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Abstract

In this paper, we identify two major gaps in personalizing text-to-image diffusion mod-
els, i.e., placing personalized concepts into generated image: 1) Creating a high-quality
multi-concept personalized dataset with detailed and aligned text descriptions is challeng-
ing. 2) There lacks comprehensive metrics to evaluate multiple personalized concepts
in an image. To overcome these challenges, we propose Gen4Gen, a novel generative
data pipeline for creating a benchmark dataset (MyCanvas) that combines personalized
concepts into complex compositions aligning with detailed text descriptions, aiming to
benchmark and improve multi-concept personalization. In addition, we introduce compre-
hensive metrics (CP-CLIP / TI-CLIP) for evaluating the performance of multi-concept
personalization models more effectively. Finally, we provide a simple yet effective base-
line built on top of several personalization methods with empirical prompting strategies
for future researchers to evaluate on MyCanvas benchmark. By improving data quality,
we can significantly increase the multi-concept image generation quality without changing
the model architecture or training algorithms, and we show our work can be simply plug
in to personalization approaches. We suggest that leveraging strong foundation models
for dataset generation could benefit various computer vision tasks. Code and benchmark
dataset are available at https://danielchyeh.github.io/Gen4Gen/.

© 2025. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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🐱 🐶🪴

A night view of Times Square, a🐶 
and a🐱 walking near few 🪴.

🚐  is next to a🚽, and two⛺ is located 
with rocks, near snowy mountains.

MyCanvas Dataset

Multi-Concept Generation

A 17 century hall, a 🖼 on wall. One ☕ 
and one 🎩 on table, and one  🛋 and 

one🏺 on the floor.

🚽🚐 ⛺

Source Personal Images

☕ 🏺

caption: In the garden with colorful 
flowers, a 🐱 , a 🐶 , and a 🪴 next to 

each other.

caption:  A 🖼 of a man is on a table next 
to a ☕ and a 🎩. A 🛋 is also in the room. 

The 🏺 is on the floor.

caption:  A 🚐 parked by ⛺ and 🚽 in 
woods. The forest is lush with trees, and 

the sky is visible through the canopy.

🖼 🛋🎩

Text-to-Image DiffusionGen4Gen

Figure 1: Starting from a few source images representing different concepts (each object
illustrated by an icon), we propose Gen4Gen, a generative pipeline to compose complex multi-
concept scenes paired with detailed text descriptions. Training with the resulting benchmark
dataset (MyCanvas) significantly boosts multi-concept personalization performance without
modifying model architectures or training strategies.

1 Introduction
Recent advances in text-to-image diffusion models [4, 12, 14, 27, 30, 34, 35, 37] have enabled
users to personalize generation with minimal sets of concept images (e.g., their pets or recently
bought houseplant) to generate new scenes incorporating these personal concepts (e.g., their
pets in a night view of Times Square as shown in Figure 1). These efforts improve control
over generation [1, 16, 19, 25, 36], but challenges remain, particularly in accurately handling
multiple concepts in a single image.

As noted by [19], the pretrained stable diffusion [35] struggles to disentangle and represent
multiple similar concepts (e.g., dog and cat) within one image. This limitation often carries
over to fine-tuned personalization models. We believe this issue stems from mismatches
between the text-image pairs in the pre-training datasets (e.g., LAION [38]) that emphasize
single-object scenes with simplified captions. This misalignment complicates multi-concept
personalization.

Rather than pursuing purely model-driven solutions, we develop a proof-of-concept
benchmark dataset focused on multi-concept personalization. We propose Gen4Gen, a novel
generative pipeline that leverages foundation models in foreground extraction [31], object
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Figure 2: Overview of the Gen4Gen Pipeline for Creating the MyCanvas Data. (1) We
use a category-agnostic saliency detector to segment foreground objects in a composition
O′. (2) GPT is prompted to propose plausible bounding box layouts and background scene
descriptions for O′. (3) A diffusion inpainting model embeds the foreground I f g into a
background image Ibg, generating the final image IO′ . To enhance textual diversity while
maintaining image-text alignment, a subset of IO′ is re-captioned using an MLLM (LLaVA).

composition [22], diffusion inpainting [30], and MLLMs [23] to synthesize complex multi-
object images and rich text captions. Using this pipeline, we generate and filter over 10k
images to create the MyCanvas benchmark.

