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Abstract

Tool condition monitoring (TCM), powered by sensor technology and artificial intelligence (Al), has been adopted in the
machining industry but faces issues such as data quality and model generalization. A classical transfer learning approach,
where a pre-trained model trained on a large labeled dataset is fine-tuned to the target task, can mitigate model generality
challenges. However, collecting abnormal data that represents faulty machining states is prohibitively expensive, making
it difficult to gather sufficient, high-quality training data. Moreover, the limited computational resources on CNC machines
complicate Al deployment. To address those problems, we develop DeepMachining, a deep learning-based Al system for
real-time error prediction in lathe machine operations. We built and evaluated DeepMachining using real manufacturing
data in practice. Specifically, we first pretrain a deep learning model to learn the representation of machining states. Then,
we fine-tune it for specific machining tasks. The validation results show that DeepMachining provides high prediction
accuracy for diverse workpieces and cutting tools. To the best of our knowledge, this work is one of the first industrial
demonstrations of pre-trained deep learning models for predicting lathe machining errors.

Keywords Deep learning - Pre-trained model - Fine-tuning - Online prediction - Computer numerical control (CNC)
machine

Introduction

The structures of modern manufacturing devices are
increasingly complex, while tolerance requirements for
possible machining errors become more strict. High-quality
machining with low errors is essential in the manufacturing
of high-precision parts.

For lathe machines, popular in the manufacturing of pre-
cision parts, various machining errors such as geometric
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tooling, thermal-induced, and load-induced errors (Ham-
dan et al., 2012; Mekid & Ogedengbe, 2010), etc., can lead
to inaccuracies above the tolerance level of manufactured
workpieces, resulting in monetary losses to the manufac-
turers. Early detection of manufacturing quality degradation
and process anomalies (Chien & Chen, 2020; Ramezani et
al., 2023), and assessment of the wear of cutting tools in
material removal processes (Benkedjouh et al., 2015) can
help reduce such risks. In particular, implementing real-time
monitoring and online machining quality prediction can
enhance error detection’s efficiency and efficacy.

In recent years, tool condition monitoring (TCM),
enabled by sensor technology and artificial intelligence
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(AI), has been employed to address these needs (Gavahian
& Mechefske, 2023). For example, TCM has been widely
used for fault detection and diagnosis (FDD) (Ding et al.,
2022; Fernandes et al., 2022; Lei et al., 2020; Ntemi et al.,
2022), predictive maintenance (PdM) (Schwendemann et
al., 2021; Serradilla et al., 2022; Soori et al., 2023; Zhang
et al., 2019), prognostics and health management (PHM)
(Kumar et al., 2023; Nasir & Sassani, 2021; Ramezani et
al., 2023), etc. in the manufacturing industry.

Deep-learning-based Al driven by manufacturing data is
a promising approach for error detection, given that these
data-driven methods have been successful in fields like
computer vision and natural language processing (Ding
et al.,, 2022; Nasir & Sassani, 2021; Ntemi et al., 2022;
Ramezani et al., 2023; Serin et al., 2020; Soori et al., 2023).
However, applying deep learning techniques to manufac-
turing brings new challenges, such as data preprocessing
and model generalization for factory environments. For
example, real-world machining processes involve a variety
of workpiece materials, cutting tools, process recipes, and
equipment models. As a result, supervised deep-learning
models trained on signals from sensors of specific CNC
machines may not apply to other machines. In other words,
Al-powered solutions may not generalize to diverse manu-
facturing environments (Lee & Chien, 2022).

We may apply the classical transfer learning approach
(Marei & Li, 2022; Marei et al., 2021; Sun et al., 2019)
to address the model generality issue, where a pre-trained
model trained on a large labeled dataset is fine-tuned to the
target task. However, acquiring abnormal data correspond-
ing to machining states that lead to the manufacture of
erroneous workpieces is extremely costly in the machinery
industry (Yang et al., 2024), especially concerning different
materials, tools, and the variety of manufacturing settings.
Furthermore, the acquisition of labeled data from specific
manufacturing conditions may not guarantee the success-
ful classification of unlabeled and imbalanced data, primar-
ily due to the complexities of manufacturing environments
and inherent discrepancies in data distribution (Chen et al.,
2025; Pan & Yang, 2009; Ross et al., 2024). Thus, gathering
sufficient high-quality data for pretraining models is chal-
lenging. Additionally, the limited computational resources
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of CNC machines necessitate addressing deployability con-
cerns. Therefore, applying Al in complex manufacturing
environments requires an adaptive learning approach with
generality.

