
MEMA Runtime Framework: Minimizing External Memory
Accesses for TinyML on Microcontrollers

Andrew Sabot∗
asabot@g.harvard.edu
Harvard Universtiy
Cambridge, MA, USA

Vikas Natesh∗
vnatesh@g.harvard.edu
Harvard Universtiy
Cambridge, MA, USA

H.T. Kung
kung@harvard.edu
Harvard Universtiy
Cambridge, MA, USA

Wei-Te Ting
weiteting@g.harvard.edu

Harvard Universtiy
Cambridge, MA, USA

ABSTRACT
We present the MEMA framework for the easy and quick deriva-
tion of efficient inference runtimes that minimize external memory
accesses for matrix multiplication on TinyML systems. The frame-
work accounts for hardware resource constraints and problem sizes
in analytically determining optimized schedules and kernels that
minimize memory accesses. MEMA provides a solution to a well-
known problem in the current practice, that is, optimal schedules
tend to be found only through a time consuming and heuristic
search of a large scheduling space. We compare the performance
of runtimes derived from MEMA to existing state-of-the-art li-
braries on ARM-based TinyML systems. For example, for neural
network benchmarks on the ARM Cortex-M4, we achieve up to a
1.8x speedup and 44% energy reduction over CMSIS-NN.

KEYWORDS
tinyML, matrix multiplication, arithmetic intensity, outer product,
memory access, computation scheduling, neural networks

1 INTRODUCTION
Small Internet of things (IoT) devices have become increasingly
common, and used in a growing number of fields including health-
care and consumer products[26]. As these devices grow more pop-
ular, the amount of data collected increases, driving the demand
for computation and machine learning (ML), or TinyML [20], on
these systems. However, due to size and power constraints, these
devices are heavily limited in their available memory, bandwidth,
and computation power. In addition, TinyML devices may be de-
ployed as a distributed system (e.g., for AR/VR workloads [12]) with
limited communication bandwidth. Thus, there is a need to support
efficient computation for machine learning applications on a wide
variety of system configurations for such devices.

Machine learning models involve operations such as convolu-
tional layers, fully connected layers, ReLU, max pooling, and batch-
norm. Computations in convolutional and fully connected layers
of convolutional neural networks (CNNs) and attention layers of
transformers may be implemented as matrix multiplications (MMs)
(see, e.g., [21, 28]). As a result, MM makes up a substantial amount
of the runtime. When MMs do not fit entirely in the local memo-
ries of computing hardware (e.g., registers and caches on CPUs),
additional data transfers to and from external memory are needed.
This additional IO increases energy consumption and latency.

∗Both authors contributed equally to this research.

tinyML Research Symposium’23, March 2023, San Jose, CA
2023.

TinyML hardware characteristics and capabilities can vary sig-
nificantly, so optimal choices of kernels and schedules may differ
for the same problem across multiple devices. Consequently, devel-
oping a runtime framework that can find optimal schedules for the
wide variety of TinyML systems is key for efficient inference.

To characterize the capabilities of system architectures, roofline
plots, (see, e.g., [29]) are commonly used. The slope of the slanted
line is the memory IO bandwidth and the horizontal line is the peak
computation throughput. The horizontal position of the ridge point
represents the minimum arithmetic intensity (arithmetic operations
performed per IO operation) required to achieve the peak compu-
tation throughput offered by the hardware. The optimal schedule
for minimizing memory accesses is a function of the roofline plot.
For example, some microcontroller units (MCUs), e.g., the ARM
Cortex-M4, have relatively high memory bandwidths compared to
their computation power [15]. For these systems, the ridge point is
associated with a smaller arithmetic intensity.

In this paper, we present the MEMA runtime framework for
producing efficient inference runtimes for TinyML that minimize
external memory accesses. The framework analyzes the hardware
and computational problem to derive IO-efficient runtime schedules.
We use the roofline model to reason about the MEMA approach,
focusing on tiny devices with small local memories. For the three
architectures evaluated in this paper (ARM Cortex-M4, M7, and
A72), we present their roofline plots in Figure 2. The MEMA frame-
work schedules computations to increase arithmetic intensity for
two reasons: 1) increasing computation throughput when left of
the ridge point and 2) decreasing the required IO bandwidth, and
thereby energy for memory IO when right of the ridge point.

MEMA Runtime Framework
MEMA Analysis

Hardware
Analysis

Kernel
Selection

Runtime
Scheduling

Compile + Deploy MEMA-derived
Runtime

TinyML DeviceDevelopment Host

Figure 1: Overview of MEMA runtime framework.

The approach of selecting the appropriate library and kernels
based on hardware characteristics is a common practice on CPUs
[25]. However, these techniques have not yet been applied to MCUs.
We cannot directly transfer decisions in the CPU domain to the
MCU domain since the analytical arguments are very different
due to disparities in the hardware (e.g., differences in the memory
hierarchy and available instructions). As a result, in this paper, we
introduce and validate the backbone analysis for MCUs.

Section 2 provides background on matrix multiplication and in-
troduces related works. Section 3 overviews the main objectives
of the MEMA runtime framework and describes how streaming
as a scheduling technique maximizes data reuse in local memory

1

so derived runtimes can operate on TinyML devices with severely
constrained memory footprint. Section 4 breaks down the general
MEMA analysis process for a tiled MM. Section 5 gives an example
of how to use the analysis from Section 4 to derive aMEMA schedule
on real hardware. Section 6 describes the methodology and bench-
marks used in our evaluation of MEMA. Section 7 demonstrates the
performance of MEMA runtimes compared to the state-of-the-art
libraries on several TinyML devices.

This paper makes the following contributions:
• MEMA runtime framework that reduces total memory IO
requirements and hides IO times in computation times for
generated runtimes. To our knowledge, MEMA is the first
such framework aiming to ease the challenge of designing
such schedules for TinyML systems.
• MEMA formalizes the streaming framework to support the
proper shaping and allocation of input and result tiles (𝐴, 𝐵,
and 𝐶) in local memory on MCUs with highly constrained
memory systems (Section 4)
• MEMA analytically derives optimal tiling for multiple bit
widths without the need for searching, as shown in Figure 6.
• Empirical results demonstratingMEMA runtime performance
on real hardware (Section 7).