Existing evaluation methods [16, 19, 36] mainly rely on user studies or small-scale testing.
To provide a more comprehensive benchmark, we adopt principles from [3, 8, 10, 17, 18, 29,
37] and propose two new evaluation metrics: the Composition-Personalization-CLIP (CP-
CLIP) and Text-Image alignment CLIP (TI-CLIP) scores, which jointly assess personalization
fidelity and scene composition quality. In summary, our contributions are:

• Integrating AI foundation models: Gen4Gen demonstrates the power of cascaded
foundation models in generating high-quality multi-concept image and text pairs.

• Data quality matters: Our MyCanvas benchmark dataset highlights that well-aligned
image-text pairs substantially improve multi-concept personalization.

• A new benchmark is needed: We introduce a benchmark and two evaluation metrics
(CP-CLIP and TI-CLIP) that jointly assess personalization, composition, and text-image
alignment.

2 Related Works
Personalized Text-to-Image Generation. Personalization aims to adapt a pre-trained diffu-
sion model to generate new scenes containing a user-specified concept based on a few refer-
ence images. Early methods such as Textual Inversion [13] and DreamBooth [36] pioneered
this task by learning new token embeddings or fine-tuning the entire model, respectively.
Later works enhanced fidelity and multi-concept personalization through regularized fine-
tuning [1, 2, 6, 7, 9, 15, 16, 19, 20, 24, 40, 41, 42, 43]. For instance, Custom Diffusion [19]
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fine-tunes cross-attention layers, SVDiff [16] modifies singular values, and MuDI [18] uses
segmentation strategies. Different from prior model-centric approaches, we demonstrate that
enhancing the data alone can substantially boost multi-concept personalization.
Text-to-Image Datasets and Benchmarks. Large-scale datasets [4, 30, 35, 37] have fueled
diffusion models’ success but often suffer from weak text-image alignment, especially for
complex scenes [32, 33, 38, 39]. Our work shows that even a smaller, carefully curated dataset
with detailed captions for multi-object compositions can significantly improve personalization.
Furthermore, existing benchmarks like DrawBench [37], T2I-CompBench [17], and HRS [3]
evaluate general generation ability, whereas we introduce the comprehensive benchmark
focused on multi-concept personalization.

3 Gen4Gen: A Data-Driven Approach

Multi-concept personalization aims to synthesize images combining multiple user-provided
concepts (e.g., dog, cat, houseplant) across diverse scenes. Prior work [19] highlights that
this task becomes increasingly challenging as the number of concepts grows. While prior
work [16, 19, 24] focuses on training strategies, we show that improving training data quality
alone significantly boosts multi-concept generation.

3.1 Benchmark Dataset Creation Objectives

Existing datasets like LAION [38] often suffer from poor text-image alignment and low-
quality multi-object scenes. To address this, Gen4Gen is designed with three principles: i)
Detailed text-image alignment covering both foreground and background, ii) High resolu-
tion to enable high-quality personalization, and iii) Realistic object layout and background
generation. We retain plausible but uncommon object combinations (e.g., lion and cat) to
create a more challenging benchmark, while filtering out logically impossible scenes.

3.2 Gen4Gen Pipeline

Figure 2 illustrates our Gen4Gen pipeline, consisting of three key stages: (1) Object associa-
tion and segmentation, (2) Object composition, and (3) Background repainting and image
recaptioning. While automation is ideal, we incorporate human oversight to ensure a robust
benchmark, as current models [22, 30, 31] can still introduce artifacts.
1) Object Association and Foreground Segmentation. We begin with a set of k objects
O = {oi}k

i=1, where each object oi is represented by a set of n images Xoi = {x j}n
j=1 from

DreamBooth, Custom Diffusion, and copyright-free databases. We identify object groups
O′ = {oa,ob, ...},O′ ∈ O that can naturally co-exist (e.g., dog, cat, houseplant; see Figure 2).

