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Introduction

The structures of modern manufacturing devices are 
increasingly complex, while tolerance requirements for 
possible machining errors become more strict. High-quality 
machining with low errors is essential in the manufacturing 
of high-precision parts.

For lathe machines, popular in the manufacturing of pre-
cision parts, various machining errors such as geometric 
tooling, thermal-induced, and load-induced errors (Ham-
dan et al., 2012; Mekid & Ogedengbe, 2010), etc., can lead 
to inaccuracies above the tolerance level of manufactured 
workpieces, resulting in monetary losses to the manufac-
turers. Early detection of manufacturing quality degradation 
and process anomalies (Chien & Chen, 2020; Ramezani et 
al., 2023), and assessment of the wear of cutting tools in 
material removal processes (Benkedjouh et al., 2015) can 
help reduce such risks. In particular, implementing real-time 
monitoring and online machining quality prediction can 
enhance error detection’s efficiency and efficacy.

In recent years, tool condition monitoring (TCM), 
enabled by sensor technology and artificial intelligence 
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challenges. However, collecting abnormal data that represents faulty machining states is prohibitively expensive, making 
it difficult to gather sufficient, high-quality training data. Moreover, the limited computational resources on CNC machines 
complicate AI deployment. To address those problems, we develop DeepMachining, a deep learning-based AI system for 
real-time error prediction in lathe machine operations. We built and evaluated DeepMachining using real manufacturing 
data in practice. Specifically, we first pretrain a deep learning model to learn the representation of machining states. Then, 
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(AI), has been employed to address these needs (Gavahian 
& Mechefske, 2023). For example, TCM has been widely 
used for fault detection and diagnosis (FDD) (Ding et al., 
2022; Fernandes et al., 2022; Lei et al., 2020; Ntemi et al., 
2022), predictive maintenance (PdM) (Schwendemann et 
al., 2021; Serradilla et al., 2022; Soori et al., 2023; Zhang 
et al., 2019), prognostics and health management (PHM) 
(Kumar et al., 2023; Nasir & Sassani, 2021; Ramezani et 
al., 2023), etc. in the manufacturing industry.

Deep-learning-based AI driven by manufacturing data is 
a promising approach for error detection, given that these 
data-driven methods have been successful in fields like 
computer vision and natural language processing (Ding 
et al., 2022; Nasir & Sassani, 2021; Ntemi et al., 2022; 
Ramezani et al., 2023; Serin et al., 2020; Soori et al., 2023). 
However, applying deep learning techniques to manufac-
turing brings new challenges, such as data preprocessing 
and model generalization for factory environments. For 
example, real-world machining processes involve a variety 
of workpiece materials, cutting tools, process recipes, and 
equipment models. As a result, supervised deep-learning 
models trained on signals from sensors of specific CNC 
machines may not apply to other machines. In other words, 
AI-powered solutions may not generalize to diverse manu-
facturing environments (Lee & Chien, 2022).

We may apply the classical transfer learning approach 
(Marei & Li, 2022; Marei et al., 2021; Sun et al., 2019) 
to address the model generality issue, where a pre-trained 
model trained on a large labeled dataset is fine-tuned to the 
target task. However, acquiring abnormal data correspond-
ing to machining states that lead to the manufacture of 
erroneous workpieces is extremely costly in the machinery 
industry (Yang et al., 2024), especially concerning different 
materials, tools, and the variety of manufacturing settings. 
Furthermore, the acquisition of labeled data from specific 
manufacturing conditions may not guarantee the success-
ful classification of unlabeled and imbalanced data, primar-
ily due to the complexities of manufacturing environments 
and inherent discrepancies in data distribution (Chen et al., 
2025; Pan & Yang, 2009; Ross et al., 2024). Thus, gathering 
sufficient high-quality data for pretraining models is chal-
lenging. Additionally, the limited computational resources 

of CNC machines necessitate addressing deployability con-
cerns. Therefore, applying AI in complex manufacturing 
environments requires an adaptive learning approach with 
generality.

To address these challenges, this paper develops Deep-
Machining, a deep learning-based AI system, to predict 
machining errors utilizing the pre-trained model. As Fig. 1 
shows, the pre-trained model was trained over the lifetime 
of the cutting tool until it was completely worn out. For 
model generalization, we perform model pretraining involv-
ing multiple spindle speeds. For fine-tuning, we propose a 
method similar to BitFit Ben  Zaken et al. (2022), which 
adjusts the model’s biases. This allows the pre-trained 
model to adapt to the target tasks using few-shot learning 
(typically two-shot). In other words, fine-tuning uses data 
collected from two instances of the target machining task. 
Merely 6.5% of the total parameters of the model are fine-
tuned in less than 12.5% of epochs of the model pre-training. 
Thus, the proposed fine-tuning method not only suits exist-
ing machining processes but can also be completed with the 
limited computational power of the industrial computers in 
the CNC machines. Furthermore, to facilitate deployment 
on edge devices within CNC machines, we also investigate 
how the low sampling rate impacts the proposed approach 
in practice. To evaluate the proposed approach in predicting 
machining errors under various manufacturing settings, we 
use four machining tasks for validation.

The main contributions of this paper are:

	● The proposed DeepMachining approach, and performed 
validation showing that, under the approach, we can pre-
train a model that can be adapted to various downstream 
tasks.

	● A few-shot model fine-tuning method (typically, two-
shot) for adaptation to new manufacturing settings.

	● The useful insight that the fine-tuning required in these 
manufacturing tasks is basically shifts of model’s biases.

	● An end-to-end factory demonstration of DeepMachin-
ing based in real-world factories.

The rest of this paper is organized as follows. Sec-
tion “Related work” reviews the related literature on TCM 

Fig. 1  The overall process of 
DeepMachining
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and its applications. Section “Methodology” addresses the 
DeepMachine framework for online prediction of machin-
ing errors. Section  “Experiments” details the experiments 
and analysis using real world machining tasks in facto-
ries. Section  “Discussion” discusses the limitations and 
lessons learned in this study. Conclusions are drawn in 
Section “Conclusion”.

Related work

Machining error, surface roughness, and tool wear are 
key quality control metrics in machining processes. Intel-
ligent sensors, including accelerometers, data acquisition 
encoders, acoustic emission sensors, microphones, dyna-
mometers, and image sensors, are utilized to monitor and 
diagnose machine health degradation and process anomalies 
(Jiang et al., 2021). Accelerometer sensors are sensitive and 
reliable in measuring workpiece dimensions with high pre-
cision (Duro et al., 2016; Lee et al., 2006). Therefore, we 
adapted accelerometers, a data acquisition (DAQ) encoder, 
and a microphone to collect manufacturing data for building 
DeepMachining to predict machining errors in this study.

