arXiv preprint
arXiv:2107.06304 (2021)

18. Duan, J.H., Li, W., Lu, S.: Feddna: Federated learning with decoupled
normalization-layer aggregation for non-iid data. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. pp. 722–737. Springer
(2021)

16 X. Dong et al.

19. Golik, P., Doetsch, P., Ney, H.: Cross-entropy vs. squared error training: a theoret-
ical and experimental comparison. In: Interspeech. vol. 13, pp. 1756–1760 (2013)

20. He, C., Li, S., So, J., Zhang, M., Wang, H., Wang, X., Vepakomma, P., Singh, A.,
Qiu, H., Shen, L., Zhao, P., Kang, Y., Liu, Y., Raskar, R., Yang, Q., Annavaram,
M., Avestimehr, S.: Fedml: A research library and benchmark for federated machine
learning. arXiv preprint arXiv:2007.13518 (2020)

21. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026–1034 (2015)

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

23. Hoffer, E., Hubara, I., Soudry, D.: Fix your classifier: the marginal value of training
the last weight layer. International Conference on Learning Representations (2018)

24. Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distri-
bution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019)

25. Hsu, T.M.H., Qi, H., Brown, M.: Federated visual classification with real-world
data distribution. In: European Conference on Computer Vision. pp. 76–92.
Springer (2020)

26. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132–7141 (2018)

27. Hui, L., Belkin, M.: Evaluation of neural architectures trained with square loss vs
cross-entropy in classification tasks. ICLR (2020)

28. Jain, V., Learned-Miller, E.: Online domain adaptation of a pre-trained cascade of
classifiers. In: CVPR 2011. pp. 577–584. IEEE (2011)

29. Jiang, Y., Konečnỳ, J., Rush, K., Kannan, S.: Improving federated learning per-
sonalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488
(2019)

30. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N.,
Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open
problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

31. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.:
Decoupling representation and classifier for long-tailed recognition. International
Conference on Learning Representations (2020)

32. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold:
Stochastic controlled averaging for federated learning. In: International Conference
on Machine Learning. pp. 5132–5143. PMLR (2020)

33. Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot,
A., Liu, C., Krishnan, D.: Supervised contrastive learning. Advances in Neural
Information Processing Systems 33, 18661–18673 (2020)

34. Kornblith, S., Chen, T., Lee, H., Norouzi, M.: Why do better loss functions lead
to less transferable features? Advances in Neural Information Processing Systems
34 (2021)

35. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.
(2009)

36. Kuangliu: Pytorch-cifar/vgg.py, https://github.com/kuangliu/pytorch-
cifar/blob/master/models/vgg.py

37. Le, Y., Yang, X.S.: Tiny imagenet visual recognition challenge (2015)
38. Lezama, J., Qiu, Q., Musé, P., Sapiro, G.: Ole: Orthogonal low-rank embedding-

a plug and play geometric loss for deep learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 8109–8118 (2018)

SphereFed: Hyperspherical Federated Learning 17

39. Li, D., Wang, J.: Fedmd: Heterogenous federated learning via model distillation.
NeurIPS 2019 Workshop on Federated Learning for Data Privacy and Confiden-
tiality (2019)

40. Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on non-iid data silos: An
experimental study. IEEE International Conference on Data Engineering (2021)

41. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
10713–10722 (2021)

42. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: Challenges, meth-
ods, and future directions. IEEE Signal Processing Magazine 37(3), 50–60 (2020)

43. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and
Systems 2, 429–450 (2020)

44. Liang, P.P., Liu, T., Ziyin, L., Allen, N.B., Auerbach, R.P., Brent, D., Salakhutdi-
nov, R., Morency, L.P.: Think locally, act globally: Federated learning with local
and global representations. arXiv preprint arXiv:2001.01523 (2020)

45. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: Deep hypersphere
embedding for face recognition. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. pp. 212–220 (2017)

46. Liu, X., Tang, Z., Huang, H., Zhang, T., Yang, B.: Multiple learning for regression
in big data. In: 2019 18th IEEE International Conference On Machine Learning
And Applications (ICMLA). pp. 587–594. IEEE (2019)

47. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

48. Luo, M., Chen, F., Hu, D., Zhang, Y., Liang, J., Feng, J.: No fear of heterogeneity:
Classifier calibration for federated learning with non-iid data. 35th Conference on
Neural Information Processing Systems (2021)