0.16 0.33 8.0
Arithmetic Intensity (FLOPs/byte)

0.042

0.283

32.0

Th
ro

ug
hp

ut
 (G

FL
OP

s/
se

c)

BWpeak = 0.26 GB/s

BWpeak = 0.86 GB/s

BWpeak = 4 GB/s
Roofline Models For Embedded ARM CPUs

Cortex-M4
Cortex-M7
Cortex-A72

Figure 2: Roofline plots for ARM Cortex-M4, M7, and A72.
The ridge point of each device is denoted as a black dot. Sys-
tems with a ridge point further to the right are bandwidth-
bound, indicating that a higher arithmetic intensity will in-
crease throughput. Conversely, systems with a ridge point
further to the left have large memory bandwidths relative to
computation throughput.

2 BACKGROUND AND RELATEDWORKS
2.1 Partitioning a Matrix Multiplication into

Computation Blocks
For MMs where 𝐴, 𝐵, and𝐶 do not all fit in local memory, we must
partition, or tile, the MM into smaller𝑚×𝑘 ×𝑛 computation blocks
so the inputs to each block fit in local memory (Figure 3a).

Algorithm 1 describes a block-partitioned MM where, for each
value of 𝑡3 in the outermost loop, an outer-product-based MM
between two submatrices (𝑀 × 𝑘 and 𝑘 × 𝑁 matrices) is performed.
We denote this scheme as 𝑀 → 𝑁 → 𝐾 to reflect the order of
the nested loops. For this outer product MM, the scheme performs
𝑀-first block computations (𝑡1 in the innermost loop) as opposed to
𝑁 -first block computations. There are six schemes for scheduling

Algorithm 1:𝑀-first MM using𝑚 × 𝑘 × 𝑛 blocks.
// loops on𝑀/𝑚 × 𝐾/𝑘 × 𝑁 /𝑛 computation blocks
for 𝑡3 = 0→ 𝐾, 𝑡3+ = 𝑘 do
for 𝑡2 = 0→ 𝑁, 𝑡2+ = 𝑛 do
for 𝑡1 = 0→ 𝑀, 𝑡1+ =𝑚 do
// loops for a single computation block
for 𝑘∗ = 𝑡3 → 𝑡3 + 𝑘, 𝑘∗ + + do
for 𝑗 = 𝑡2 → 𝑡2 + 𝑛, 𝑗 + + do
for 𝑖 = 𝑡1 → 𝑡1 +𝑚, 𝑖 + + do
𝐶 [𝑖 +𝑡1 ·𝑚] [𝑗 +𝑡2 ·𝑛] ←− 𝐶 [𝑖 +𝑡1 ·𝑚] [𝑗 +𝑡2 ·𝑛] +
𝐴[𝑖 + 𝑡1 ·𝑚] [𝑘∗ + 𝑡3 ·𝑘] ·𝐵 [𝑘∗ + 𝑡3 ·𝑘] [𝑗 + 𝑡2 ·𝑛];

1

=×

Stream in A

Local C
1
2
3 3

2
1

Stream in B

SIMD Cores for
Outer Product MM

External B
External A

1

=×

Stream in A

Local B

Stream out C

SIMD Cores for
Outer Product MM

1
2
3 3

2
1

1

External A External C

Local Accumulation

...

...

...

(b) (c)(a)

Figure 3: (a) MM for each value of 𝑡3 in Algorithm 1 between
𝑀×𝑘 and 𝑘×𝑁 matrices using𝑚×𝑘×𝑛 computation blocks.𝐴𝑖
and 𝐵𝑖 are tiles of 𝐴 and 𝐵, with lines indicating column and
row vectors, respectively. 𝐶𝑖 𝑗 are tiles of 𝐶. (b) We can hold
rows of𝐶 stationary in the local memory and stream in rows
of 𝐴 and 𝐵. (c) By streaming computed rows of 𝐶 to external
memory, we can hide the IO time within the compute time.
When 𝑘 is sufficiently large, the computation time for each
row of 𝐶 exceeds the time to write the row back to external
memory. In contrast to (b), this scheme need only hold one
row of𝐶 as intermediary results. (b) and (c) are both examples
of schedules that can be generated by MEMA.

computation blocks: 𝑀 → 𝑁 → 𝐾 , 𝑁 → 𝑀 → 𝐾 , 𝑀 → 𝐾 → 𝑁 ,
𝑁 → 𝐾 → 𝑀 , 𝐾 → 𝑀 → 𝑁 , and 𝐾 → 𝑁 → 𝑀 .

2.2 Stationary and Streamed Data
For each MM computation, 𝐴, 𝐵, and 𝐶 tiles must be loaded from
external memory. When data is kept stationary in local memory,
we are able to reduce the number of tiles fetched from external
memory. We designate data kept in local memory for multiple
computations as stationary (e.g.,𝐵matrix in Figure 3b). Data fetched
from external memory and used once before being evicted (e.g., 𝐴
matrix in Figure 3b) is considered “streamed“. Accumulated results
may be streamed out to external memory (e.g., computed rows
of 𝐶 in Figure 3b). Streaming techniques have been used in prior
works such as [14], but our novelty lies in using streaming when
automating runtime schedule design.

Using MEMA we can decrease the total amount of data streamed
to/from external memory. When the computation time is larger
than the streaming time for streamed data items, we are able to
hide the streaming time (Figure 3) and decrease the required local
memory size. The IO to write back a portion of𝐶 can be overlapped
with computation of the next portion of 𝐶 . We assume that there
is sufficient bandwidth to also stream in matrix 𝐴 from external
memory (as is the case of the Cortex-M4, with a ridge point further
to the left in Figure 2c). The streaming method works similarly
when 𝐴, 𝐵, or 𝐶 is kept stationary. For all three methods, smaller

2

tiles of 𝐶 are accumulated in-place to reduce data movement. If
external bandwidth is insufficient, compression techniques, such
as [31] can be applied to the data being streamed in.

2.3 Related Works
CMSIS-NN [18] is a set of kernels for common neural network
operations, focusing on performance in throughput and latency,
and minimizing memory footprints of neural networks on ARM
Cortex-M processors. By using inner products and fixing the loop
order, CMSIS-NN is not able to maximize data reuse.