Traditional machine learning (ML) approaches have 
been used to predict product quality during CNC machining 
tasks. Du et al. (2021) proposed a power spectral density 
based feature extraction method from spindle vibration and 
cutting force signals, which accurately predicted product 
roughness, profile, and roundness using tree-based regres-
sor approaches in hard turning processes. Denkena et al. 
(2019) optimized workpiece quality and tool life in cylin-
drical turning processes by identifying the machined mate-
rial based on machine learning algorithms. Papananias et al. 
(2020) proposed principal component analysis (PCA) based 
multilayer perceptron (MLP) networks to accurately predict 
the true position and circularity requirements of a work-
piece in an experimental setting. Ura and Ghosh (2021) 
proposed the delay domain-based signal analysis approach 
to capture the dynamics of the underlying phenomenon 
in CNC machines. Furthermore, Ghosh et al. (2021) also 
addressed a sensor signal-based digital twin framework 
for intelligent machine tools. ML approaches could predict 
well on the collected datasets in manufacturing scenarios. 
However, ML approaches cannot be used as the kernel for 
pre-trained models to adapt to various downstream tasks via 
fine-tuning.

The advent of deep learning has reformed predictive 
approaches, enabling end-to-end prediction and diagno-
sis procedures to enhance CNC machining precision and 
reliability within smart tool condition monitoring systems 
(Lei et al., 2020; Zhao et al., 2019). Huang and Lee (2021) 
proposed one-dimensional convolutional neural network 

(1D-CNN) and sensor fusion approach accurately estimated 
tool wear and surface roughness for the CNC machining. 
Hesser and Markert (2019) demonstrated the feasibility of 
predicting CNC machine status and tool wear for mainte-
nance plan using artificial neural networks. Proteau et al. 
(2023) proposed a variational autoencoder (VAE) regression 
model to predict the geometrical and dimensional tolerances 
of workpieces using sensor data in industrial settings. Zhu 
et al. (2020) established a long short-term memory (LSTM) 
model for one-dimensional time series and CNN for two-
dimensional images. However, most machines operate nor-
mally in practice, and abnormal situations and fault events 
occur rarely. This kind of data imbalance tends to worsen 
data generalization capabilities, ultimately impeding the 
effectiveness and reliability of data-driven prediction meth-
ods (Chen et al., 2025; Yang et al., 2024; Yu et al., 2025).

Transformer-based networks have been applied to cap-
ture association relationships and dependency from vibra-
tion signals through the self-attention mechanism for 
improving performances of the developing models in recent 
years, (Bhandari et al., 2023; Li et al., 2024; Liu et al., 2020; 
Li et al., 2022; Wu et al., 2023). Wu et al. (2023) and Li et al. 
(2024) studied fault detection and classification in a rotary 
system with transformer-based models. Li et al. (2022) and 
Liu et al. (2020) applied for tool wear prediction in TCM 
topics. Compared to transformer-based approaches, in this 
study we utilize 1D-CNN networks with an attention mech-
anism to address the time series data of vibration signals, 
considering latency and computing power for prompt infer-
ence in practice.

Transfer learning (TL), which learns two types of net-
works to extract representations, solves cross-domain diag-
nosis problems with small and imbalanced data (Lei et al., 
2020; Pan & Yang, 2009; Weiss et al., 2016; Zhang et al., 
2022). Wang and Gao (2020) proposed a CNN-based trans-
fer learning technique using vibration analysis for rolling 
bearing fault diagnosis. Specifically, adapting a pre-trained 
VGG19 network (Russakovsky et al., 2015), using non-
manufacturing images from ImageNet (Deng et al., 2009) 
(i.e., model transfer) and transferring the adapted network 
structure to different fault severity levels and bearing types 
(i.e., feature transfer). Guo et al. (2019) proposed a deep 
convolutional transfer learning network to classify bearing 
health conditions with unlabeled data. Bahador et al. (2022) 
investigated a transfer learning approach for classifying tool 
wear based on tool vibration in hard turning processes. Ross 
et al. (2024) proposed a transfer learning model with Incep-
tion-V3 network (Szegedy et al., 2015) to detect tool flank 
wear under distinct cutting environments.

However, the research gap between practitioners and 
researchers remains in practice (Lee & Chien, 2022). 
Different processing parameters result in different data 
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important to note that any specific section of a workpiece 
can be machined multiple times. In other words, multiple 
cutting processes may be performed at the same place on a 
workpiece to achieve the target size. The signals and data 
generated from multiple machining sessions should be gath-
ered and processed.

Machine settings

This study conducted experiments on a horizontal CNC 
lathe machine, which features an internal spindle and three-
axis linear guides, as shown in Fig. 2. Piezoelectric accel-
erometers are deployed at three distinct positions: First, 
behind the spindle, as depicted in Fig. 2b; Second, in front 
of the spindle, also shown in Fig. 2b; and Third, at the base 
of the tool turret, illustrated in Fig. 2c, to collect relevant 
vibration signals. The machine controller records and out-
puts the spindle speed and current of the drive motors for the 
spindle and the turret during the machining process, which 
serves as the machine status.

Input formulation

In order to predict the machining error y ∈ R1, two inputs 
X = {X1, X2, . . . , Xn} ∈ RN×SR×C1 , including the vibra-
tion signals and machine status during the machining pro-
cess, and X̃ = {X̃1, X̃2, . . . , X̃n} ∈ RN×( SR

2 +1)×C2 , the 
transformation of vibration signals in X  from time domain 
to frequency domain using Fourier Transform (Brigham, 
1988), are used. The duration of each input Xi ∈ X  is one 
second around the location of the workpiece where the 
machining error y is measured. N is the number of cuts, C1 
and C2 are the number of input channels, and SR indicates 
the sampling rate of the sensors used in input collection.

The core of DeepMachining

The core of DeepMachining is a two-stage model handling 
multiple cuttings across machining processes to estimate the 
machining error ŷ of a workpiece, as illustrated in Fig. 3.

Stage I: Time/Frequency Domain Signals Encoding. 
For each cut of the machining procedures, DeepMachining 
accepts a pair of input signals, Xn and X̃n, from both the 
time and frequency domains. These signals are then pro-
cessed by two parallel Signal Encoders that share the same 
architecture but maintain independent weights to accom-
modate the distinct characteristics of each input domain. 
Across cuts, the same Signal Encoder (per domain) is 
reused, enabling consistent feature extraction with shared 
parameters and reduced model complexity. For each cut, the 

distributions, which pose a significant challenge to ML 
and DL models. Collecting and labeling data with differ-
ent combinations of materials, tools, process recipes, and 
machines in practice is difficult and expensive (Yu et al., 
2025). Furthermore, even if labeled data is obtained from 
some manufacturing conditions, the resulting predictive 
models may fail to classify unlabeled and unbalanced data 
due to intricate manufacturing settings and data distribution 
discrepancies (Chen et al., 2025; Pan & Yang, 2009; Ross 
et al., 2024).