49. van der Maaten, L., Hinton, G.: Visualizing data using t-sne.
Journal of Machine Learning Research 9(86), 2579–2605 (2008),
http://jmlr.org/papers/v9/vandermaaten08a.html

50. Mai, X., Liao, Z.: High dimensional classification via empirical risk minimization:
Improvements and optimality. arXiv preprint arXiv:1905.13742 (2019)

51. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial intelligence and statistics. pp. 1273–1282. PMLR (2017)

52. Mettes, P., van der Pol, E., Snoek, C.: Hyperspherical prototype networks. Ad-
vances in neural information processing systems 32 (2019)

53. Muthukumar, V., Narang, A., Subramanian, V., Belkin, M., Hsu, D., Sahai, A.:
Classification vs regression in overparameterized regimes: Does the loss function
matter? Journal of Machine Learning Research 22(222), 1–69 (2021)

54. Oh, J., Kim, S., Yun, S.Y.: Fedbabu: Towards enhanced representation for fed-
erated image classification. International Conference on Learning Representations
(2021)

55. Oh, J., Yoo, H., Kim, C., Yun, S.Y.: Boil: Towards representation change for few-
shot learning. International Conference on Learning Representations (2021)

56. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

18 X. Dong et al.

57. Puigcerver, J., Riquelme, C., Mustafa, B., Renggli, C., Pinto, A.S., Gelly, S., Key-
sers, D., Houlsby, N.: Scalable transfer learning with expert models. International
Conference on Learning Representations (2021)

58. Pursell, L., Trimble, S.: Gram-schmidt orthogonalization by gauss elimination. The
American Mathematical Monthly 98(6), 544–549 (1991)

59. Raghu, A., Raghu, M., Bengio, S., Vinyals, O.: Rapid learning or feature reuse? to-
wards understanding the effectiveness of maml. International Conference on Learn-
ing Representations (2019)

60. Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečnỳ, J., Kumar,
S., McMahan, H.B.: Adaptive federated optimization. International Conference on
Learning Representations (2021)

61. Saad, D.: Online algorithms and stochastic approximations. Online Learning 5,
6–3 (1998)

62. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510–4520 (2018)

63. Sangari, A., Sethares, W.: Convergence analysis of two loss functions in soft-max
regression. IEEE Transactions on Signal Processing 64(5), 1280–1288 (2015)

64. Shamir, O., Srebro, N., Zhang, T.: Communication-efficient distributed optimiza-
tion using an approximate newton-type method. In: International conference on
machine learning. pp. 1000–1008. PMLR (2014)

65. Shao, S., Xing, L., Wang, Y., Xu, R., Zhao, C., Wang, Y., Liu, B.: Mhfc: Multi-
head feature collaboration for few-shot learning. In: Proceedings of the 29th ACM
International Conference on Multimedia. pp. 4193–4201 (2021)

66. Shoham, N., Avidor, T., Keren, A., Israel, N., Benditkis, D., Mor-Yosef, L., Zeitak,
I.: Overcoming forgetting in federated learning on non-iid data. NeurIPS 2019
Workshop on Federated Learning for Data Privacy and Confidentiality (2019)

67. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

68. Singhal, K., Sidahmed, H., Garrett, Z., Wu, S., Rush, J., Prakash, S.: Federated
reconstruction: Partially local federated learning. Advances in Neural Information
Processing Systems 34 (2021)

69. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learn-
ing. Advances in neural information processing systems 30 (2017)

70. Sun, B., Huo, H., Yang, Y., Bai, B.: Partialfed: Cross-domain personalized feder-
ated learning via partial initialization. Advances in Neural Information Processing
Systems 34 (2021)

71. Tammes, P.M.L.: On the origin of number and arrangement of the places of exit
on the surface of pollen-grains. Recueil des travaux botaniques néerlandais 27(1),
1–84 (1930)

72. Thrampoulidis, C., Oymak, S., Soltanolkotabi, M.: Theoretical insights into mul-
ticlass classification: A high-dimensional asymptotic view. Advances in Neural In-
formation Processing Systems (2020)

73. Trefethen, L.N., Bau III, D.: Numerical linear algebra, vol. 50. Siam (1997)
74. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,

 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

75. Venkat, N., Kundu, J.N., Singh, D., Revanur, A., et al.: Your classifier can secretly
suffice multi-source domain adaptation. Advances in Neural Information Processing
Systems 33, 4647–4659 (2020)