To address these challenges, this paper develops Deep-
Machining, a deep learning-based Al system, to predict
machining errors utilizing the pre-trained model. As Fig. 1
shows, the pre-trained model was trained over the lifetime
of the cutting tool until it was completely worn out. For
model generalization, we perform model pretraining involv-
ing multiple spindle speeds. For fine-tuning, we propose a
method similar to BitFit Ben Zaken et al. (2022), which
adjusts the model’s biases. This allows the pre-trained
model to adapt to the target tasks using few-shot learning
(typically two-shot). In other words, fine-tuning uses data
collected from two instances of the target machining task.
Merely 6.5% of the total parameters of the model are fine-
tuned in less than 12.5% of epochs of the model pre-training.
Thus, the proposed fine-tuning method not only suits exist-
ing machining processes but can also be completed with the
limited computational power of the industrial computers in
the CNC machines. Furthermore, to facilitate deployment
on edge devices within CNC machines, we also investigate
how the low sampling rate impacts the proposed approach
in practice. To evaluate the proposed approach in predicting
machining errors under various manufacturing settings, we
use four machining tasks for validation.

The main contributions of this paper are:

e The proposed DeepMachining approach, and performed
validation showing that, under the approach, we can pre-
train a model that can be adapted to various downstream
tasks.

e A few-shot model fine-tuning method (typically, two-
shot) for adaptation to new manufacturing settings.

e The useful insight that the fine-tuning required in these
manufacturing tasks is basically shifts of model’s biases.

e An end-to-end factory demonstration of DeepMachin-
ing based in real-world factories.

The rest of this paper is organized as follows. Sec-
tion “Related work” reviews the related literature on TCM
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and its applications. Section “Methodology” addresses the
DeepMachine framework for online prediction of machin-
ing errors. Section “Experiments” details the experiments
and analysis using real world machining tasks in facto-
ries. Section “Discussion” discusses the limitations and
lessons learned in this study. Conclusions are drawn in
Section “Conclusion”.

Related work

Machining error, surface roughness, and tool wear are
key quality control metrics in machining processes. Intel-
ligent sensors, including accelerometers, data acquisition
encoders, acoustic emission sensors, microphones, dyna-
mometers, and image sensors, are utilized to monitor and
diagnose machine health degradation and process anomalies
(Jiang et al., 2021). Accelerometer sensors are sensitive and
reliable in measuring workpiece dimensions with high pre-
cision (Duro et al., 2016; Lee et al., 2006). Therefore, we
adapted accelerometers, a data acquisition (DAQ) encoder,
and a microphone to collect manufacturing data for building
DeepMachining to predict machining errors in this study.

Traditional machine learning (ML) approaches have
been used to predict product quality during CNC machining
tasks. Du et al. (2021) proposed a power spectral density
based feature extraction method from spindle vibration and
cutting force signals, which accurately predicted product
roughness, profile, and roundness using tree-based regres-
sor approaches in hard turning processes. Denkena et al.
(2019) optimized workpiece quality and tool life in cylin-
drical turning processes by identifying the machined mate-
rial based on machine learning algorithms. Papananias et al.
(2020) proposed principal component analysis (PCA) based
multilayer perceptron (MLP) networks to accurately predict
the true position and circularity requirements of a work-
piece in an experimental setting. Ura and Ghosh (2021)
proposed the delay domain-based signal analysis approach
to capture the dynamics of the underlying phenomenon
in CNC machines. Furthermore, Ghosh et al. (2021) also
addressed a sensor signal-based digital twin framework
for intelligent machine tools. ML approaches could predict
well on the collected datasets in manufacturing scenarios.
However, ML approaches cannot be used as the kernel for
pre-trained models to adapt to various downstream tasks via
fine-tuning.