This study focuses on real-time monitoring and online 
machining quality prediction for CNC machining, specifi-
cally utilizing sensor data from manufacturing settings, 
such as cutting vibrations, current, and rotation, to pre-
dict machining errors for quality control. Therefore, how 
to design pre-trained models that are easily adaptable to 
empirical field applications with strong performance is an 
important topic (Brown et al., 2020; Devlin et al., 2018; 
Wolf et al., 2020). Furthermore, fine-tuning on task-specific 
supervised data enables seamless adaptation to various spe-
cific tasks in practical settings (Ben Zaken et al., 2022; Cai 
et al., 2020; He et al., 2021; Hu et al., 2021).

Methodology

Problem definition

The machining error is the difference between the dimen-
sion measured after the machining of a workpiece and the 
target dimension described in the specification. The pro-
posed DeepMachining estimates machining errors under 
various processing conditions, e.g., different combinations 
of machining tools and configurations, on CNC lathes with-
out actual measurement. Several factors can impact the 
machining error of a workpiece. These include the wear 
condition of cutting tools, the hardness and processing dif-
ficulty of the material, the environmental temperature (ther-
mal expansion), and the wear of machine components on 
the equipment (i.e., the lathe). In order to perceive the fac-
tors, accelerometers are installed to collect the vibration sig-
nals that occur during the machining process; the machine 
status, such as the spindle speed and motor current, etc., 
during the machining process is also recorded. Besides, it’s 

Fig. 2  The experimental environment of the CNC lathe machine
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Here, W ∈ RC× d
4  is a learnable matrix that maps the 

input into a higher-dimensional feature space, where 
C ∈ {C1, C2} denotes the number of input channels and d 
represents the output channel dimension. f11 denotes a 1D 
convolution with kernel size 11, channel dimension d and 
stride 5. LN refers to Layer Normalization (Ba et al., 2016), 
and δ is the GELU activation function (Hendrycks & Gim-
pel, 2016).

Dilated inception (D-inception)

The D-Inception module is designed to extract multiscale 
temporal features with high computational efficiency. It 
extends the original Inception architecture (Szegedy et 
al., 2015) by incorporating dilated convolutions, attention 
mechanisms, and transformer-inspired enhancements; such 
as replacing Batch Normalization (Ioffe & Szegedy, 2015) 
with Layer Normalization (Ba et al., 2016); using GELU 
(Hendrycks & Gimpel, 2016) instead of ReLU Agarap 
(2018); and removing activation functions from bottleneck 
layers (Liu et al., 2022).

Multi-branch Convolution
The Multi-branch Convolution module inside D-Incep-

tion adopts a four-branch structure to capture features with 
varying receptive fields: (i) a 1D convolution with kernel 

features extracted from the time and frequency branches are 
concatenated to form a per-cut embedding Hn.

Stage II: Aggregation and Estimation. The per-cut embed-
dings H = {H1, . . . , Hn} are stacked to form a sequence, 
which is processed by a Dilated Inception (D-Inception) 
block to model inter-cut relationships. The resulting aggre-
gated representation is then fed into a Projection Head, a 
single-layer feed-forward network, to estimate the machin-
ing error ŷ.

Detailed descriptions of the Signal Encoder and D-Incep-
tion modules are given in the following subsections.

Stem

The Stem module serves as the first layer in each Signal 
Encoder. It is designed to reduce the temporal resolution 
and computational cost through a learnable downsampling 
operation. Specifically, it applies a 1D convolution with 
stride to shorten the input sequence while maintaining key 
structural information in the signal.

The Stem transformation is defined as:

Stem(Xn) = δ(f11(LN(Dropout(WXn))))� (1)

Fig. 3  Core architecture of 
DeepMachining, featuring parallel 
time-frequency signal encoders, 
D-Inception modules with multi-
branch dilated convolutions and 
transformer-inspired components 
(Layer Normalization, GELU), 
followed by lightweight channel-
temporal attention blocks
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Downsampling

The Downsampling module reduces the temporal resolution 
of feature sequences to improve computational efficiency 
and increase the receptive field, especially when stacked 
with D-Inception blocks.

Unlike the Stem module, which performs learnable 
downsampling through 1D convolutions, Downsampling 
employs non-learnable max pooling to reduce the sequence 
length without introducing additional temporal param-
eters. The pooled features are then transformed through a 
lightweight bottleneck projection using linear layers. The 
Downsampling is defined as:

Downsampling(F ) = W1(LN(W0(MaxPool(F ))))� (5)

Here, MaxPool denotes temporal max pooling, and LN rep-
resents Layer Normalization (Ba et al., 2016). The learnable 
weights W0 ∈ R d

4 ×d and W1 ∈ Rd× d
4  constitute a bottle-

neck structure that first compresses the feature channels to 
reduce computational cost and then restores the original 
dimensionality for downstream processing. This structure 
facilitates efficient cross-channel interaction while main-
taining a compact parameter footprint.

Fine-tuning method

To adapt the model to diverse machining tasks, we adopt a 
fine-tuning strategy inspired by TinyTL Cai et al. (2020). 
TinyTL introduces lightweight residual modules and 
updates only these modules, biases, and output head during 
fine-tuning.

In our framework, we employ Adapter, a two-layer bottle-
neck-style feed-forward network, designed to perform light-
weight feature transformation during fine-tuning. Adapters 
are inserted into both the D-Inception and Downsampling 
blocks. During fine-tuning, only the Adapters, biases, and 
the projection head are updated, while all other pre-trained 
parameters remain frozen. This design enables rapid adapta-
tion to new machining tasks with reduced memory and com-
putational overhead, as only a small subset of parameters 
needs updating.

Compared to other parameter-efficient adaptation tech-
niques, our approach exhibits several engineering advan-
tages. For example, LoRA (Hu et al., 2021) constrains 
its low-rank updates to the query and key projections 
within transformer attention mechanisms, thereby inher-
ently coupling it to transformer-based architectures. In 
contrast, our Adapter modules are integrated alongside 
the primary computation flows and are not restricted by 
architectural constraints, enabling straightforward incor-
poration into convolutional modules such as D-Inception 

size 1 (CONV_1); (ii) a CONV_1 followed by a standard 
convolution with kernel size s (CONV_s); (iii) a CONV_1 
followed by a dilated convolution with kernel size s and 
dilation rate 2 (DCONV_s); and (iv) a max-pooling layer of 
size s followed by CONV_1.