In addition to CMSIS-NN, recent frameworks such as MCUNet
[20] perform loop tiling and unrolling for neural network layer op-
erations such as convolution. MCUNet only considers the problem
size and available local memory when choosing tile sizes and does
not explicitly minimize memory bandwidth usage. In contrast, our
work uses both local memory and roofline characteristics of the
specific device to derive efficient tile sizes. In addition, we leverage
outer products and loop reordering to increase data reuse, reducing
latency and energy consumption (Figure 6).

ARM provides two libraries for MM on ARM Cortex-A devices:
ARMCompute Library for machine learning (ARMCL [6]) and ARM
Performance Library (ARMPL [5]). While ARMPL and ARMCL use
outer product-based methods for MM, their computation schedule
and tiling strategy is based on Goto’s algorithm [13], which does not
minimize IO bandwidth usage. By minimizing external accesses, we
are able to outperform ARMCL and ARMPL (see Figure 7). GOTO’s
algorithm [13] is a classical algorithm based on data streaming for
high-performance MM on CPUs, underlying OpenBLAS [30] and
Intel MKL [2]. CUTLASS [4] is an open-source C++ CUDA BLAS
library for Nvidia GPUs. CUTLASS is similar to our work in using
outer product formulations for MM.

TensorFlow Lite Micro (TFLM) [10] is an ML inference frame-
work for deep learning on embedded systems. Hardware vendors
can contribute their own kernels to TFLM, allowing programmers
to deploy ML models to many architectures. Currently, TFLM uses
the CMSIS-NN library when benchmarking embedded hardware
platforms [7]. In this paper, we demonstrate our kernel improves
energy usage, bandwidth usage, and computation throughput over
the CMSIS-NN kernel for TFLM.

3 MEMA FRAMEWORK
The MEMA runtime framework combines hardware characteris-
tics, problem size information (e.g., input matrix sizes for MM), IO
analysis, and scheduling to produce an efficient inference runtime.
In this section, we introduce the MEMA framework objectives. We
also describe how MEMA leverages streaming to maximize data
reuse and overlap compute and IO times when partitioning MM
computations with inputs that do not fit in local memory.

TinyML devices are constrained in memory sizes and speeds
due to form factor and limited power budgets. The MEMA frame-
work addresses these challenges through its objectives: reducing
the number of external memory accesses and hiding IO time within
compute time via streaming that efficiently utilizes available local
memory. By reducing memory accesses, the framework may re-
duce energy consumption of machine learning inference tasks on

TinyML devices. This allows MEMA to overlap IO with compute
and derive runtimes that are not bottlenecked by IO.

3.1 Overview of the MEMA Framework
Given an MM 𝐶 = 𝐶 + 𝐴 × 𝐵, where 𝐴 is 𝑀 × 𝐾 and 𝐵 is 𝐾 × 𝑁 ,
the MEMA framework can automatically derive optimal schedules
in minimizing external memory accesses, subject to local memory
size, using techniques that maximize data reuse: (1) tile shaping, (2)
matrix operand streaming and (3) loop order selection.

The framework first uses information about the target hardware,
such as register count, local memory size, and external memory
bandwidth to determine the optimal tile sizes (Section 4.1). Tile
sizes are automatically derived to maximize the arithmetic intensity
of each tile multiplication (with the goal of increasing computation
throughput and reducing energy consumption for IO). Based on the
tile sizes, MEMA can select kernels tailored to the target platform
from existing libraries or generate optimized outer product kernels.
Then, by accounting for potential tile sizes and MM problem size, a
schedule that minimizes external IO (Section 4.4) and decreases the
required IO bandwidth is selected. The kernels and schedules are
then compiled into a MEMA runtime and deployed to the TinyML
device, as depicted in Figure 1.

4 MEMA ANALYSIS FOR RUNTIME
DERIVATION

In this section we cover the MEMA analysis for MM on two hard-
ware platforms: a single core MCU and a multi-core IoT device. Our
analysis is limited to MM operations, but the framework may be
extended to other multi-loop reduction operations with static loop
bounds such as direct convolution and tensor contractions. The
MEMA analysis starts by analytically deriving a tile size that max-
imizes arithmetic intensity for a given hardware. Then using the
derived tiling, we select a loop order which maximizes data reuse
between successive tile computations. We show that the external
memory IO associated with streaming is determined by both tile
size and MM problem size. Meanwhile, the MM problem size alone
determines the IO for the stationary data. MEMA chooses the loop
order with the lowest combined streaming and stationary IO.

4.1 Deriving Tile Sizes for MCUs
Consider an outer product shown in Figure 3a between a 𝑚 × 1
vector of 𝐴 and 1 × 𝑛 vector of 𝐵 to produce a stationary𝑚 × 𝑛 tile
of 𝐶 . For simplicity of discussion, we only count multiplications,
excluding additions. To maximize reuse, we maximize the ratio of
computation (𝑚𝑛 multiplications) to IO (𝑚 +𝑛 input values) i.e., the
arithmetic intensity 𝑚𝑛

𝑚+𝑛 . This ratio is maximized when we choose
a square tile𝑚 = 𝑛 = 𝑡 . Assume we have an MCU with 36 registers
of local memory available for data reuse. All outer product inputs
(𝑚 + 𝑛 +𝑚𝑛 values) must fit in local memory, i.e., 2𝑡 + 𝑡2 ≤ 36.
Solving for 𝑡 shows the optimal tile size of 𝐶 for this MCU is 5 × 5.

The selected 𝐶 tile in this example will act as an intermediate
local store to support the input streaming with computation when
the scheme of Figure 3c is used. While we derive tile dimensions via
a simple arithmetic intensity argument here, other tiling techniques
may be used [8, 16] with MEMA.

3

4.2 Deriving Tile Sizes for Multicore IoT Devices
Unlike MCUs, IoT devices such as [1, 11, 24] contain multiple low-
power RISCV or ARM cores as well as multiple levels of memory.
Since we have to tile at multiple memory levels, the number of
possible schedules is much larger. For example, on a device with
3 memory levels, we have the choice of 6 MM loop orders at each
level for a total of 63 = 216 possible loop orderings. In addition,
tiles at each memory level must be properly sized according to the
available local memory, bandwidth, and number of cores.