SphereFed: Hyperspherical Federated Learning 19

76. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective in-
consistency problem in heterogeneous federated optimization. Advances in neural
information processing systems (2020)

77. Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., Ramage, D.: Fed-
erated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252
(2019)

78. Xilinx: Xilinx virtex-7 fpga vc707 evaluation kit,
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html

79. Xu, A., Huang, H.: Coordinating momenta for cross-silo federated learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp. 8735–
8743 (2022)

80. Xu, C., Hong, Z., Huang, M., Jiang, T.: Acceleration of federated learning with
alleviated forgetting in local training. In: International Conference on Learning
Representations (2021)

81. Yang, K., Fan, T., Chen, T., Shi, Y., Yang, Q.: A quasi-newton method based
vertical federated learning framework for logistic regression. The 2nd International
Workshop on Federated Learning for Data Privacy and Confidentiality, in Con-
junction with NeurIPS 2019 (2019)

82. Yao, X., Sun, L.: Continual local training for better initialization of federated
models. In: 2020 IEEE International Conference on Image Processing (ICIP). pp.
1736–1740. IEEE (2020)

83. Ye, H.J., Hu, H., Zhan, D.C.: Learning adaptive classifiers synthesis for generalized
few-shot learning. International Journal of Computer Vision 129(6), 1930–1953
(2021)

84. Yoon, J., Jeong, W., Lee, G., Yang, E., Hwang, S.J.: Federated continual learn-
ing with weighted inter-client transfer. In: International Conference on Machine
Learning. pp. 12073–12086. PMLR (2021)

85. Yoon, T., Shin, S., Hwang, S.J., Yang, E.: Fedmix: Approximation of mixup under
mean augmented federated learning. International Conference on Learning Repre-
sentations (2021)

86. You, K., Liu, Y., Wang, J., Long, M.: Logme: Practical assessment of pre-trained
models for transfer learning. In: International Conference on Machine Learning.
pp. 12133–12143. PMLR (2021)

87. Yuan, H., Zaheer, M., Reddi, S.: Federated composite optimization. In: Interna-
tional Conference on Machine Learning. pp. 12253–12266. PMLR (2021)

88. Zhai, A., Wu, H.Y.: Classification is a strong baseline for deep metric learning.
arXiv preprint arXiv:1811.12649 (2018)

89. Zhang, L., Luo, Y., Bai, Y., Du, B., Duan, L.Y.: Federated learning for non-iid data
via unified feature learning and optimization objective alignment. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4420–4428
(2021)

90. Zhang, S.Q., Lin, J., Zhang, Q.: A multi-agent reinforcement learning approach
for efficient client selection in federated learning. arXiv preprint arXiv:2201.02932
(2022)

91. Zhang, S.Q., McDanel, B., Kung, H.: Fast: Dnn training under variable precision
block floating point with stochastic rounding. International Symposium on High-
Performance Computer Architecture (2021)

92. Zhang, T., Yang, B.: Box–cox transformation in big data. Technometrics 59(2),
189–201 (2017)

93. Zhao, N., Wu, Z., Lau, R.W., Lin, S.: What makes instance discrimination good for
transfer learning? International Conference on Learning Representations (2021)

20 X. Dong et al.

94. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

95. Zheng, Y., Pal, D.K., Savvides, M.: Ring loss: Convex feature normalization for
face recognition. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 5089–5097 (2018)

96. Zhu, Y., Bai, Y., Wei, Y.: Spherical feature transform for deep metric learning. In:
European Conference on Computer Vision. pp. 420–436. Springer (2020)

97. Zhu, Z., Hong, J., Zhou, J.: Data-free knowledge distillation for heterogeneous
federated learning. In: International Conference on Machine Learning. pp. 12878–
12889. PMLR (2021)

SphereFed: Hyperspherical Federated Learning 21

A Extra Federated Learning Results

In this section, we present additional results under various system and training
settings to further evaluate the robustness of our approach.

A.1 Different Local Training Epochs

Tuning the number of local epochs affects accuracy-communication trade-off for
most federated learning algorithms. Prior studies [32, 51, 60] attempt to reduce
the number of local training epochs to mitigate the disparity of local models. The
default number of local training epochs is set as E = 10 in the main manuscript.
We further test different numbers of local training epochs E = {1, 5} in Tab. 5.
When E is set as 1, we increase the total number of rounds to 500 to ensure
convergence. As is seen from Tab. 5, our method consistently improves the base
algorithms with various numbers of local training epochs.