Transformer-inspired Components The outputs from 
these branches are concatenated along the channel axis 
and then sequentially processed by Dropout, Layer Nor-
malization, and a GELU activation layer. This produces an 
intermediate representation F ∈ RL×d, where L denotes 
the temporal length and d the feature dimension, which is 
subsequently fed into an Attention Block (discussed in the 
following paragraph) to selectively emphasize informative 
features.

Attention Block To emphasize informative features with 
limited parameter overhead, the Attention Block integrates 
a lightweight sequential attention mechanism inspired by 
Convolutional Block Atten tion Module (CBAM) (Woo et 
al., 2018), comprising channel attention followed by tem-
poral attention. Given an input F, channel attention first 
computes an attention map Mc(F ), which is applied via 
element-wise multiplication to produce an intermediate ten-
sor F ′. This is followed by temporal attention, which gener-
ates Mt(F ′) to refine F ′ into the final output F ′′:

F ′ = Mc(F ) ⊗ F, F ′′ = Mt(F ′) ⊗ F ′� (2)

Channel Attention. The channel attention map 
Mc(F ) ∈ R1×d is computed by applying global average 
pooling and global max pooling along the temporal dimen-
sion, concatenating the results, and passing them through 
a two-layer Multilayer Perceptron (MLP) with GELU and 
sigmoid activations:

Mc(F ) = σ(W1(δ(W0(AvgPool(F )||MaxPool(F )))))� (3)

Here, W0 ∈ R d
r ×d and W1 ∈ Rd× d

r  are learnable projec-
tion matrices, δ denotes GELU, σ is sigmoid, and r is the 
reduction ratio. The attention weights are broadcast along 
the temporal dimension before multiplication.

Temporal Attention. Similarly, temporal attention derives 
Mt(F ′) ∈ RL×1 by performing average and max pooling 
across the channel axis, concatenating, and applying a 1D 
convolution:

Mt(F ′) = σ(f(AvgPool(F ′)||MaxPool(F ′)))� (4)

where f denotes a 1D convolution. The resulting weights are 
broadcast along the channel axis to scale F ′.

Finally, the output F ′′ is added to the original input fea-
ture via a residual connection (He et al., 2016), which pro-
motes gradient stability.
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Deployment

Figure  4 illustrates the integrated hardware and software 
architecture used to deploy DeepMachining on a CNC 
machine. The system comprises an industrial PC (IPC), the 
machine controller, and sensors (accelerometers). The IPC 
communicates directly with both the sensors and the con-
troller to handle data collection and adaptive control.

This deployment supports two primary workflows: infer-
ence and fine-tuning. In the inference workflow (shown on 
the left side of Fig. 4), during machine processing, the IPC 
continuously collects real-time data streams from the accel-
erometers and the controller. A signal segmentation mod-
ule then utilizes the machining G-code, collected signals, 
and design drawings to extract relevant segmented signals. 
DeepMachining processes these segmented signals to esti-
mate the machining error ŷ. Based on these estimates, the 
IPC automatically adjusts CNC parameters to perform tool 
calibration, allowing compensation adjustments without 
halting machining operations.

The fine-tuning workflow (right side of Fig. 4) illustrates 
how DeepMachining adapts to new machining contexts, 
such as changes in workpiece geometry, tooling, or pro-
cess conditions. Similar to the inference pipeline, the IPC 
collects and segments the signals using G-code and design 
information. In this mode, however, manually or auto-
matically labeled measurements (e.g., offline dimensional 
inspections) are used to update the model on-the-fly via 
few-shot fine-tuning. After fine-tuning, the updated model is 
validated, stored with version control, and deployed for sub-
sequent inference, ensuring continuous improvement and 
consistent performance across diverse machining scenarios.

and Downsampling. Similarly, although AdapterFusion 
(Pfeiffer et al., 2021) exploits multiple adapters to facilitate 
transfer across tasks, it typically incurs additional memory 
overhead. By comparison, our design maintains a reduced 
parameter footprint and achieves low inference latency, 
which are essential for deployment on CNC edge comput-
ing platforms. The Adapter operation is formally defined as:

Adapter(F ) = F + W1(W0(F ))� (6)

Here, W0 ∈ Rd× d
r  and W1 ∈ R d

r ×d are learnable weight 
matrices, r is the reduction ratio, and F ∈ RL×d denotes 
the feature representation from either the D-Inception or 
Downsampling module.

Practical adaptation

In practice, workpiece dimensions are typically measured 
during CNC restarts, process resets, or when operators 
deem reconfiguration necessary. Based on these measure-
ments, operators adjust cutting tools and machine param-
eters to ensure the accuracy of subsequent machining.

To accommodate such variations, including changes in 
machining conditions, workpiece geometry, and tool states, 
DeepMachining supports few-shot fine-tuning (typically 
two-shot) to adapt the pre-trained model on the fly.

DeepMachining maintains a compact architecture with 
approximately 260,000 parameters. Notably, only 6.5% of 
the parameters need to be fine-tuned using just 12.5% of the 
epochs required for pre-training, enabling efficient and light-
weight adaptation across diverse machining configurations.

Fig. 4  Deployment of DeepMa-
chining on a CNC system, illustrat-
ing real-time inference for tool 
calibration and on-site few-shot 
fine-tuning for model adaptation
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	 Besides the first machining, the acts of machining on the 
other dates and the tool position adjustments are consid-
ered a machining configuration adjustment. This dataset 
was used for model pre-training.

	 To evaluate the performance of the pre-trained model, 
the dataset was split into training and testing sets for 
assessment. The testing dataset was generated in two 
different ways. First, 80% of the data was randomly se-
lected for training, and the remaining 20% for testing. 
Second, the first 80% of the dataset (sequenced by ma-
chining time) was used for training, and the remaining 
for testing. In the following sections, the first dataset is 
named WC_AO-MS (Random) and the second one as 
WC_AO-MS (Sequential).

	● WC_TAN-MS: 87 MS workpieces were machined us-
ing a tool made of WC and coated with TAN. The 
workpieces were machined on two different dates, with 
varying spindle speeds for each date. Since we plan to 
fine-tune the pre-trained model to adapt the tool differ-
ences in WC_TAN-MS, each machining date in WC_
TAN-MS is considered as machining configuration ad-
justment. To assess whether the pre-trained model can 
adapt to changes in cutting tools through fine-tuning, 
few-shot learning is applied for each machining date, 
i.e. machining configuration adjustments, as described 
in Section  “Fine-tuning method”. In other words, for 
each date, the first two workpieces are used for model 
fine-tuning, and the remaining ones are used for testing.