Instead of searching a large space of schedules for the optimal
tiling as in [9, 19], we use CAKE [17], a multi-core matrix multi-
plication tiling and scheduling algorithm that utilizes constant-
bandwidth (CB) blocks in computation partitioning and block
scheduling. A CB block is a block of computation that, when com-
puted from within a local memory, the required off-chip bandwidth
is constant, even when utilizing additional cores. CAKE controls
the arithmetic intensity of CB blocks by adjusting the CB block
shape (i.e., aspect ratios) and size according to available off-chip
DRAM memory bandwidth, number of cores, and available local
memory. Using CAKE tiling we can increase the use of available
computing power without requiring a comparable increase in off-
chip memory bandwidth. CAKE does require more local memory
when increasing the number of cores, but local memory size is often
sufficient in comparison to off-chip bandwidth.

Suppose we want to grow the number of cores by a factor 𝑝 .
CAKE reshapes the computation block from𝑚 × 𝑘 × 𝑛 (shown in
Figure 3) to the shape 𝑝𝑚 × 𝑘 × 𝑝𝑛. CAKE also holds the large
𝐶 tile, with dimensions 𝑝𝑚 × 𝑝𝑛, stationary in on-chip memory
while streaming in the smaller 𝑝𝑚 × 𝑘 and 𝑘 × 𝑝𝑛 tiles of 𝐴 and 𝐵,
respectively. Let 𝑝 · 𝑓 be the peak FLOPs of the system where 𝑓 is
the single core peak. To compute the CB block in local memory,
CAKE performs 𝑝𝑚 · 𝑘 · 𝑝𝑛 MAC operations in time 𝑇 =

𝑝𝑚 ·𝑘 ·𝑝𝑛
𝑝 ·𝑓

using 𝐼𝑂 = 𝑝𝑚𝑘 + 𝑝𝑛𝑘 off-chip memory accesses. The required
off-chip bandwidth is then:

𝐵𝑊𝑜𝑓 𝑓 −𝑐ℎ𝑖𝑝 =
𝐼𝑂

𝑇
=
𝑝 · 𝑘 · (𝑚 + 𝑛)
𝑝𝑚 · 𝑘 · 𝑝𝑛 ·𝑝 · 𝑓 =

𝑚 + 𝑛
𝑚𝑛

· 𝑓

Note that CAKE’s bandwidth usage is constant regardless of the
number of cores because the 𝑝 factors cancel out. Given CAKE’s
CB block shape, we can directly solve for the optimal tile sizes by
choosing𝑚, 𝑘 , and 𝑛 such that 𝐴, 𝐵, and 𝐶 tiles fit in local memory
(𝐿𝑀), i.e., 𝑝𝑚𝑘 + 𝑘𝑝𝑛 + 𝑝2𝑚𝑛 ≤ 𝐿𝑀 . Here, 𝐿𝑀 is on-chip memory
shared by all the cores, each of which computes a single𝑚 × 𝑘 × 𝑛
sub-block at a time. Without loss of generality, we may continue to
tile the𝑚 × 𝑘 × 𝑛 sub-block according to the available registers or
local memory private to each core (see Section 7).

4.3 Loop Order for Inter-Block Computations
Computing computation blocks with different loop orders may
result in different total external memory accesses for the same MM.
CAKE does not reorder the loops to minimize external memory
accesses, instead it only uses a 𝐾-first scheduling of blocks (𝐾-
dimension as the inner loop, keeping partial results stationary).
Total IO varies since loop order determines the streaming pattern.
For skewed matrix shapes, a partial result stationary schedule may
not minimize off-chip memory accesses. MEMA improves upon this

by selecting the loop order that minimizes total external memory
accesses, even if the order does not keep partial results stationary.

For a partitioned MM between an𝑀 × 𝐾 matrix 𝐴 and a 𝐾 × 𝑁
matrix 𝐵 (described in Section 2.1) the total IO for a given loop
order can be computed as the sum of streaming and stationary IO:

(# of blocks) · (𝐼𝑂𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 per block) + 𝐼𝑂𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦
For an 𝑁 -first schedule (stationary 𝐴 tiles), our total IO is:

𝐼𝑂𝑁 -first =
𝑀𝐾𝑁

𝑚𝑘𝑛
(2𝑚𝑛 + 𝑛𝑘) + 𝑀

𝑚
· 𝐾
𝑘
(𝑚𝑘) = 𝑀𝐾𝑁

(
1
𝑚
+ 2
𝑘

)
+𝑀𝐾

For an𝑀-first schedule (stationary 𝐵 tiles), our total IO is:

𝐼𝑂𝑀-first =
𝑀𝐾𝑁

𝑚𝑘𝑛
(𝑚𝑘 + 2𝑚𝑛) + 𝐾

𝑘
· 𝑁
𝑛
(𝑘𝑛) = 𝑀𝐾𝑁

(
2
𝑘
+ 1
𝑛

)
+𝐾𝑁

For an 𝐾-first schedule (stationary 𝐶 tiles), our total IO is:

𝐼𝑂𝐾 -first =
𝑀𝐾𝑁

𝑚𝑘𝑛
(𝑚𝑘 + 𝑘𝑛) + 𝑀

𝑚
· 𝑁
𝑛
(2𝑚𝑛) = 𝑀𝐾𝑁

(
1
𝑚
+ 1
𝑛

)
+ 2𝑀𝑁

The 2 factor from 2𝑚𝑛 reflects reading and writing partial 𝐶 tiles.

4.4 Choosing Loop Ordering Based on Tile
Dimensions and Input Matrix Sizes

Using the IO equations in Section 4.3, MEMA selects a schedule
which minimizes IO. Tile size determines the number of memory
accesses for streaming. The size of𝐴 and 𝐵 determines the memory
accesses for stationary data. A loop order that minimizes external
memory accesses may be selected by calculating the memory ac-
cesses for each of the 6 possible loop orders given in Section 2.1. The
rest of this section gives two examples of MM loop order selection.

Consider an MM where𝑀 = 𝐾 = 𝑁 computed with non-square
tiles (𝑛 > 𝑘 = 𝑚). The 𝐵 and 𝐶 tiles are larger and thus would
require more IO to stream. In an 𝑁 -first loop order, an 𝐴 tile is
kept stationary while 𝐵 and 𝐶 tiles are streamed. However, we can
reduce IO by using an𝑀-first or 𝐾-first order and streaming𝐴 tiles.
In this example, the𝑀-first and 𝐾-first orders are equivalent as all
other dimensions are equal.