For each object in O′, we sample one image from X ′ and apply DIS [31] to extract the
foregrounds D(X ′) and masks M(D(X ′)). Since DIS is category-agnostic, it generalizes well
across diverse objects. Importantly, objects with high latent similarity often fail in Custom
Diffusion and stable diffusion, making our dataset a particularly challenging benchmark for
multi-concept personalization.
2) Object Composition. We use the zero-shot capabilities of GPT [28] to generate back-
ground prompts P and bounding box suggestions for objects O′ [22]. For each composition,
GPT suggests plausible scenes (e.g., “in a garden") and bounding box layouts, guiding the
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Figure 3: Examples from MyCanvas. Our
benchmark dataset contains multiple person-
alized objects in complex compositions with
high-quality images and text.

c)

a) b)

d)

5.3%37.0%

29.1%

28.6%

Length:
12 - 14

Length:
>21

Length:
18 - 21

Length: 15 - 17

Caption Length Object Categories

Training Description Inference Description

Figure 4: MyCanvas Statistics. a) Pie chart
showing 30% of captions >20 words. b)
Word cloud of object categories. c,d) De-
scription word clouds from training/infer-
ence.

placement of objects within D(X ′) to create the composite foreground image I f g and its mask
M(I f g).

However, the above-described method would occasionally leads to object scaling
problem (e.g., a sheep appearing larger than a house). To address this, we prompt
ChatGPT with the following: [Given a list of object names, your task
is to generate a reasonable scale ratio for these objects in
real-world terms, where the ratio for the largest object is
set to 1.0,...]. These scale ratios can reflect real-world proportions, ensuring a more
accurate and logical arrangement in the generated layouts. (The detailed analysis of refining
and not refining scale in Appendix).
3) Background Repainting and Image Recaptioning. While direct inpainting with models
like Stable-Diffusion XL [30] is possible, we found that starting from a high-resolution
background image and repainting yields better quality (see Appendix). Specifically, given an
inpainting model f , we select a background Ibg from copyright-free sources based on prompt
p ∈ P, and generate the final image: IO′ = f (I f g,M(I f g), Ibg). We apply a 5×5 smoothing
to M(I f g) to better integrate foreground and background.

To create a comprehensive benchmark dataset, we enhance the diversity of text descrip-
tions while ensuring they closely match the images, even for longer prompts. For richer and
accurate text descriptions, we use an MLLM [23] to automatically caption some images with
the prompt: "Describe what you see in this image in detail. Limit the description to 30 words".
This ensures compatibility with CLIP’s 77-token limit [32]. Recaptioning is performed on ten
compositions O′ within MyCanvas. These steps are repeated to construct the final MyCanvas
benchmark dataset. Examples are shown in Figure 3.

3.3 Statistics of MyCanvas
For the MyCanvas benchmark dataset, we collected 150 objects (with one or multiple images
each) and created 41 compositions (O′), generating over 10K images, later filtered to around
3K high-quality samples. Our benchmark dataset scale is more than sufficient for concept
personalization, which typically requires only a few images for fine-tuning.
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Figure 4 summarizes MyCanvas: (a) shows that captions average 17.7 words, with about
30% exceeding 20 words. (b) illustrates the diversity of objects, surpassing CustomCon-
cept101 and DreamBooth. (c, d) highlight the variety in training and inference prompts,
ensuring broader coverage and more complex compositions than prior benchmarks.