Table 5. Accuracy (%) with different number of local training epochs.

Model Method E = 1 E = 5

MobileNetV2
(α = 0.5)

FedAvg 70.51 68.40

+ CCVR 71.33 (↑ 0.82) 68.93 (↑ 0.53)

+ BABU 71.46 (↑ 0.95) 69.10 (↑ 0.70)

+ Ours 73.26 (↑ 2.75) 72.02 (↑ 3.62)

VGG13
(α = 0.1)

FedNova 60.53 57.46

+ CCVR 61.31 (↑ 0.78) 57.77 (↑ 0.31)

+ BABU 62.75 (↑ 2.22) 58.50 (↑ 1.04)

+ Ours 64.75 (↑ 4.22) 62.06 (↑ 4.60)

A.2 Different Client Numbers

The default number of clients K is set as 10 following prior work [41, 48]. We
further test the performance of our methods when the system contains more
clients. In Tab. 6, we partition CIFAR-100 training set to K = 100 clients
according to a Dirichlet distribution with a concentration parameter α = 0.5.
During federated training, the central server randomly selects 10% clients to
participate each round [32, 43, 54, 60]. For each method, we set the number of
rounds as 500. According to results in Tab. 6,

A.3 Different Learning Rate Scheduling Strategies

Besides adjusting the learning rate at each round according to a cosine annealing
schedule4, we further experiment another widely used learning rate scheduling

4 See torch.optim.lr scheduler.CosineAnnealingLR

22 X. Dong et al.

Table 6. Accuracy (%) with K = 100 clients.

Model Method Accuracy Model Method Accuracy

MobileNetV2

FedAvg 68.26

VGG13

FedNova 49.04

+ CCVR 69.20 (↑ 0.94) + CCVR 50.45 (↑ 1.41)

+ BABU 69.14 (↑ 0.88) + BABU 51.27 (↑ 2.23)

+ Ours 71.38 (↑ 5.12) + Ours 55.23 (↑ 6.19)

strategy (e.g., multi-step scheduling5) to verify the robustness of our approaches.
Specifically, we decay the learning rate by 0.1 every 40 epochs. Empirical results
in Tab. 7 indicate that our methods are able to bring state-of-the-art accuracy
gain with different learning rate scheduling strategies.

Table 7. Accuracy (%) with different learning rate (LR) schedulings.

LR method Accuracy LR Method Accuracy

Cosine

FedAvg 68.78

Multi-step

FedAvg 68.60

+ CCVR 69.14 (↑ 0.36) + CCVR 69.05 (↑ 0.45)

+ BABU 69.35 (↑ 0.57) + BABU 69.43 (↑ 0.83)

+ Ours 71.85 (↑ 3.07) + Ours 71.06 (↑ 2.46)

B Personalization Performance Comparison

We investigate the performance gain brought by SphereFed for personalized fed-
erated learning. Following the setup in [29, 54, 77], we first combine the training
and testing sets of CIFAR-100 to a single dataset which contains 60,000 samples
in total. Then, the combined dataset is partitioned into 10 clients according to
a Dirichlet distribution with a concentration parameter α. On each client, we
use 15% its local data as local testing set and the other as local training set.
Each personalized local model is evaluated on its corresponding local testing
set. The overall performance of personalized federated learning is evaluated by
calculating the mean and standard deviation of local testing accuracies across
all clients [29, 54, 77].

We consider four recent personalized federated learning baselines for compar-
ison in Tab. 8. For instance, LG-FedAvg [44] jointly updates feature extractors
and classifiers during local training and only aggregates classifiers on the server
in order to learn compact local representations. In FedRep [15], local feature
extractors and classifiers are updated sequentially and the servers aggregates
updated feature extractors at each round. The state-of-the-art pFL method,
BABU [54], is also included in the comparison.

For our methods, we use SphereFed during federated training. Since it is
not necessary to get the optimal global classifier for pFL, we skip the FFC for

5 See torch.optim.lr scheduler.MultiStepLR

SphereFed: Hyperspherical Federated Learning 23

the global classifier. Instead, we keep the learnt global feature extractor fixed
and conduct personalization fine-tuning for the local classifier on each client.
We consider two manners for the personalization fine-tunings. The first manner
(duded ‘Ours (SGD)’ in Tab. 8) is to optimize the classifier on the local training
set with SGD optimizer like prior arts [29, 54, 77]. The second manner (duded
‘Ours (FFC)’ in Tab. 8) is to adapt our FFC to compute the closed-form optimal
classifier on the local training set (according to Eq. (7)).