Now consider an MM between 𝐴 and 𝐵 with𝑀 > 𝑁 and𝑀 > 𝐾 .
Suppose the MM is computed using square tiles (𝑛 = 𝑚 = 𝑘).
Computing the MM using the 𝑁 -first requires more total external
memory accesses than the 𝑀-first schedule. In comparison, the
𝑀-first order has less IO since 𝐵 tiles can be reused 𝑀

𝑚 times, which
is more than other directions because 𝑀 > 𝑁 and 𝑀 > 𝐾 . The
streaming term of the IO function is independent of loop order
when tile sizes are equal.

5 MEMA DERIVATION FOR REAL HARDWARE
5.1 Evaluation Hardware Characteristics
In this and subsequent sections (Section 6 and Section 7) we evaluate
MEMA’s performance against state-of-the-art libraries for MM on
multiple MCUs representative of popular embedded platforms: Ar-
duino Nano 33 BLE (ARMv7E-M Cortex-M4), STM32F767ZI Nucleo
(ARMv7E-M Cortex-M7), and Raspberry Pi 4 Model B (ARMv8-A
Cortex-A72). MEMA is implemented using C++ and compiler in-
trinsics on each respective platform (open-sourced at https://github.
com/vnatesh/MEMA-MM). The Cortex-M4 and M7 have very lim-
ited local memory: only 32 floating-point registers and 16 registers
for DSP-accelerated fixed-point arithmetic. The Cortex-M4 has a

4

https://github.com/vnatesh/MEMA-MM
https://github.com/vnatesh/MEMA-MM

0 100 200 300
M (K = 5, N = 20)

0
4
8

12
16
20
24
28
32

Th
ro

ug
hp

ut
 (M

FL
OP

s/
se

c) (a) FP32 Throughput With Large M

mema m-first
arm_inner_2x8x2
mema k-first

0 100 200 300
K (M = 10, N = 20)

0
4
8

12
16
20
24
28
32

Th
ro

ug
hp

ut
 (M

FL
OP

s/
se

c) (b) FP32 Throughput With Large K

mema m-first
arm_inner_2x8x2
mema k-first

Figure 4: MEMA performance on Cortex-M4 for various MM
problems. By scheduling to minimize IO, MEMA maximizes
throughput for matrices with skewed shapes. (a) 𝑀-first
schedule outperforms 𝐾-first when 𝐾 = 5, as predicted by
MEMA’s analysis (Section 5.2). Similarly, (b) shows the𝐾-first
schedule outperforms𝑀-first for 𝐾 > 10. The MEMA sched-
ule outperforms the ARM library (arm_inner_2x8x2).

256KB external memory (SRAM) and 1MB of flash memory for stor-
ing additional data and code. The Cortex-M7 has roughly double the
SRAM and flash of the M4. Meanwhile, the Cortex-A72 has more
compute and memory resources than the Cortex-M4 and M7 but
is still limited by DRAM bandwidth, local memory size, and local
memory bandwidth relative to computation power (see Figure 2).

5.2 MEMA Schedule Derived on Cortex-M4
In this section, we apply MEMA’s analysis to an ARM Cortex-M4
in minimizing memory accesses for an MM problem, given𝑀 , 𝐾 ,
𝑁 . After determining an optimal tile size based on the device’s
local memory size and hierarchy (Section 4.1), we derive conditions
for when to use any of the six computation block schedules (Sec-
tion 4.3). Consider, e.g., the choice between𝑀 and𝐾-first schedules.
To minimize IO, we should use the 𝑀-first schedule only when
𝐼𝑂𝑀-first ≤ 𝐼𝑂𝐾-first and 𝐼𝑂𝑀-first ≤ 𝐼𝑂𝑁 -first. Using the equations
in Section 4.3, we obtain the following inequalities as a condition
for choosing the𝑀-first schedule:

𝑀𝐾𝑁

(
2
𝑘
+ 1
𝑛

)
+𝐾𝑁 ≤ 𝑀𝐾𝑁

(
1
𝑚
+ 1
𝑛

)
+ 2𝑀𝑁

𝑀𝐾𝑁

(
2
𝑘
+ 1
𝑛

)
+𝐾𝑁 ≤ 𝑀𝐾𝑁

(
2
𝑘
+ 1
𝑚

)
+𝑀𝐾

=⇒ 𝐾 ≤
(

2𝑀
1 +𝑀 (2

𝑘
− 1
𝑚
)

)
, 𝑁 ≤

(
𝑀

1 +𝑀 (1
𝑛
− 1
𝑚
)

)
Since the Cortex-M4 has 36 registers available for local data

reuse, suppose we use a square 5 × 5 tile for stationary data as
derived in Section 4.1 i.e.,𝑚 = 𝑘 = 𝑛 = 5. Then, the analysis above
suggests we should use the 𝑀-first schedule when 𝐾 is roughly
≤ 10 and 𝑀 ≥ 𝑁 , since in this case the above two inequalities
hold. We confirm this choice empirically in Figure 4a which shows
the𝑀-first schedule outperforming 𝐾-first on the Cortex-M4 when
𝐾 = 5. Similarly, Figure 4b shows that as𝐾 increases beyond 10 with
𝑀 and 𝑁 fixed, the 𝐾-first schedule outperforms𝑀-first. We may
decide between 𝑁 and 𝐾-first schedules via 𝐼𝑂𝑁 -first ≤ 𝐼𝑂𝐾-first,
yielding inequalities analogous to those above.

6 NEURAL NETWORK BENCHMARKS AND
ENERGY MEASUREMENT METHODOLOGY

Neural Network Benchmarks. We measure computation through-
put (FLOPs/sec), external memory IO (bytes), and energy usage
(joules) during MMs between weight and data matrices for the

PowerTool GUI

Microcontroller Unit
(MCU)

USB Connection
(Data Visualization)

USB Connection
(MCU Power Delivery)

Power Monitor

Figure 5: Power monitor setup for collecting data on a USB-
connected MCU. The monitor reports real time voltage and
current via the PowerTool GUI [22].

layers of neural network models from various benchmarks. On the
Cortex-M4 and M7, we use the MLPerf Tiny Benchmark [7], com-
posed of models for tasks such as keyword spotting, visual wake
words, and image recognition. Using matrices from the benchmark,
we extract dimensions for weight and data matrices in each layer
after applying im2col [27]. For the ARM Cortex-A72, we use trans-
former model matrices provided by the Deep Learning Matrix Col-
lection (DMLC) [23]. Packing overhead is expensive for the matrix
sizes evaluated, so our kernels on the M4 and M7 are packing-free.