The advent of deep learning has reformed predictive
approaches, enabling end-to-end prediction and diagno-
sis procedures to enhance CNC machining precision and
reliability within smart tool condition monitoring systems
(Lei et al., 2020; Zhao et al., 2019). Huang and Lee (2021)
proposed one-dimensional convolutional neural network

(1D-CNN) and sensor fusion approach accurately estimated
tool wear and surface roughness for the CNC machining.
Hesser and Markert (2019) demonstrated the feasibility of
predicting CNC machine status and tool wear for mainte-
nance plan using artificial neural networks. Proteau et al.
(2023) proposed a variational autoencoder (VAE) regression
model to predict the geometrical and dimensional tolerances
of workpieces using sensor data in industrial settings. Zhu
et al. (2020) established a long short-term memory (LSTM)
model for one-dimensional time series and CNN for two-
dimensional images. However, most machines operate nor-
mally in practice, and abnormal situations and fault events
occur rarely. This kind of data imbalance tends to worsen
data generalization capabilities, ultimately impeding the
effectiveness and reliability of data-driven prediction meth-
ods (Chen et al., 2025; Yang et al., 2024; Yu et al., 2025).

Transformer-based networks have been applied to cap-
ture association relationships and dependency from vibra-
tion signals through the self-attention mechanism for
improving performances of the developing models in recent
years, (Bhandari et al., 2023; Li et al., 2024; Liu et al., 2020;
Lietal., 2022; Wuetal., 2023). Wu et al. (2023) and Li et al.
(2024) studied fault detection and classification in a rotary
system with transformer-based models. Li et al. (2022) and
Liu et al. (2020) applied for tool wear prediction in TCM
topics. Compared to transformer-based approaches, in this
study we utilize ID-CNN networks with an attention mech-
anism to address the time series data of vibration signals,
considering latency and computing power for prompt infer-
ence in practice.

Transfer learning (TL), which learns two types of net-
works to extract representations, solves cross-domain diag-
nosis problems with small and imbalanced data (Lei et al.,
2020; Pan & Yang, 2009; Weiss et al., 2016; Zhang et al.,
2022). Wang and Gao (2020) proposed a CNN-based trans-
fer learning technique using vibration analysis for rolling
bearing fault diagnosis. Specifically, adapting a pre-trained
VGG19 network (Russakovsky et al., 2015), using non-
manufacturing images from ImageNet (Deng et al., 2009)
(i.e., model transfer) and transferring the adapted network
structure to different fault severity levels and bearing types
(i.e., feature transfer). Guo et al. (2019) proposed a deep
convolutional transfer learning network to classify bearing
health conditions with unlabeled data. Bahador et al. (2022)
investigated a transfer learning approach for classifying tool
wear based on tool vibration in hard turning processes. Ross
et al. (2024) proposed a transfer learning model with Incep-
tion-V3 network (Szegedy et al., 2015) to detect tool flank
wear under distinct cutting environments.

However, the research gap between practitioners and
researchers remains in practice (Lee & Chien, 2022).
Different processing parameters result in different data
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distributions, which pose a significant challenge to ML
and DL models. Collecting and labeling data with differ-
ent combinations of materials, tools, process recipes, and
machines in practice is difficult and expensive (Yu et al.,
2025). Furthermore, even if labeled data is obtained from
some manufacturing conditions, the resulting predictive
models may fail to classify unlabeled and unbalanced data
due to intricate manufacturing settings and data distribution
discrepancies (Chen et al., 2025; Pan & Yang, 2009; Ross
et al., 2024).

This study focuses on real-time monitoring and online
machining quality prediction for CNC machining, specifi-
cally utilizing sensor data from manufacturing settings,
such as cutting vibrations, current, and rotation, to pre-
dict machining errors for quality control. Therefore, how
to design pre-trained models that are easily adaptable to
empirical field applications with strong performance is an
important topic (Brown et al., 2020; Devlin et al., 2018;
Wolf et al., 2020). Furthermore, fine-tuning on task-specific
supervised data enables seamless adaptation to various spe-
cific tasks in practical settings (Ben Zaken et al., 2022; Cai
etal., 2020; He et al., 2021; Hu et al., 2021).