	● WC_TC-AS: 34 AS workpieces were machined using a 
tool made of WC and coated with TC. All the workpieces 
were machined on the same date. However, there were 
three instances of machining configuration adjustments: 
(1) when the machine started in the morning, (2) when 
the machine resumed after the lunch break, and (3) when 
the cutting tool is adjusted for precision offset. The two 
workpieces processed after each machining configura-
tion adjustment were used for model fine-tuning. Sub-
sequent workpieces, processed until the next machin-
ing configuration adjustments or end of the machining, 
were used for testing. This allowed us to assess whether 
our fine-tuning approach could adapt to changes in both 
cutting tools and workpiece materials.Evaluation Met-
rics: The performance of our method is evaluated by 
Root Mean Square Error (RMSE), Mean Absolute Er-
ror (MAE) and Pearson Correlation (CORR). MAE and 
RMSE are both used to assess whether a model accu-
rately estimates actual machining errors. RMSE is more 
sensitive to outliers compared to MAE, and MAE is 
considered more intuitive to the domain experts.

CORR is used to observe whether the model’s estimated 
machining errors are correlated with the actual errors. In 

Experiments

See Tables 1, 2 and 3.

Settings

Datasets: The datasets were collected from three distinct 
outer diameter machining tasks, and were named on the 
basis of the material and coating of the cutting tool, as well 
as the material of the workpieces under machining. All of the 
cutting tools used in the experiments were made of Tung-
sten Carbide (WC). The coatings of the cutting tools include 
Aluminium Oxide (AO), Titanium Aluminium Nitride 
(TAN), and Titanium Carbonitride (TC). The materials of 
the workpieces included Medium-Carbon Steel (MS) and 
Alloy Steel (AS). On the other hand, except for the vibra-
tion and the machine controller signals, adjustments to the 
machining configurations (e.g. spindle speed, initial tool 
position) and context changes (e.g. machining dates) along 
with the machining processes were also recorded. Table 1 
shows the summary of each dataset, and the details are 
described as follows:

	● WC_AO-MS: 347 MS workpieces were machined using 
a tool made of WC and coated with AO. The workpieces 
were machined on seven different dates, with varying 
spindle speeds for each date. Besides, according to the 
judgment of on-site personnel, the cutting tool under-
went eight position adjustments to offset its machining 
precision. Tool adjustments were required when ma-
chining precision declined beyond a threshold deter-
mined by the machining worker.

Table 1  Machining configuration of datasets
Dataset Spindle RPM Feed Rate 

(mm/rev)
# of Con-
figuration 
Changes

WC_AO-MS 1100 to 2700 [0.25, 0.1] 14
WC_TAN-MS 1600 to 2200 [0.25, 0.12] 2
WC_TC-AS 1000 to 2100 [0.12, 0.25] 3

Table 2  Train/test split of pre-trained datasets. The number of work-
pieces is shown in brackets
Dataset Train Test Total
WC_AO-MS (Random) 277 [277] 70 [70] 347
WC_AO-MS (Sequential) 281 [277, 2, 2] 66 [11, 7, 48] 347

Table 3  Train/test split of adapted datasets. The number of workpieces 
is shown in brackets
Dataset Train Test Total
WC_TAN-MS 4 [2, 2] 83 [37, 46] 87
WC_TC-AS 6 [2, 2, 2] 28 [5, 2, 19] 34
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was combined with a sensor fusion technique to accu-
rately estimate tool wear and surface roughness in CNC 
machining. The vibration signals were utilized as inputs 
to the model for machining error estimation.

	● 2D-CNN: Once a series of vibration or sound signals is 
transformed into spectrograms, a visual representation 
of the spectrum of frequencies as they vary with time, 
the resulting images can be analyzed using a two-dimen-
sional convolutional neural network (2D-CNN). In this 
study, the approach proposed by Liao et al. (2021) was 
introduced as a representative 2D-CNN baseline. Liao 
et al. applied Short-Time Fourier Transform (STFT) 
(Brigham, 1988) to sound signals to obtain spectro-
grams, which were then used to predict specific machin-
ing configurations. They fine-tuned a VGG16-based 
model pre-trained on ImageNet (Deng et al., 2009) to 
accept spectrograms as input. We adopted their model 
framework but replaced the input signals with vibration 
signals processed into spectrograms using STFT, and 
fine-tuned the model for machining error estimation.

Hyperparameters: The main hyperparameters of Deep-
Machining are summarized in Table  4. These include the 
kernel sizes s used in the multi-branch convolutions, the 
output channel dimensions c (i.e., feature channels), and the 
reduction ratio r in the bottleneck-style modules and atten-
tion mechanisms. Additionally, the overall model employs a 
dropout rate of 0.1 after convolutional concatenations.

Devices: We pre-trained the core of DeepMachining on 
a workstation equipped with an AMD Ryzen Threadripper 
3990X processor (256 MB cache, 2.9 GHz), 256 GB RAM, 
and an NVIDIA Quadro RTX 8000 GPU (48 GB GDDR6 
RAM) using TensorFlow. AdamW optimizer was employed 
for both pre-training and 2-shot tuning, with specific hyper-
parameters adjusted as follows: for pre-training, a learning 
rate of 0.001, a batch size of 512, and 512 epochs; for 2-shot 
tuning, a learning rate of 0.00001, a batch size of 32, and 
64 epochs.

For 2-shot tuning, the core was executed on a host featur-
ing an Intel Xeon Silver 4210 processor (13.75 MB cache, 
2.2 GHz), 256 GB RAM, and an NVIDIA RTX 2080 Ti 
GPU (11 GB GDDR6 RAM) using TensorFlow. The 2-shot 
tuning required 2.5 min on the GPU and 35 min on the CPU, 
with respective inference times of 0.026 s and 0.036 s.

Additionally, we evaluated the practical runtime of Deep-
Machining on an industrial PC (IPC) equipped with an Intel 
Core i7-6700 processor (8 MB cache, 3.4 GHz) and 16 GB 
DDR4 RAM in a CNC lather machine. On this IPC, two-
shot fine-tuning required approximately 25 min on the CPU, 
while the inference time per workpiece was around 0.1 s.

certain machining processes that demand high precision, 
the variations of machining errors are small. A model can 
give machining error estimation within a narrow range of 
values to get small MAE and RMSE. However, in such 
circumstances, if the model is not truly capable of predict-
ing the machining error, the CORR would be low. In other 
words, CORR assists us in distinguishing whether a model 
really learns the relationships between the signals during 
the machining processes and the machining errors. A low 
CORR accompanied by a high MAE or RMSE suggests that 
the model’s estimation is biased.