Energy Measurement Setup. To measure energy consumption, we
follow the MLPerf Tiny benchmark guidelines [7]. We use a Mon-
soon Solutions Low-Voltage Power Monitor [22], which has a cur-
rent resolution of 50 𝜇A and voltage resolution of 125 𝜇V. The power
monitor samples voltage and current every 200 𝜇s and reports the
data via the PowerTool GUI on a host desktop. MCUs are connected
to the power monitor USB channel with the USB passthrough fea-
ture enabled to allow communication with the Power Tool GUI
on the host desktop (Figure 5). The MCUs operate at 5V, which is
within the USB channel’s voltage range of 2.1 V to 5.4 V. The MCUs
consume between 16 and 22 mA of current, for a margin of error of
∼2%. We report energy consumption for the Arduino Nano 33 BLE
(ARMv7E-M Cortex-M4), as it is representative of the other devices.
MM energy measurements are averaged over hundreds of trials.

7 RESULTS AND EVALUATION
7.1 DLMC Benchmark on ARM Cortex-A72
We perform MM on transformer model matrices from the DLMC
Benchmark usingMEMA, ARMCL, and ARMPL on the ARMCortex-
A72 CPU and collect performance data using perf [3]. DRAM ac-
cesses are monitored via the ARM PMU event counter (L2 cache
refills from DRAM). The Cortex-A72 contains four cores (𝑝 = 4),
a shared L2 cache, and private L1 caches on each core. We tile
the MM into CB blocks as shown in Section 4.2, where each core
computes a 𝑚 × 𝑘 × 𝑛 sub-block at a time with 𝑚 = 𝑘 = 𝑛 and
𝑝𝑚𝑘 + 𝑘𝑝𝑛 + 𝑝2𝑚𝑛 ≤ 𝐿2. We further partition the𝑚 × 𝑘 × 𝑛 sub-
block into individual 8×𝑘×12 outer products that can be computed
from the 128 32-bit registers available on each core. The 8 × 𝑘 × 12
shape was chosen by adapting the MCU analysis of Section 4.1 to a
CPU single core.

ARMCL attains peak throughput on some MM problems (Fig-
ure 7b), but may not schedule efficiently. ARMPL and ARMCL tile
MM computations according to the classical Goto’s algorithm [13],
which requires more DRAM bandwidth. In contrast, MEMA attains
high throughput for all input shapes by minimizing IO (Figure 7a)
via runtime scheduling and CAKE tiling in local memory.

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Layer Id

0
5

10
15
20
25

Th
ro

ug
hp

ut
 (O

Ps
/s

ec
) (a) Cortex-M4 Throughput on TinyML Benchmark

FP32 mema outer 5x1x5
FP32 cmsis inner 2x8x2
Q15 mema outer 4x2x2
Q15 cmsis inner 2x4x2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Layer Id

0

10

20

30

40

50

En
er

gy
 U

sa
ge

 (m
J)

(b) Cortex-M4 Energy Usage on TinyML Benchmark
FP32 mema outer 5x1x5
FP32 cmsis inner 2x8x2
Q15 mema outer 4x2x2
Q15 cmsis inner 2x4x2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Layer Id

0

5

10

15

Th
ro

ug
hp

ut
 (M

FL
OP

s/
se

c) (c) Cortex-M7 FP32 Throughput on TinyML Benchmark

mema outer 5x1x5
cmsis inner 2x8x2

Layer Id Dimension Layer Id Dimension
1 16 × 27 × 1024 11 8 × 27 × 2304
2 16 × 144 × 1024 12 16 × 8 × 2304
3 32 × 144 × 256 13 32 × 16 × 576
4 32 × 288 × 256 14 32 × 32 × 576
5 32 × 16 × 256 15 64 × 32 × 144
6 64 × 288 × 64 16 64 × 64 × 144
7 64 × 576 × 64 17 128 × 64 × 36
8 64 × 32 × 64 18 128 × 128 × 36
9 64 × 40 × 122 19 256 × 128 × 9
10 64 × 64 × 125 20 256 × 256 × 9

Figure 6: Throughput and energy usage for MEMA and ARM CMSIS-NN on the ARM Cortex-M4 and M7 performing MM with
matrices from the TinyML benchmark [7]. Each bar group represents the MM for a layer. Input matrix dimensions for each
layer are shown in the bottom-right table. For FP32 MM, MEMA attains up to 1.8x the throughput and 44% less energy than
CMSIS-NN. For Q15 arithmetic on the MCU DSPs, only 12 registers are available, limiting tiling options. For Q15 MM, MEMA
achieves up to 1.2x the throughput and 20% less energy than CMSIS-DSP.

1 2 3 4 5 6 7 8 9 10 11 12
Layer Id

0.0
0.1
0.2
0.3
0.4
0.5
0.6

DR
AM

 IO
 (G

B)

(a) DLMC Benchmark DRAM IO On Cortex-A72
MEMA
ARMPL
ARMCL

1 2 3 4 5 6 7 8 9 10 11 12
Layer Id

0
5

10
15
20
25
30
35

Th
ro

ug
hp

ut
 (G

FL
OP

/s
) (b) DLMC Benchmark Throughput On Cortex-A72

MEMA
ARMPL
ARMCL

Layer Id Dimension (𝑀 × 𝐾 × 𝑁)
1 512 × 2048 × 256
2 512 × 512 × 256
3 2048 × 512 × 256
4 512 × 2048 × 512
5 512 × 512 × 512
6 2048 × 512 × 512
7 512 × 2048 × 1024
8 512 × 512 × 1024
9 2048 × 512 × 1024
10 512 × 2048 × 2048
11 512 × 512 × 2048
12 2048 × 512 × 2048

Figure 7: Throughput and external memory IO for MEMA, ARMPL, and ARMCL on the ARM Cortex-A72 when multiplying
transformer model matrices from the DLMC Benchmark [23]. Input matrix dimensions for each layer are shown in the
right-hand table. By minimizing external memory accesses (a), MEMA generally achieves peak computation throughput (b).