Empirical results in Tab. 8 indicate that our proposed methods are able to
improve pFL as well with hyperspherical features which are better aligned and
less biased.

Table 8. Accuracy (%) comparison of different personalized federated learning (pFL)
methods. The numbers ‘A±B’ are the ‘mean± standard deviation’ of personalized
accuracies across clients.

Data FedAvg LG-FedAvg FedRep BABU Ours (FFC) Ours (SGD)

α = 0.5 69.95 ± 3.96 71.67 ± 4.33 62.39 ± 3.91 72.34 ± 3.84 75.63 ± 3.13 75.71±3.32

α = 0.1 80.16 ± 3.77 81.95 ± 3.69 73.63 ± 3.74 82.12 ± 3.63 84.06 ± 3.10 84.12±3.29

C Extra Calibration Results

C.1 Adapting An ℓ2 Penalty in the Closed-Form Solution

In Sec. 4.3, we formulate the calibrating the classifier W as a least square prob-
lem in Eq. (6). Theoretically, an ℓ2 penalty of W can be added and the objective
of calibrating the classifier is,

argminW E(x,y)∼D [LMSE (Wz, y)] + λ∥W∥22 , (11)

where λ is a hyper-parameter used to control the penalty intensity. As a result,
the closed-form weights optimum (i.e., Eq. (10)) becomes,

W∗ =
(∑K

k=1 V
k + λI

)−1 (∑K
k=1 U

k
)
, (12)

where I ∈ Rl×l is the identity matrix. In practise, we test different values for
λ ∈ {0, 10−3, 10−2, 10−1, 100, 101} and find that the difference among resulted
accuracies is less than 0.27% (10−1 results in the better accuracy 71.96%). There-
fore, we keep λ = 0 in our main experiments.

C.2 Calibrate Weights One or Multiple Times?

Theoretically, we can conduct the Fast Federated Calibration (FFC) multiple
times during the federated training. In practise, we attempt to calibrate the

24 X. Dong et al.

classifier every 10 rounds and get a final accuracy 71.88% which is quite close to
the accuracy of one-time calibration (71.85%). This empirical result suggests that
the pre-defined orthogonal hyperspherical W serves as a high-quality feature
learning target (as discussed in Sec. 4.1) against a calibrated one. Moreover,
conducting calibration multiple times will introduce extra communication and
computation overheads. In this regard, we conduct FFC once after federated
training in our main experiments.

C.3 Applying FFC with Features Trained with CE

The derivation of Fast Federated Calibration (FFC) relies on the mean square
error (MSE) loss. However, in this section, we show that FFC can be used upon
features trained by other losses (e.g., cross entropy loss) because the training
of the feature extractor and the calibration of the classifier are decoupled. In
addition, both CE and MSE have similar optimization goal, i.e., encouraging
the feature extractor to make features of the i-th class close to wi. For instance,
we train the feature extractor with cross entropy loss (CE) and then calibrate
the classifier with our proposed FFC in Tab. 9. Experiential results verify that
FFC is able to improve the classifier on features trained with CE.

Table 9. Applying FFC for the classifier on features trained with CE.

FedAvg + Fix (R) + Fix (R) + FFC

CE 63.90 64.91 (↑ 1.01) 65.36 (↑ 1.46)

D Different Ways to Generate Orthogonal Classifier
Initialization

We experiment two representative methods to generate the row-orthogonal weight
matrix for classifier’s weight initialization.

– QR-decomposition method. In linear algebra, a QR decomposition is to de-
compose a random matrix A into a product A = QR of an orthogonal
matrix Q and an upper triangular matrix R [1, 58, 73], in which Q is the
matrix of our interest.

– Tammes method. To distribute C two-dimensional vectors on an unit cir-
cle as uniformly as possible, one can randomly place the first vector and
then put the next vector by shifting the previous vector for an angle of 2π

C .
However, when the dimension is larger than two, no such optimal separation
algorithm exists, which is known as the Tammes problem [71]. To maximize
the separation for any vector dimension, Mettes et al. [52] optimize an ob-
jective which encourages large cosine similarity of any pair of vectors with

SphereFed: Hyperspherical Federated Learning 25

gradient decent. Following [52], we learn the vectors using SGD optimizer
with 0.1 learning rate and 0.9 momentum for 104 steps.