3.4 Enhancing Training-Time Text Prompts
On top of designing a well-aligned prompt with the images within the dataset, we also take a
step further in exploring what the best prompt design is during training. We share some of the
empirical findings and its intuitions below:
Global Composition Token. Previous arts like DreamBooth have shown that they can learn
to map a new token to very difficult, challenging concepts (e.g., an abstract style like Monet
art). We adapt this concept to complex compositions. By introducing a global token alongside
individual tokens for each object, our model gains enhanced capabilities in describing detailed
scene arrangements, leading to more realistic and coherent image generation.
Repeating Concept Tokens. We notice in a lot of cases where a complex composition
involving multiple concepts could often lead to one or two concepts missing [5, 44]. This
could be due to the model sometimes forgetting the details given a very long prompt. Thus,
we employ a strategy of repeating concept token prompts during training. This encourages the
model to ensure the presence of each specified concept in the generated images, enhancing
overall object persistence and completeness.
Explicit Background Prompts. We observe an issue where backgrounds are inadvertently
learned with the object identity in the token feature space. As an effort to disentangle
background and concept compositions, we make sure that background has to be stated within
the training prompt to encourage concept tokens learning only the object identity.

3.5 Personalized Composition Metric
As personalization complexity increases with more objects, models often struggle to capture
details or overfit, a challenge not captured by prior benchmarks due to the lack of complex
datasets like MyCanvas and overfitting risks.

To address this, we propose two metrics inspired by [3, 17]: Composition-Personalization-
CLIP (CP-CLIP) for composition and fidelity evaluation, and Text-Image alignment CLIP
(TI-CLIP) for assessing background generalization and overfitting.

To automate the full evaluation framework, we begin with a state-of-the-art model for
open-vocabulary detection, OWL-ViT [26]. Given a generated image Igen aiming to contain all
objects in the set O′, we obtain a set of cropped images Bpred = {bpred1 ,bpred2 , . . .} predicted
by OWL-ViT, where Bpred = OWL(Igen, lO′), and lO′ are the labels of objects within O′ used
as target vocabularies for detection.

For every cropped image bpredi ∈ Bpred we obtained, we compute an average clip score
Si, j against the image set Xo j ,o j ∈ O′ as the following:

Si, j =
∑x∈Xo j

C(bpredi ,x)

|Xo j |
, (1)

where C(·) computes the dot product between two normalized image features. The final
personalization CLIP score for bpredi is defined as Si = max({Si, j}o j∈O′), where we take the
maximum similarity across all target objects o j in O′.
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Table 1: Comparison of Personalization Performance. We report CP-CLIP and TI-CLIP
scores under three training settings. CD denotes Custom Diffusion, and Ours refers to CD
with our prompting strategy. Best CP-CLIP scores are highlighted in bold. TI-CLIP indicates
text-image alignment and is expected to remain roughly stable across methods.

<= 3 Objects 4 Objects 5 Objects

CP-CLIP↑ TI-CLIP CP-CLIP↑ TI-CLIP CP-CLIP↑ TI-CLIP

CD + Source Images 0.26 0.16 0.21 0.13 0.23 0.17

CD + MyCanvas 0.41 0.17 0.47 0.17 0.50 0.15

Ours + MyCanvas 0.51 0.17 0.55 0.16 0.57 0.14

vs. baseline +0.25 - +0.34 - +0.34 -

If there is more than one bounding box corresponding to the same o j, we remove all
except the one with the highest score from Bpred so the size |Bpred | properly reflects how
many personalized objects prompted by the text is reflected in the generated image. Finally,
we obtain an overall CP-CLIP score per image:

CP-CLIPpred =
∑bpredi∈Bpred

Si

|O′|
. (2)