7.2 MLPerf Tiny Benchmark on ARM
Cortex-M4 and M7

We compare MEMA to ARM CMSIS-DSP on the Cortex-M4 and
M7 when performing MM between matrices from the MLPerf Tiny
benchmark [7]. CMSIS uses inner product kernels for tiling MM
computations such as GEMM-based convolutions. For instance,
FP32 MM computations are tiled as inner products between 2 × 8
row tiles of 𝐴 and 8 × 2 column tiles of 𝐵 to yield 2 × 2 tiles of 𝐶
(cmsis inner 2x8x2 in Figure 6). In contrast, MEMA tiles MM
with outer products between 5 × 1 column vectors of 𝐴 and 1 × 5
row vectors of 𝐵 to produce 5 × 5 tiles of 𝐶 held in registers (mema
outer 5x1x5 in Figure 6). MEMA outperforms the ARM kernel by
up to 1.8× while reducing energy usage by up to 44%.

For saturating fixed-point 16-bit arithmetic (Q15) on the Cortex-
M4/7 DSPs, a small local memory (twelve 32-bit registers) limits
kernel choices to a few shapes. Moreover, pairs of values in the
input matrices are stored as 32-bit words, requiring pairs of 16-
bit values to be unpacked before dual-MAC SIMD computations
occur. This bit packing stalls the computation by several cycles,
resulting in a roofline ridge point that is far to the left. Despite

the severely compute-bound nature of Q15 computations, MEMA
improves throughput over CMSIS by reducing external IO.

CMSIS Q15 MM computations are tiled as inner products be-
tween 2 × 4 tiles of 𝐴 and 4 × 2 tiles of 𝐵 to produce a 2 × 2 tile of
𝐶 (cmsis inner 2x4x2 in Figure 6). MEMA tiles the MM between
4× 2 tiles of𝐴 and 2× 2 tiles of 𝐵 to produce 4× 2 stationary tiles of
𝐶 (mema outer 4x2x2 in Figure 6). MEMA and CMSIS use the same
SIMD instructions to execute multiple MAC operations per cycle,
but MEMA’s tiling schedule reduces the number of times 𝐵 must be
streamed from external memory (𝑀4 times for MEMA vs 𝑀2 times
for CMSIS), shown by the analysis in Section 4.4). Consequently,
MEMA attains 20% higher computation throughput than CMSIS
while using up to 23% less energy.

8 CONCLUSION
We propose the MEMA framework to generate inference runtimes
that minimize external memory accesses for TinyML on microcon-
trollers (MCUs). By decreasing external memory accesses, MEMA-
generated schedules can increase computation throughput and
reduce energy consumption.

6

MEMAcan adapt to various TinyMLMCUswith different roofline
ridge points by selecting data streaming, tile shaping, and loop
ordering schemes suited to the hardware (Figure 3b and c). For
example, for neural network benchmarks on the Cortex-M4, the
MEMA-generated runtime schedule achieves up to a 1.8x speedup
and 44% less energy than state-of-the-art CMSIS-NN library (Fig-
ure 6). This work demonstrates that simple runtime frameworks,
such as MEMA, for TinyMLMCUs can significantly reduce memory
accesses and energy consumption.

9 ACKNOWLEDGEMENTS
This work was supported in part by the Air Force Research Lab-
oratory under award numbers FA8750-18-1-0112 and FA8750-22-
1-0500, and Meta Platforms Technologies under award number
A51540.

REFERENCES
[1] [n. d.]. ARM® Cortex®-A72 MPCore Processor Technical Reference Manual.

https://developer.arm.com/documentation/100095/0003/?lang=en
[2] [n. d.]. Intel oneAPI Math Kernel Library.
[3] [n. d.]. Perf Wiki. https://perf.wiki.kernel.org/index.php/Main_Page.
[4] 2020. CUTLASS: Fast Linear Algebra in CUDA C++. https://developer.nvidia.

com/blog/cutlass-linear-algebra-cuda/.
[5] Arm Limited 2021. Arm Performance Libraries Reference Guide. Arm Limited.

https://developer.arm.com/documentation/101004/latest/
[6] Arm Limited 2022. Arm Compute Library Reference Guide. Arm Limited. https:

//arm-software.github.io/ComputeLibrary/latest/
[7] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jef-

fries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo
Pau, Urmish Thakker, Antonio Torrini, Peter Warden, Jay Cordaro, Giuseppe
Di Guglielmo, Javier Duarte, Stephen Gibellini, Videet Parekh, Honson Tran,
Nhan Tran, Niu Wenxu, and Xu Xuesong. 2021. MLPerf Tiny Benchmark.
arXiv:2106.07597 [cs] (Aug. 2021). arXiv:2106.07597 [cs]

[8] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam,
Atanas Rountev, and P. Sadayappan. 2008. Automatic Transformations for
Communication-Minimized Parallelization and Locality Optimization in the Poly-
hedral Model. In Compiler Construction (Lecture Notes in Computer Science), Laurie
Hendren (Ed.). Springer, Berlin, Heidelberg, 132–146. https://doi.org/10.1007/978-
3-540-78791-4_9

[9] Alessio Burrello, Angelo Garofalo, Nazareno Bruschi, Giuseppe Tagliavini, Davide
Rossi, and Francesco Conti. 2021. DORY: Automatic End-to-End Deployment
of Real-World DNNs on Low-Cost IoT MCUs. IEEE Trans. Comput. 70, 8 (2021),
1253–1268. https://doi.org/10.1109/TC.2021.3066883

[10] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, Pete Warden, and
Rocky Rhodes. 2021. TensorFlow Lite Micro: Embedded Machine Learning for
TinyML Systems. Proceedings of Machine Learning and Systems 3 (March 2021),
800–811.

[11] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini, Florent
Rotenberg, and Luca Benini. 2018. GAP-8: A RISC-V SoC for AI at the Edge of
the IoT. In 2018 IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). 1–4. https://doi.org/10.1109/ASAP.2018.
8445101

[12] Jorge Gomez, Saavan Patel, Syed Shakib Sarwar, Ziyun Li, Raffaele Capoccia, Zhao
Wang, Reid Pinkham, Andrew Berkovich, Tsung-Hsun Tsai, Barbara De Salvo,
et al. 2022. Distributed On-Sensor Compute System for AR/VR Devices: A
Semi-Analytical Simulation Framework for Power Estimation. arXiv preprint
arXiv:2203.07474 (2022).