Methodology
Problem definition

The machining error is the difference between the dimen-
sion measured after the machining of a workpiece and the
target dimension described in the specification. The pro-
posed DeepMachining estimates machining errors under
various processing conditions, e.g., different combinations
of machining tools and configurations, on CNC lathes with-
out actual measurement. Several factors can impact the
machining error of a workpiece. These include the wear
condition of cutting tools, the hardness and processing dif-
ficulty of the material, the environmental temperature (ther-
mal expansion), and the wear of machine components on
the equipment (i.e., the lathe). In order to perceive the fac-
tors, accelerometers are installed to collect the vibration sig-
nals that occur during the machining process; the machine
status, such as the spindle speed and motor current, etc.,
during the machining process is also recorded. Besides, it’s

(a) Internal structure of CNC (b) Accelerometer placement (c) Accelerometer placement

lathe machine. on the spindle. on the turret.

Fig. 2 The experimental environment of the CNC lathe machine
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important to note that any specific section of a workpiece
can be machined multiple times. In other words, multiple
cutting processes may be performed at the same place on a
workpiece to achieve the target size. The signals and data
generated from multiple machining sessions should be gath-
ered and processed.

Machine settings

This study conducted experiments on a horizontal CNC
lathe machine, which features an internal spindle and three-
axis linear guides, as shown in Fig. 2. Piezoelectric accel-
erometers are deployed at three distinct positions: First,
behind the spindle, as depicted in Fig. 2b; Second, in front
of the spindle, also shown in Fig. 2b; and Third, at the base
of the tool turret, illustrated in Fig. 2c, to collect relevant
vibration signals. The machine controller records and out-
puts the spindle speed and current of the drive motors for the
spindle and the turret during the machining process, which
serves as the machine status.

Input formulation

In order to predict the machining error y € R*, two inputs
X ={X1, Xa,..., X, } € RNXSEXC1 lincluding the vibra-
tion signals and machine status during the machining pro-
cess, and X = {X1, Xy,..., X} € RNX(FHDXC2 | e
transformation of vibration signals in &’ from time domain
to frequency domain using Fourier Transform (Brigham,
1988), are used. The duration of each input X; € X is one
second around the location of the workpiece where the
machining error y is measured. N is the number of cuts, C
and (' are the number of input channels, and SR indicates
the sampling rate of the sensors used in input collection.

The core of DeepMachining

The core of DeepMachining is a two-stage model handling
multiple cuttings across machining processes to estimate the
machining error  of a workpiece, as illustrated in Fig. 3.
Stage I: Time/Frequency Domain Signals Encoding.
For each cut of the machining procedures, DeepMachining
accepts a pair of input signals, X,, and X,,, from both the
time and frequency domains. These signals are then pro-
cessed by two parallel Signal Encoders that share the same
architecture but maintain independent weights to accom-
modate the distinct characteristics of each input domain.
Across cuts, the same Signal Encoder (per domain) is
reused, enabling consistent feature extraction with shared
parameters and reduced model complexity. For each cut, the
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Fig. 3 Core architecture of
DeepMachining, featuring parallel

time-frequency signal encoders,
D-Inception modules with multi-
branch dilated convolutions and
transformer-inspired components

(Layer Normalization, GELU),
followed by lightweight channel-
temporal attention blocks
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features extracted from the time and frequency branches are
concatenated to form a per-cut embedding H,,.

Stage II: Aggregation and Estimation. The per-cut embed-
dings # = {H., ..., H,} are stacked to form a sequence,
which is processed by a Dilated Inception (D-Inception)
block to model inter-cut relationships. The resulting aggre-
gated representation is then fed into a Projection Head, a
single-layer feed-forward network, to estimate the machin-
ing error 4.

Detailed descriptions of the Signal Encoder and D-Incep-
tion modules are given in the following subsections.

Stem

The Stem module serves as the first layer in each Signal
Encoder. It is designed to reduce the temporal resolution
and computational cost through a learnable downsampling
operation. Specifically, it applies a 1D convolution with
stride to shorten the input sequence while maintaining key
structural information in the signal.
The Stem transformation is defined as:
Stem(X,,)

= §(f"" (LN(Dropout(WX,)))) (1

Here, W € RO*% is a learnable matrix that maps the
input into a higher-dimensional feature space, where
C € {C1, Cy} denotes the number of input channels and d
represents the output channel dimension. f!! denotes a 1D
convolution with kernel size 11, channel dimension d and
stride 5. LN refers to Layer Normalization (Ba et al., 2016),
and ¢ is the GELU activation function (Hendrycks & Gim-
pel, 2016).