Table 10. Accuracy (%) of different initialization methods for the classifier.

FedAvg+SphereFed

(MobileNetv2

on CIFAR-100)

Init. Rep. dim. (l) #Classes (C) Time Accuracy

QR 1280 100 0.02 s 71.85
Tammes 1280 100 13.1 s 71.36

Tab. 10 shows the comparison of above two kinds of initialization methods for
the orthogonal classifier weight matrix. QR-decomposition initialization achieves
slightly better accuracy than the Tammes initialization. We also provide the wall
time of the two methods which is measured on the machine with one NVIDIA
GeForce GTX 1080 Ti GPU.

In all the other experiments of this work, QR method is used for SphereFed
due to its efficiency and effectiveness.

E Details of Hardware Experiments

We evaluate the hardware performance of different on an embedded DNN train-
ing accelerator [91] based on the Xilinx VC707 FPGA evaluation board [78]. A
32 by 64 systolic array is used to perform the tensor operations during the for-
ward and backpropagation. Each systolic cell consists of a Multiply-Accumulate
(MAC) unit which can perform a floating-point multiplication and addition
within a clock cycle, and a special unit is implemented to perform the opera-
tions for the rest layers (e.g., group/batch normalization, ReLU). The hardware
system runs at 100 MHz.

F Details of Implementation

F.1 Model Architectures

We provide the detailed information of ConvNet, MobileNetV2, ResNet18, VGG13
and SENet18 in Tabs. 11 to 15. For the ‘NormLayer’ after each convolution
layer, two kinds of normalization layers are experimented. For experiments with
MobileNetV2 and CIFAR-100, we instance the normalization layer as batch nor-
malization. For other experiments, we use group normalization following prior
arts [32, 43, 48, 66, 76, 84, 87].

F.2 Hyper-parameters

SphereFed and FFC do not introduce any extra hyper-parameter to base feder-
ated learning algorithms. Since we change the loss function from cross entropy

26 X. Dong et al.

to mean square error and these two loss functions have different magnitude,
we tune the learning rate for both baselines and our methods using grid search
from the limited candidate set {0.005, 0.01, 0.05, 0.1, 0.5, 0.8, 1.0}. Detailed de-
fault hyper-parameters are summarized in Tab. 16.

Table 11. Architecture of ConvNet

Block Layers Repetition

Conv(3, 32, k=3, s=1), NormLayer(32), ReLU() 1
Conv(32, 64, k=3, s=2), NormLayer(64), ReLU() 1
Conv(64, 64, k=3, s=2), NormLayer(64), ReLU() 1
Conv(64, 64, k=3, s=1), NormLayer(64), ReLU() 1
Conv(64, 128, k=3, s=2), NormLayer(128), ReLU() 1
Conv(128, 128, k=3, s=1), NormLayer(128), ReLU() 1
Conv(128, 256, k=3, s=2), NormLayer(256), ReLU() 1

Flatten() 1
FeatureNorm() if use SphereFed 1
FC(1024, 100, bias=False) 1

Table 12. Architecture of VGG13

Block Layers Repetition

Conv(3, 64, k=3, s=1, p=1), NormLayer(64), ReLU() 1
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU() 1
MaxPool2d(k=2, s=2) 1
Conv(64, 128, k=3, s=1, p=1), NormLayer(128), ReLU() 1
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU() 1
MaxPool2d(k=2, s=2) 1
Conv(128, 256, k=3, s=1, p=1), NormLayer(256), ReLU() 1
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU() 1
MaxPool2d(k=2, s=2) 1
Conv(256, 512, k=3, s=1, p=1), NormLayer(256), ReLU() 1
Conv(512, 512, k=3, s=1, p=1), NormLayer(256), ReLU() 1
MaxPool2d(k=2, s=2) 1
Conv(512, 512, k=3, s=1, p=1), NormLayer(256), ReLU() 2
MaxPool2d(k=TIN S, s=TIN S) 1

AvgPool2d(k=1, s=1)
Flatten() 1
FeatureNorm() if use SphereFed 1
FC(512, 100, bias=False) 1

*: TIN S=1 if dataset is CIFAR-100 and TIN S=2 if dataset is TinyImageNet.