Note that the denominator is the number of objects within O′ and not the number of bounding
boxes; this acts as a penalty when a particular personalized object is not reflected in the image
Igen. We do not penalize when there are more bounding boxes than intended, as the generative
model should be able to freely generate more objects than requested as long as it follows the
text guidance.
Text-Image Alignment. To measure the amount of overfitting quantitatively, we calculate
the TI-CLIP as a CLIP score between Igen and the prompt pgen that was used to generate
Igen. Note that while the formulation of TI-CLIP is very similar to CP-CLIP (i.e., one may
think of TI-CLIP as a special case of the personalization clip score with the bounding box of
the entire image and target of personalization being the text), it is evaluating an orthogonal
concept of model’s generalization quality and should thus be measured as a separate metric.
On a high level view, TI-CLIP measures the background prompt (without the objects) with
the whole generated image; there is no reason to believe that the background is improved
during personalization, so a maintenance in TI-CLIP should be what we are aiming for when
increasing the CP-CLIP score. This shows that the model is not overfitting to training set
backgrounds.
Score Interpretability. Although CP-CLIP and TI-CLIP are theoretically bounded between 0
and 1, perfect scores are impractical. CP-CLIP averages similarity across multiple objects, and
even identical objects from different angles yield scores around 0.6–0.7. TI-CLIP compares
the background prompt to the full image; larger foreground objects may lower the score. Thus,
a good model should increase CP-CLIP while maintaining TI-CLIP.

4 Experiments

4.1 Implementation Details and Quantitative Analysis
We evaluate Gen4Gen under three settings: 1) using individual source images, 2) using
composed MyCanvas, and 3) applying our prompting strategy with MyCanvas. [19] was
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Figure 5: Qualitative Results for Multi-Concept Composition. We show examples of
increasing composition difficulty. Using Custom Diffusion [19], our MyCanvas improves
disentanglement of visually similar concepts (e.g., statues, tractors) and better preserves
object identities. With our prompting strategy, caption alignment improves further. All
results are based on SDXL [30]. Due to the space limit, additional improved results on
DreamBooth [36], Break-A-Scene [2], GLIGEN [21], and I2VGen-XL [45] are in Appendix.

Figure 6: Qualitative Comparison with Most Recent Baselines: MuDI [18] (SDXL-Based)
and SVDiff [16] (SD2.1-Based). Our MyCanvas, generated via Gen4Gen, enhances the
performance across 2 to 5 concepts of more advanced baselines. Specifically, we can see that
previous methods (without using our data) often duplicate the same concept multiple times in
an image. By using MyCanvas, the generated images adhere much closer to the prompt in
terms of counts.

chosen for its reproducibility and strong baseline performance. For each setting, models
were trained on various compositions using SDXL [30], and evaluated using best checkpoints
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with prompts different from those used during training to assess generalization. We use
ViT-B-32 [11] as the backbone for OWL-ViT detection and CP-CLIP / TI-CLIP calculations.

Table 1 presents the outcomes across all compositions, organized by the number of objects.
We use 41 text prompts, with 6 samples per prompt for each composition, resulting in a total
of 246 generated images. It is evident that Custom Diffusion, when learning with the original
source images, exhibits a ∼50% decrease in performance compared to its counterpart utilizing
our composed MyCanvas dataset. By applying our prompting strategy to Custom Diffusion
further amplifies the CP-CLIP score. Notably, our TI-CLIP score, indicative of background
generalization, maintains consistency across all methods, ensuring that the observed increase
in composition accuracy is not a consequence of overfitting.

4.2 User Preference Study
We conduct a user study with 30 participants who rate models from 1 to 10 across two criteria:
1) Image composition alignment (scene quality and object arrangement) and 2) Text-to-image
alignment (consistency between image and caption). Table 2 shows that Custom Diffusion
trained with MyCanvas significantly outperforms baselines in both aspects.

Table 2: User Preference Study (Score: 1 to 10). Users prefer our approach over the
baseline methods for both image and text alignment, across ≤ 3 to 5 concepts.

Prompting(Ours) + MyCanvas CD + MyCanvas CD + Source Images
Image Text Image Text Image Text

Alignment Alignment Alignment Alignment Alignment Alignment

<= 3 Concepts 8.4 (± 1.1) 8.2 (± 2.6) 6.8 (± 1.6) 7.1 (± 2.1) 3.5 (± 1.8) 3.9 (± 2.6)