Baselines: Three methods were chosen as the baseline 
methods for comparison.

	● SVR: Support vector regression (SVR) is a kernel-based 
machine learning model for regression tasks (Cortes & 
Vapnik, 1995). SVR utilizes kernel functions to identify 
key data points influencing the regression hyperplane 
and efficiently map the input data into a high-dimension-
al feature space. In CNC machine applications, SVR has 
been applied to engineering optimization problems such 
as surface roughness improvement and cutting force re-
duction in milling (Yeganefar et al., 2019), as well as 
motor current control of machine tool drives (Schwen-
zer et al., 2020). In this study, referring to Sayyad et 
al. (2022), the statistical features of vibration, spindle 
speed, and motor current signals were processed as in-
put to SVR with an RBF kernel for model training and 
machining error inference.

	● 1D-CNN: The one-dimensional convolutional neu-
ral network (1D-CNN) is commonly employed for the 
analysis of time series data. In this study, we adopted the 
1D-CNN method proposed by Huang and Lee (2021) 
as a representative baseline. In their approach, 1D-CNN 

Table 4  DeepMachining architecture hyperparameter overview
Step Module Hyperparameters Output Shape
1 Inputs – –
1.1 Inputs (time) –

N × 10240 × 8
1.2 Inputs (freq) –

N × 5121 × 2
2 Signal Encoder (time) –

N × 192
2.1    Stem s = 11, c = 96 N × 2048 × 96
2.2    D-Inception s = 9, c = 96, r = 4 N × 2048 × 96
2.3    Downsampling

c = 96 N × 1024 × 96
2.4    D-Inception s = 9, c = 96, r = 4 N × 1024 × 96
2.5    GAP + GMP –

N × 192
3 Signal Encoder (freq) Same as time branch

N × 192
4 Concat (time + freq) –

N × 384
5 Aggregation – –
5.1    D-Inception s = 3, c = 96, r = 4 N × 96
5.2    GAP + GMP –

N × 192
6 Projection Head – 1
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only a slight uptick in estimation errors and a limited reduc-
tion in CORR in WC_AO-MS (Sequential). These results 
demonstrate that our approach can sustain robust predictive 
performance throughout continuous machining processes.

Figure  5 illustrates the relationships between the esti-
mated machining errors produced by each method (x-axis) 
and the corresponding actual machining errors of the testing 
set (y-axis). Figure 5a shows the results for WC_AO-MS 
(Random), while Fig.  5b presents those for WC_AO-MS 
(Sequential). The axes scales are consistent across the plots 
for the same dataset. The red diagonal line indicates a per-
fect agreement between the estimated and actual values.

Figure  5b indicates that SVR only estimates machin-
ing errors within a limited range of 0.003 to 0.007 mm and 
shows virtually no correlation between the estimated and 
actual values on WC_AO-MS (Sequential). Both 1D-CNN 

Evaluation and comparison

Initially, we validated the model’s performance on the pre-
trained dataset WC_AO-MS, as shown in Table 2. As dem-
onstrated in Table 5, whether the testing set was generated 
randomly (WC_AO-MS (Random)) or sequentially (WC_
AO-MS (Sequential)), our approach surpasses all baseline 
methods across various metrics. The bold font denotes the 
best performance achieved among the compared algorithms. 
SVR presents the weakest performance among all the meth-
ods, as highlighted by the highest MAE and RMSE, coupled 
with the lowest CORR. Notably, the CORR of SVR is close 
to 0.5 in WC_AO-MS (Random) but declines significantly 
to nearly 0 in WC_AO-MS (Sequential), indicating its lim-
ited robustness as machining progresses.

2D-CNN outperforms 1D-CNN in most metrics but 
exhibits a lower CORR for WC_AO-MS (Sequential). 
Moreover, compared to WC_AO-MS (Random), both 
1D-CNN and 2D-CNN exhibit a substantial increase in 
estimation errors and a decrease in CORR on WC_AO-MS 
(Sequential).

In reality, only the first few workpieces processed can be 
used for model fine-tuning. An approach that fails to per-
form well with sequential workpieces during production 
would not be practical for real-world applications. Com-
pared to WC_AO-MS (Random), our approach exhibits 

Table 5  Performance comparison on pre-trained dataset
Dataset Method MAE RMSE CORR
WC_AO-MS 
(Random)

SVR 0.0049 0.0062 0.5052
1D-CNN 0.0039 0.0053 0.5864
2D-CNN 0.0036 0.0049 0.7353
Our Approach 0.0026 0.0040 0.8020

WC_AO-MS 
(Sequential)

SVR 0.0050 0.0061 −0.0463
1D-CNN 0.0045 0.0057 0.4722
2D-CNN 0.0043 0.0052 0.4029
Our Approach 0.0028 0.0036 0.7754

Fig. 5  Scatter plots of the actual machining errors versus the estimated errors by different methods on the pre-trained dataets. Different colors 
represent different machining configurations
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tools, while WC_TC-AN is used to assess adaptability 
when both workpiece and tool materials differ. As shown 
in Table  6, the correlation coefficient (CORR) of SVR is 
close to zero, revealing that SVR fails to adapt to changes 
in machining conditions (regardless of differences in work-
pieces or tools) for machining error prediction. On the other 
hand, 2D-CNN outperforms 1D-CNN on both datasets. 
Notably, our approach surpasses all other methods, achiev-
ing the best performance across all metrics.

As shown in Fig. 6, the estimations made by SVR exhibit 
no correlation with the actual values and, in the case of 
WC_TC-AN, even fall outside the plotting range due to 
large errors. For the adapted datasets, both 1D-CNN and 
2D-CNN perform better than SVR but still worse than our 
approach, and both methods appear constrained by a lower 
bound around 0.03 in their estimations on WC_TC-AN. 
These results demonstrate that our approach achieves strong 
adaptability and generalization across datasets involving 
variations in both workpiece and tool materials.

Ablation study

To investigate the contributions of key architectural com-
ponents in the core of DeepMachining, we conducted an 
ablation study using the adapted datasets WC_TAN-MS 
and WC_TC-AS. Specifically, we examined the following 
variants:

and 2D-CNN provide estimates with moderate correlation 
to the actual values in both datasets. However, as observed 
in Fig.  5a, the estimates produced by 1D-CNN exhibit 
higher variance, as evidenced by the wider spread of points 
around the diagonal line. In contrast, in Fig.  5b, the esti-
mates made by 2D-CNN appear constrained by an invisible 
lower bound around −0.001 mm, despite the actual machin-
ing errors reaching as low as −0.006 mm in WC_AO-MS 
(Sequential). As illustrated in Fig. 5, compared to 1D-CNN 
and 2D-CNN, our approach exhibits smaller estimation 
errors and stronger correlation for both the WC_AO-MS 
(Random) and WC_AO-MS (Sequential) datasets. Addi-
tionally, the points are distributed more compactly along the 
diagonal line, indicating better estimation accuracy.