SphereFed: Hyperspherical Federated Learning 27

Table 13. Architecture of SENet18

Block Layers Repetition

Conv(3, 64, k=3, s=1, p=1), NormLayer(64), ReLU() 1

B1

Conv(64, 64, k=3, s=TIN S, p=1), NormLayer(64), ReLU()
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()
SquzzeExcitationModule()

1

Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()
SquzzeExcitationModule()

1

B2

Conv(64, 128, k=3, s=2, p=1), NormLayer(128), ReLU()
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()
SquzzeExcitationModule()

1

Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()
SquzzeExcitationModule()

1

B3

Conv(128, 256, k=3, s=2, p=1), NormLayer(256), ReLU()
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()
SquzzeExcitationModule()

1

Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()
SquzzeExcitationModule()

1

B4

Conv(256, 512, k=3, s=2, p=1), NormLayer(512), ReLU()
Conv(512, 512, k=3, s=1, p=1), NormLayer(256), ReLU()
SquzzeExcitationModule()

1

Conv(512, 512, k=3, s=1, p=1), NormLayer(512), ReLU()
Conv(512, 512, k=3, s=1, p=1), NormLayer(512), ReLU()
SquzzeExcitationModule()

1

AvgPool2d(k=4, s=4) 1
Flatten() 1
FeatureNorm() if use SphereFed 1
FC(512, 100, bias=False) 1

*: TIN S=1 if dataset is CIFAR-100 and TIN S=2 if dataset is TinyImageNet.

28 X. Dong et al.

Table 14. Architecture of MobileNetV2.

Block Layers Repetition

Conv(3, 32, k=3, s=1), NormLayer(32), ReLU() 1

B1
Conv(32, 32, k=1, s=1), NormLayer(32), ReLU()
Conv(32, 32, k=3, s=1, p=1, g=32), NormLayer(32), ReLU()
Conv(32, 16, k=1, s=1), NormLayer(16), ReLU()

1

B2

Conv(16, 96, k=1, s=1), NormLayer(96), ReLU()
Conv(96, 96, k=3, s=TIN S, p=1, g=96), NormLayer(96), ReLU()
Conv(96, 24, k=1, s=1), NormLayer(24), ReLU()

1

Conv(24, 144, k=1, s=1), NormLayer(144), ReLU()
Conv(144, 144, k=3, s=1, p=1, g=144), NormLayer(144), ReLU()
Conv(144, 24, k=1, s=1), NormLayer(24), ReLU()

1

B3

Conv(24, 144, k=1, s=1), NormLayer(144), ReLU()
Conv(144, 144, k=3, s=2, p=1, g=144), NormLayer(144), ReLU()
Conv(144, 32, k=1, s=1), NormLayer(32), ReLU()

1

Conv(32, 192, k=1, s=1), NormLayer(192), ReLU()
Conv(192, 192, k=3, s=1, p=1, g=192), NormLayer(192), ReLU()
Conv(192, 32, k=1, s=1), NormLayer(32), ReLU()

2

B4

Conv(32, 192, k=1, s=1), NormLayer(192), ReLU()
Conv(192, 192, k=3, s=2, p=1, g=192), NormLayer(192), ReLU()
Conv(192, 64, k=1, s=1), NormLayer(64), ReLU()

1

Conv(64, 384, k=1, s=1), NormLayer(384), ReLU()
Conv(384, 384, k=3, s=1, p=1, g=384), NormLayer(384), ReLU()
Conv(384, 64, k=1, s=1), NormLayer(64), ReLU()

3

B5

Conv(64, 384, k=1, s=1), NormLayer(384), ReLU()
Conv(384, 384, k=3, s=1, p=1, g=384), NormLayer(384), ReLU()
Conv(384, 96, k=1, s=1), NormLayer(96), ReLU()

1

Conv(96, 576, k=1, s=1), NormLayer(576), ReLU()
Conv(576, 576, k=3, s=1, p=1, g=576), NormLayer(576), ReLU()
Conv(576, 96, k=1, s=1), NormLayer(96), ReLU()

2

B6

Conv(96, 576, k=1, s=1), NormLayer(576), ReLU()
Conv(576, 576, k=3, s=2, p=1, g=576), NormLayer(576), ReLU()
Conv(576, 160, k=1, s=1), NormLayer(160), ReLU()

1

Conv(160, 960, k=1, s=1), NormLayer(960), ReLU()
Conv(960, 960, k=3, s=1, p=1, g=960), NormLayer(960), ReLU()
Conv(960, 160, k=1, s=1), NormLayer(160), ReLU()

2

B7
Conv(160, 960, k=1, s=1), NormLayer(960), ReLU()
Conv(960, 960, k=3, s=1, p=1, g=960), NormLayer(960), ReLU()
Conv(960, 320, k=1, s=1), NormLayer(320), ReLU()

1

Conv(320, 1280, k=1, s=1), NormLayer(1280), ReLU() 1

AvgPool2d(k=4, s=4) 1
Flatten() 1
FeatureNorm() if use SphereFed 1
FC(1280, 100, bias=False) 1

*: TIN S=1 if dataset is CIFAR-100 and TIN S=2 if dataset is TinyImageNet.