4 Concepts 8.6 (± 1.4) 8.9 (± 2.7) 7.3 (± 1.8) 7.5 (± 2.7) 3.7 (± 1.9) 3.4 (± 2.8)

5 Concepts 8.8 (± 1.1) 8.6 (± 2.7) 6.6 (± 1.6) 6.4 (± 2.5) 3.9 (± 1.8) 3.3 (± 2.7)

4.3 Qualitative Comparisons
Comparison with Personalization Methods. We primarily benchmark MyCanvas and our
training-time prompting strategies on Custom Diffusion due to its simplicity and strong
generalization. Figure 5 compares: 1) Custom Diffusion with source images, 2) Custom
Diffusion with MyCanvas, and 3) with added prompting strategies. Using MyCanvas im-
proves composition by ensuring all subjects are present, while our prompting strategy further
enhances fidelity (e.g., better-preserved structures) and reduces missing elements (e.g., barns).
Generalization to Other Methods. To assess broader applicability, we compare against
MuDI [18] and SVDiff [16] in Figure 6. Across all examples, training with MyCanvas
consistently improves object composition and reduces missing or duplicated concepts. Results
adapting to DreamBooth [36], Break-A-Scene [2], and GLIGEN [21] are in Appendix.

4.4 Ablation Study
Evaluating MyCanvas Quality. We developed a filtering tool (described in Appendix) to
assess the quality of 800 images generated by our Gen4Gen pipeline. We evaluate each image
based on: 1) the inclusion of personalized concepts, 2) their appropriate placement, and 3)
the exclusion of visual artifacts, ranking them from 1 to 5. Subsequently, we aggregate these
rankings to analyze the score distribution. Only images rated 4/5 were added to the MyCanvas
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Table 3: Quality Evaluation of MyCanvas (Rank: 1 to 5). Our evaluation criteria include:
1) inclusion of personalized concepts, 2) accuracy of their placement, and 3) visual artifacts.
MyCanvas includes images with rank 4 and 5 (highlight in green).

Rank: 1 Rank: 2 Rank: 3 Rank: 4 Rank: 5 Total Images

<= 3 Concepts 9 (3.4 %) 43 (16.3 %) 72 (27.3 %) 84 (31.8 %) 56 (21.2 %) 264

4 Concepts 16 (6.0 %) 53 (19.8 %) 112 (42.0 %) 54 (20.2 %) 32 (12.0 %) 267
5 Concepts 19 (7.1 %) 63 (23.4 %) 127 (47.2 %) 42 (15.6 %) 18 (6.7 %) 269

Figure 7: Training Performance Based on
Dataset Size. For compositions with ≤ 3
concepts, fewer images are sufficient. How-
ever, stable performance for > 4 concepts
requires 10 to 50 images.

Figure 8: Failure Cases in Dataset Cre-
ation. Failures stem from 1) unrealistic ob-
ject placement by LLM causing identity dis-
tortion (e.g., cup → lamp), and 2) artifact
introduction during inpainting.

dataset. Our findings in Table 3 indicate that generating high-quality images becomes more
feasible with fewer than four concepts involved.
Training Data Size vs. Number of Concepts. We provide an analysis illustrated in Figure 7,
training with varying number of images (1 to 100). While it is sufficient with very few image
when training the compositions for ≤ 3 concepts, the training stabilizes between 10 to 50
images when there are more than 4 concepts. This shows that our dataset size is more than
enough to obtain stable performance.

5 Conclusion

We introduce Gen4Gen and MyCanvas, a high-quality dataset with wellaligned image and
text descriptions, as a benchmark for multi-concept personalization. We present extensive
studies on our dataset, along with some training prompt amendments and a holistic metric,
to show that improving data quality can lead to significantly better image generation for
complex compositions. We hope that our contributions serve as a foresight to the possibilities
of personalized text-to-image generation and automated dataset creation.
Limitations. As depicted in Figure 8, our current data creation pipeline still contains
defects, particularly in challenging scenarios. These challenges stem from the LLM offering
impractical guidance on object positions, and the diffusion inpainting introducing artifacts
to objects. For now, weresort to a semi-automated screening process to address these issues.
Future work could focus on automating the filtering process and assessing dataset quality.
In addition, with the new MLLMs having rich multi-modal understanding, we can include
additional visual guidances for better bounding box generation.
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