[13] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of High-Performance
Matrix Multiplication. ACM Trans. Math. Softw., Article 12 (2008), 25 pages.

[14] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of High-Performance
Matrix Multiplication. ACM Trans. Math. Software 34, 3 (May 2008), 12:1–12:25.
https://doi.org/10.1145/1356052.1356053

[15] MarkHill and Vijay Janapa Reddi. 2019. Gables: A RooflineModel forMobile SoCs.
In 2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 317–330. https://doi.org/10.1109/HPCA.2019.00047

[16] H. T. Kung, Vikas Natesh, and Andrew Sabot. 2021. CAKE: Matrix Multipli-
cation Using Constant-Bandwidth Blocks. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC ’21). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3458817.3476166

[17] H. T. Kung, Vikas Natesh, and Andrew Sabot. 2021. CAKE: Matrix Multiplication
Using Constant-Bandwidth Blocks. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (St. Louis,
Missouri) (SC ’21). Association for Computing Machinery, New York, NY, USA,
Article 85, 14 pages. https://doi.org/10.1145/3458817.3476166

[18] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. CMSIS-NN: Efficient
Neural Network Kernels for Arm Cortex-M CPUs. arXiv:1801.06601 [cs] (Jan.
2018). arXiv:1801.06601 [cs]

[19] Rui Li, Aravind Sukumaran-Rajam, Richard Veras, TzeMeng Low, Fabrice Rastello,
Atanas Rountev, and P. Sadayappan. 2019. Analytical Cache Modeling and
Tilesize Optimization for Tensor Contractions. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 74, 13 pages. https://doi.org/10.1145/3295500.3356218

[20] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. 2020.
MCUNet: Tiny Deep Learning on IoT Devices. In Proceedings of the 34th Inter-
national Conference on Neural Information Processing Systems (NIPS’20). Curran
Associates Inc., Red Hook, NY, USA, 11711–11722.

[21] Bradley McDanel, Sai Qian Zhang, HT Kung, and Xin Dong. 2019. Full-stack
optimization for accelerating CNNs using powers-of-two weights with FPGA
validation. In Proceedings of the ACM International Conference on Supercomputing.
449–460.

[22] Monsoon Solutions, Inc. [n. d.]. Low Voltage Power Monitor Documentation.
https://www.msoon.com/lvpm-product-documentation.

[23] Google Research. 2020. Deep Learning Matrix Collection. https://github.com/
google-research/google-research/tree/master/sgk.

[24] Davide Rossi, Francesco Conti, Andrea Marongiu, Antonio Pullini, Igor Loi,
Michael Gautschi, Giuseppe Tagliavini, Alessandro Capotondi, Philippe Flatresse,
and Luca Benini. 2015. PULP: A parallel ultra low power platform for next
generation IoT applications. In 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE
Computer Society, 1–39.

[25] Tyler M. Smith and Robert A. van de Geijn. 2019. The MOMMS Fam-
ily of Matrix Multiplication Algorithms. arXiv:1904.05717 [cs] (April 2019).
arXiv:1904.05717 [cs]

[26] Stanislava Soro. 2021. TinyML for Ubiquitous Edge AI. https://doi.org/10.48550/
ARXIV.2102.01255

[27] Aravind Vasudevan, Andrew Anderson, and David Gregg. 2017. Parallel Multi
Channel convolution using General Matrix Multiplication. In 2017 IEEE 28th Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP). 19–24. https://doi.org/10.1109/ASAP.2017.7995254

[28] Pete Warden. 2015. Why GEMM Is at the Heart of Deep Learning.
[29] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An

Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (2009), 65–76. https://doi.org/10.1145/1498765.1498785

[30] Zhang Xianyi, Wang Qian, and Zaheer Chothia. 2012. Openblas. URL: http:
//xianyi.github.io/OpenBLAS (2012), 88.

[31] Vinson Young, Sanjay Kariyappa, and Moinuddin K. Qureshi. 2019. Enabling
Transparent Memory-Compression for Commodity Memory Systems. In 2019
IEEE International Symposium on High Performance Computer Architecture (HPCA).
570–581. https://doi.org/10.1109/HPCA.2019.00010

7

https://developer.arm.com/documentation/100095/0003/?lang=en
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.arm.com/documentation/101004/latest/
https://arm-software.github.io/ComputeLibrary/latest/
https://arm-software.github.io/ComputeLibrary/latest/
https://arxiv.org/abs/2106.07597
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1109/TC.2021.3066883
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1109/HPCA.2019.00047
https://doi.org/10.1145/3458817.3476166
https://doi.org/10.1145/3458817.3476166
https://arxiv.org/abs/1801.06601
https://doi.org/10.1145/3295500.3356218
https://github.com/google-research/google-research/tree/master/sgk
https://github.com/google-research/google-research/tree/master/sgk
https://arxiv.org/abs/1904.05717
https://doi.org/10.48550/ARXIV.2102.01255
https://doi.org/10.48550/ARXIV.2102.01255
https://doi.org/10.1109/ASAP.2017.7995254
https://doi.org/10.1145/1498765.1498785
http://xianyi.github.io/OpenBLAS
http://xianyi.github.io/OpenBLAS
https://doi.org/10.1109/HPCA.2019.00010

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Partitioning a Matrix Multiplication into Computation Blocks
	2.2 Stationary and Streamed Data
	2.3 Related Works

	3 MEMA Framework
	3.1 Overview of the MEMA Framework

	4 MEMA Analysis for Runtime Derivation
	4.1 Deriving Tile Sizes for MCUs
	4.2 Deriving Tile Sizes for Multicore IoT Devices
	4.3 Loop Order for Inter-Block Computations
	4.4 Choosing Loop Ordering Based on Tile Dimensions and Input Matrix Sizes

	5 MEMA Derivation for Real Hardware
	5.1 Evaluation Hardware Characteristics
	5.2 MEMA Schedule Derived on Cortex-M4

	6 Neural Network Benchmarks and Energy Measurement Methodology
	7 Results and Evaluation
	7.1 DLMC Benchmark on ARM Cortex-A72
	7.2 MLPerf Tiny Benchmark on ARM Cortex-M4 and M7

	8 Conclusion
	9 Acknowledgements
	References