As summarized in Table 3, WC_TAN-MS is designed to 
evaluate the adaptability of models in machining scenarios 
involving identical workpiece materials but different cutting 

Table 6  Performance comparison of adapted dataset
Dataset Method MAE RMSE CORR
WC_TAN-MS SVR 0.0056 0.0064 0.0319

1D-CNN 0.0027 0.0034 0.4058
2D-CNN 0.0016 0.0022 0.7240
Our Approach 0.0013 0.0016 0.8838

WC_TC-AS SVR 0.2709 0.3247 0.0339
1D-CNN 0.0041 0.0052 0.2518
2D-CNN 0.0029 0.0037 0.6010
Our Approach 0.0024 0.0032 0.7599

Fig. 6  Scatter plots of the actual machining errors versus the estimated errors by different methods on the adapted datasets. Different colors repre-
sent different machining configurations
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across both datasets emphasizes the benefit of capturing 
broader temporal dependencies through dilations.

Overall, these findings demonstrate that each architec-
tural component, including the transformer-inspired com-
ponents, adapters for fine-tuning, dual-domain inputs, and 
dilated convolutions, plays a vital role in ensuring DeepMa-
chining’s predictive accuracy and generalization.

To assess the effect of signal resolution on the proposed 
model’s performance, we conducted an ablation study by 
systematically downsampling the input signals while keep-
ing the adapted datasets unchanged. This analysis is essen-
tial for evaluating DeepMachining’s deployment feasibility, 
particularly in edge environments with limited sensing or 
computational resources (Bernard et al., 2021).

Table  8 summarizes the results of this sampling rate 
ablation. For the WC_TAN-MS dataset, model perfor-
mance declined markedly as the sampling rate decreased. 
Specifically, the CORR dropped from 0.8838 at 10,240 Hz 
to 0.3161 at 102 Hz, while both MAE and RMSE nearly 
quadrupled. This substantial degradation suggests that high-
frequency components in the signal are critical for capturing 
diagnostic features specific to this turning configuration. A 
partial recovery at mid-level rates (e.g., 1,024 Hz yielding 
CORR = 0.6500) indicates that some low-frequency struc-
tures are retained, but aggressive downsampling discards 
fine-grained temporal information essential for accurate 
error estimation.

In contrast, the WC_TC-AS dataset exhibits substantially 
higher robustness to reductions in sampling rate. Even with 
a considerable drop from the original 8,192 Hz to 82 Hz, the 
model maintains a CORR of 0.7449. This performance is 
comparable to the baseline of 0.7599. While Table 8 indi-
cates only marginal changes in MAE and RMSE across 
sampling rates (within ±0.0006), further examination of the 
scatter plots in Fig. 7 reveals a critical observation. At lower 
sampling rates, predicted values tend to converge toward a 

	● w/o Transformer-inspired components: This variant re-
moved Layer Normalization and Dropout, and replaced 
GELU activation with ReLU.

	● w/o adapter: The Adapter modules used during fine-tun-
ing were omitted, so that only the final projection head 
and biases were updated.

	● w/o frequency inputs: This variant retained only the 
time-domain signal encoder by entirely removing the 
frequency branch.

	● w/o dilation convolution: The dilated convolutions in 
the multi-branch structure were replaced by standard 
convolutions of the same kernel size.

Table 7 summarizes the performance of each ablated model. 
Across both datasets, removing the Transformer-inspired 
components led to the most substantial performance deg-
radation, particularly on WC_TAN-MS where CORR 
decreased from 0.8838 to 0.7689 and both MAE and RMSE 
nearly doubled. This underscores the critical role of Layer 
Normalization, Dropout, and GELU in stabilizing feature 
extraction and enhancing correlation with actual machining 
errors.

Excluding the Adapter modules also notably weakened 
the model’s ability to adapt through few-shot fine-tuning. 
For example, on WC_TAN-MS, CORR dropped from 
0.8838 to 0.3892, highlighting the importance of light-
weight feature transformation via adapters for rapid adapta-
tion to new machining contexts.

Omitting the frequency-domain input resulted in further 
performance drops, especially in correlation on WC_TAN-
MS, indicating that frequency features complement the 
time-domain signals and strengthen the model’s robustness 
under varying cutting conditions.

Finally, replacing dilated convolutions with standard con-
volutions also led to consistent reductions in performance. 
Although the impact was less pronounced than omitting 
frequency inputs or adapters, the steady decrease in CORR 

Table 7  Ablation study of model architecture on adapted dataset
Dataset Method MAE RMSE CORR
WC_TAN-MS w/o Transformer-

inspired components
0.0075 0.0102 0.7689

w/o adapter 0.0034 0.0052 0.3892
w/o frequency inputs 0.0027 0.0044 0.3947
w/o dilation 
convolution

0.0021 0.0028 0.5202

Our Approach 0.0013 0.0016 0.8838
WC_TC-AS w/o Transformer-

inspired components
0.0033 0.0042 0.6367

w/o adapter 0.0030 0.0038 0.7321
w/o frequency inputs 0.0026 0.0035 0.7527
w/o dilation 
convolution

0.0028 0.0038 0.7151

Our Approach 0.0024 0.0032 0.7599

Table 8  Ablation study of signal sampling rate on adapted dataset
Dataset Sampling Rate (Hz) MAE RMSE CORR
WC_TAN-MS 102 0.0042 0.0051 0.3161

204 0.0048 0.0057 0.3464
512 0.0036 0.0048 0.4048
1024 0.0020 0.0025 0.6500
2048 0.0035 0.0049 0.3210
5120 0.0030 0.0041 0.5283
10240 (Original) 0.0013 0.0016 0.8838

WC_TC-AS 82 0.0028 0.0037 0.7449
164 0.0029 0.0038 0.6939
410 0.0028 0.0037 0.7086
820 0.0029 0.0039 0.6830
1638 0.0028 0.0039 0.7104
4096 0.0030 0.0039 0.7087
8192 (Original) 0.0024 0.0032 0.7599
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preserving discriminative features in configurations such as 
WC_TAN-MS, scenarios like WC_TC-AS allow for more 
lenient resolution constraints. DeepMachining maintains 
effective performance under reduced sampling conditions, 
provided that signal acquisition strategies are aligned with 
the frequency distribution and expected variability of the 
underlying process signals.