SphereFed: Hyperspherical Federated Learning 29

Table 15. Architecture of ResNet18

Block Layers Repetition

Conv(3, 64, k=3, s=1, p=1), NormLayer(64), ReLU() 1

B1

Conv(64, 64, k=3, s=TIN S, p=1), NormLayer(64), ReLU()
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()

1

Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()
Conv(64, 64, k=3, s=1, p=1), NormLayer(64), ReLU()

1

B2

Conv(64, 128, k=3, s=2, p=1), NormLayer(128), ReLU()
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()

1

Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()
Conv(128, 128, k=3, s=1, p=1), NormLayer(128), ReLU()

1

B3

Conv(128, 256, k=3, s=2, p=1), NormLayer(256), ReLU()
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()

1

Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()
Conv(256, 256, k=3, s=1, p=1), NormLayer(256), ReLU()

1

B4

Conv(256, 512, k=3, s=2, p=1), NormLayer(512), ReLU()
Conv(512, 512, k=3, s=1, p=1), NormLayer(256), ReLU()

1

Conv(512, 512, k=3, s=1, p=1), NormLayer(512), ReLU()
Conv(512, 512, k=3, s=1, p=1), NormLayer(512), ReLU()

1

AvgPool2d(k=4, s=4) 1
Flatten() 1
FeatureNorm() if use SphereFed 1
FC(512, 100, bias=False) 1

*: TIN S=1 if dataset is CIFAR-100 and TIN S=2 if dataset is TinyImageNet.

30 X. Dong et al.

Table 16. Summary of default hyper-parameters.

Method Hyper-parameters IID α = 0.5 α = 0.1 TinyImageNet

FedAvg
(MobileNetV2)

Rounds 100
Optimizer SGD
Weights decay 0.00001
Momentum 0.9
Local epochs 10
Local batch size 64
Learning rate 0.1

+ CCVR
virtual features per class [48] 500 500 500 1000
fine-tuning learning rate [48] 0.00001 0.00001 0.00001 0.00001

+ BABU learning rate 0.1 0.1 0.1 0.01

+ Ours learning rate 0.5 0.5 1.0 0.5

FedProx
(ResNet18)

Rounds 100
Optimizer SGD
Weights decay 0.00001
Momentum 0.9
Local epochs 10
Local batch size 64
Learning rate 0.1
µ 0.001

+ CCVR
virtual features per class [48] 500 500 500 1000
fine-tuning learning rate [48] 0.00001 0.00001 0.00001 0.00001

+ BABU
learning rate 0.1 0.1 0.1 0.1
µ 0.001 0.001 0.001 0.001

+ Ours
learning rate 0.5 0.5 0.5 0.5
µ 0.0001 0.0001 0.0001 0.001

FedNova
(VGG13)

Rounds 100
Optimizer SGD
Weights decay 0.00001
Momentum 0.9
Local epochs 10
Local batch size 64
Learning rate 0.01

+ CCVR
virtual features per class [48] 500 500 500 1000
fine-tuning learning rate [48] 0.00001 0.00001 0.00001 0.00001

+ BABU learning rate 0.01 0.01 0.01 0.001

+ Ours learning rate 0.1 0.1 0.1 0.1

FedOpt
(SENet18)

Rounds 100
Optimizer SGD
Weights decay 0.00001
Momentum 0.9
Local epochs 10
Local batch size 64
Local learning rate 0.01
On-server optimizer [60] SGD
On-server learning rate [60] 1.0
On-server momentum [60] 0.3

+ CCVR
virtual features per class [48] 500 500 500 1000
fine-tuning learning rate [48] 0.00001 0.00001 0.00001 0.00001

+ BABU Local learning rate 0.01 0.01 0.01 0.01

+ Ours Local learning rate 0.5 0.5 0.5 0.5