Dilated inception (D-inception)

The D-Inception module is designed to extract multiscale
temporal features with high computational efficiency. It
extends the original Inception architecture (Szegedy et
al., 2015) by incorporating dilated convolutions, attention
mechanisms, and transformer-inspired enhancements; such
as replacing Batch Normalization (Ioffe & Szegedy, 2015)
with Layer Normalization (Ba et al., 2016); using GELU
(Hendrycks & Gimpel, 2016) instead of ReLU Agarap
(2018); and removing activation functions from bottleneck
layers (Liu et al., 2022).

Multi-branch Convolution

The Multi-branch Convolution module inside D-Incep-
tion adopts a four-branch structure to capture features with
varying receptive fields: (i) a 1D convolution with kernel
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size 1 (CONV_1); (ii)) a CONV _1 followed by a standard
convolution with kernel size s (CONV _s); (iii) a CONV_1
followed by a dilated convolution with kernel size s and
dilation rate 2 (DCONV _s); and (iv) a max-pooling layer of
size s followed by CONV_1.

Transformer-inspired Components The outputs from
these branches are concatenated along the channel axis
and then sequentially processed by Dropout, Layer Nor-
malization, and a GELU activation layer. This produces an
intermediate representation F' € RL*¢ where L denotes
the temporal length and d the feature dimension, which is
subsequently fed into an Attention Block (discussed in the
following paragraph) to selectively emphasize informative
features.

Attention Block To emphasize informative features with
limited parameter overhead, the Attention Block integrates
a lightweight sequential attention mechanism inspired by
Convolutional Block Atten tion Module (CBAM) (Woo et
al., 2018), comprising channel attention followed by tem-
poral attention. Given an input F, channel attention first
computes an attention map M, (F'), which is applied via
element-wise multiplication to produce an intermediate ten-
sor F’. This is followed by temporal attention, which gener-
ates M;(F") to refine F’ into the final output F”':
F'=M(F)®F, F'=M(F)®F )

Channel Attention. The channel attention map
M.(F) € R**? is computed by applying global average
pooling and global max pooling along the temporal dimen-
sion, concatenating the results, and passing them through
a two-layer Multilayer Perceptron (MLP) with GELU and
sigmoid activations:

M,(F) = (W, (3(Wy(AvgPool(F)||MaxPool(F)))))  (3)

Here, W, € R#*d and Wy € R9X% are learnable projec-
tion matrices, § denotes GELU, o is sigmoid, and 7 is the
reduction ratio. The attention weights are broadcast along
the temporal dimension before multiplication.

Temporal Attention. Similarly, temporal attention derives
M;(F") € REX! by performing average and max pooling
across the channel axis, concatenating, and applying a 1D
convolution:

M (F") = o(f(AvgPool(F")||MaxPool(F"))) 4)

where f'denotes a 1D convolution. The resulting weights are
broadcast along the channel axis to scale F”.

Finally, the output ' is added to the original input fea-
ture via a residual connection (He et al., 2016), which pro-
motes gradient stability.

@ Springer

Downsampling

The Downsampling module reduces the temporal resolution
of feature sequences to improve computational efficiency
and increase the receptive field, especially when stacked
with D-Inception blocks.

Unlike the Stem module, which performs learnable
downsampling through 1D convolutions, Downsampling
employs non-learnable max pooling to reduce the sequence
length without introducing additional temporal param-
eters. The pooled features are then transformed through a
lightweight bottleneck projection using linear layers. The
Downsampling is defined as:

Downsampling(F) = W7 (LN(Wy(MaxPool(F)))) %)

Here, MaxPool denotes temporal max pooling, and LN rep-
resents Layer Normalization (Ba et al., 2016). The learnable
weights Wy € RT*9 and W, € R?%4 constitute a bottle-
neck structure that first compresses the feature channels to
reduce computational cost and then restores the original
dimensionality for downstream processing. This structure
facilitates efficient cross-channel interaction while main-
taining a compact parameter footprint.

Fine-tuning method

To adapt the model to diverse machining tasks, we adopt a
fine-tuning strategy inspired by TinyTL Cai et al. (2020).
TinyTL introduces lightweight residual modules and
updates only these modules, biases, and output head during
fine-tuning.