Discussion

Research hypothesis

One of the main challenges preventing the effective deploy-
ment of deep learning models in real-world machining 
environments is the diversity of machining conditions. Vari-
ations in tools, materials, and manufacturing settings often 
lead to distributional shifts that undermine the performance 
of deep learning models trained on large historical datas-
ets, thereby resulting in degraded accuracy. To enable the 
practical application of deep learning in machining settings, 
models must be capable of adapting to changing machining 
conditions.

Model fine-tuning is a technique in deep learning 
designed to cope with shifts in data distributions. Since 
the training data typically only covers a limited subset of 
possible machining conditions, fine-tuning with newly col-
lected data is necessary to adapt the model to novel sce-
narios. According to multiple studies on transfer learning 

limited range, reducing output variance. This phenomenon 
results in deceptively stable performance metrics, which 
obscure the model’s inability to capture the full variabil-
ity of true machining errors across different configurations 
(Ghosh et al., 2021).

This behavior can be attributed to two primary factors. 
First, the WC_TC-AS dataset inherently presents low vari-
ability in actual machining errors, which compresses the 
observable metric range and diminishes sensitivity to regres-
sion spread. Second, the axial force signals in this dataset 
predominantly contain low- to mid-frequency components, 
making them less prone to aliasing or distortion under 
aggressive downsampling. Consequently, even when the 
model yields oversmoothed predictions at low resolutions, 
standard error metrics such as MAE and RMSE remain 
deceptively low. Nonetheless, retaining high-frequency 
signal content enhances the model’s capacity to capture 
fine-grained dynamics and produce physically meaningful 
predictions.

Collectively, these results underscore that sensitivity to 
sampling rate is inherently dependent on the machining task 
and signal spectral characteristics. As demonstrated by WC_
TC-AS, conventional error metrics alone may fail to reveal 
degenerate prediction behaviors, such as variance collapse, 
especially under low signal variance conditions. This high-
lights the necessity of supplementing aggregate metrics 
with diagnostic visualizations to comprehensively assess 
model generalization and predictive fidelity (Ghosh et al., 
2021). While high-frequency sampling remains essential for 

Fig. 7  Scatter plots of the actual machining errors versus the estimated errors at different sampling rates on the WC_TC-AS dataset. Different 
colors represent different machining configurations
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directly trained or fine-tuned on datasets collected from 
other machining processes. For instance, the same architec-
ture can be applied to classify or regress quality metrics on 
milling or drilling signals, either by training from scratch or 
by leveraging pre-trained models on turning data to initial-
ize representations and subsequently fine-tuning on milling 
or drilling data. This approach could also facilitate trans-
fer learning for abnormal event detection in different CNC 
operations.

Comparison with transformer-based architectures

Transformer-based architectures are well-recognized for 
their ability to capture long-range dependencies via self-
attention mechanisms. However, they typically incur sub-
stantially higher parameter counts and computational 
footprints compared to convolutional designs. Specifi-
cally, the self-attention operation scales quadratically with 
the input sequence length, resulting in significant memory 
and compute demands that pose challenges for real-time 
machining scenarios.

By contrast, the proposed DeepMachining framework 
leverages multi-branch convolutional modules (D-Incep-
tion) in conjunction with lightweight channel-temporal 
attention blocks. This design enables effective receptive 
field expansion and feature recalibration while maintaining 
a notably lower parameter and computational complexity 
than full self-attention mechanisms.

Quantitatively, the core of DeepMachining contains 
approximately 260,000 parameters, with only 6.5% updated 
during fine-tuning. This is in sharp contrast to typical trans-
former-based approaches, which often comprise several 
million parameters and introduce considerable inference 
latency. Such parameter efficiency and reduced computa-
tional overhead make our approach particularly suitable 
for deployment on CNC edge devices subject to stringent 
resource constraints.

Conclusion

This paper presents DeepMachining, a deep learning-based 
framework for estimating machining errors in outer diame-
ter processing using horizontal CNC lathe machines. Deep-
Machining consists of two stages: (1) pre-training a deep 
learning model using historical data, and (2) adapting the 
model to new machining tasks via few-shot learning, typi-
cally using two-shot adaptation.

The core model is initially trained on data collected 
from a single tool and workpiece material, covering the full 
tool life cycle from a new to a fully worn-out tool. When 
machining configurations change, the model can be adapted 

and distribution shift  (Cohen-Wang et al., 2024; Wu et al., 
2022; Kumar et al., 2022), model fine-tuning is effective 
only when the new data distribution does not fundamentally 
differ from the original training distribution, i.e., when the 
shift is due to bias rather than differences in the underlying 
nature of the data distribution.

Therefore, at the outset of this study, we made a strong 
assumption: the training data for the base model must 
include machining condition variations that cannot be cor-
rected through model fine-tuning. In contrast, data associ-
ated with variations that can be addressed via fine-tuning 
can be reserved for future adaptation. Based on prior experi-
ences, we posit that tool wear, the tool’s life cycle, cannot 
be effectively compensated by fine-tuning alone. Conse-
quently, the training data for the base model was constructed 
to cover the complete tool life cycle, from new to fully worn. 
Our experimental results finally validated this assumption.

Implementation insight and limitation

We conducted tests on DeepMachining across different 
types of products in various manufacturing factories. Sev-
eral practical lessons were learned and are summarized as 
follows. 

1.	 Sensor installation: Proper placement of sensors on 
CNC machines is crucial. Incorrect sensor placement 
may lead to ineffective signal acquisition, resulting in 
weak signal amplitudes or noise interference due to sen-
sor cable tension.

2.	 Sensor sampling rate: Differences in sampling rates 
between the pre-training and fine-tuning stages can 
significantly impact model performance. To ensure the 
accurate functionality of DeepMachining, the sampling 
rate should remain identical during both stages.

3.	 Decimal precision: Low measurement precision—for 
example, measuring a workpiece with a required toler-
ance of 0.001 mm using an instrument with only 0.01 
mm precision—cannot accurately reflect the differences 
in machining errors among workpieces. This lack of 
precision in the data can hinder the model’s ability to 
generate accurate machining error estimations.

In this study, we evaluated the performance of DeepMachin-
ing exclusively on outer diameter machining tasks using a 
lathe machine, which limits its current application scope. 
However, CNC machining encompasses a broader range of 
processes, including internal turning, drilling, milling, and 
planing operations, across various machine types.

The proposed architecture of DeepMachining, compris-
ing dual-domain signal encoders with D-Inception modules 
and lightweight adapters, is general in design and can be 
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