In our framework, we employ Adapter, a two-layer bottle-
neck-style feed-forward network, designed to perform light-
weight feature transformation during fine-tuning. Adapters
are inserted into both the D-Inception and Downsampling
blocks. During fine-tuning, only the Adapters, biases, and
the projection head are updated, while all other pre-trained
parameters remain frozen. This design enables rapid adapta-
tion to new machining tasks with reduced memory and com-
putational overhead, as only a small subset of parameters
needs updating.

Compared to other parameter-efficient adaptation tech-
niques, our approach exhibits several engineering advan-
tages. For example, LoRA (Hu et al.,, 2021) constrains
its low-rank updates to the query and key projections
within transformer attention mechanisms, thereby inher-
ently coupling it to transformer-based architectures. In
contrast, our Adapter modules are integrated alongside
the primary computation flows and are not restricted by
architectural constraints, enabling straightforward incor-
poration into convolutional modules such as D-Inception
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and Downsampling. Similarly, although AdapterFusion
(Pfeiffer et al., 2021) exploits multiple adapters to facilitate
transfer across tasks, it typically incurs additional memory
overhead. By comparison, our design maintains a reduced
parameter footprint and achieves low inference latency,
which are essential for deployment on CNC edge comput-
ing platforms. The Adapter operation is formally defined as:

Adapter(F) = F + W1 (Wy(F)) (6)
Here, Wy € R¥% and W, € R?*? are learnable weight
matrices, 7 is the reduction ratio, and F' € RE*4 denotes
the feature representation from either the D-Inception or
Downsampling module.

Practical adaptation

In practice, workpiece dimensions are typically measured
during CNC restarts, process resets, or when operators
deem reconfiguration necessary. Based on these measure-
ments, operators adjust cutting tools and machine param-
eters to ensure the accuracy of subsequent machining.

To accommodate such variations, including changes in
machining conditions, workpiece geometry, and tool states,
DeepMachining supports few-shot fine-tuning (typically
two-shot) to adapt the pre-trained model on the fly.

DeepMachining maintains a compact architecture with
approximately 260,000 parameters. Notably, only 6.5% of
the parameters need to be fine-tuned using just 12.5% of the
epochs required for pre-training, enabling efficient and light-
weight adaptation across diverse machining configurations.

Deployment

Figure 4 illustrates the integrated hardware and software
architecture used to deploy DeepMachining on a CNC
machine. The system comprises an industrial PC (IPC), the
machine controller, and sensors (accelerometers). The IPC
communicates directly with both the sensors and the con-
troller to handle data collection and adaptive control.

This deployment supports two primary workflows: infer-
ence and fine-tuning. In the inference workflow (shown on
the left side of Fig. 4), during machine processing, the IPC
continuously collects real-time data streams from the accel-
erometers and the controller. A signal segmentation mod-
ule then utilizes the machining G-code, collected signals,
and design drawings to extract relevant segmented signals.
DeepMachining processes these segmented signals to esti-
mate the machining error §. Based on these estimates, the
IPC automatically adjusts CNC parameters to perform tool
calibration, allowing compensation adjustments without
halting machining operations.

The fine-tuning workflow (right side of Fig. 4) illustrates
how DeepMachining adapts to new machining contexts,
such as changes in workpiece geometry, tooling, or pro-
cess conditions. Similar to the inference pipeline, the IPC
collects and segments the signals using G-code and design
information. In this mode, however, manually or auto-
matically labeled measurements (e.g., offline dimensional
inspections) are used to update the model on-the-fly via
few-shot fine-tuning. After fine-tuning, the updated model is
validated, stored with version control, and deployed for sub-
sequent inference, ensuring continuous improvement and
consistent performance across diverse machining scenarios.

Fig.4 Deployment of DeepMa-
chining on a CNC system, illustrat-
ing real-time inference for tool
calibration and on-site few-shot
fine-tuning for model adaptation
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Table 1 Machining configuration of datasets

Dataset Spindle RPM Feed Rate # of Con-
(mm/rev) figuration
Changes
WC AO-MS 1100 to 2700 [0.25,0.1] 14
WC_TAN-MS 1600 to 2200 [0.25,0.12] 2
WC_TC-AS 1000 to 2100 [0.12, 0.25] 3

Table 2 Train/test split of pre-trained datasets. The number of work-
pieces is shown in brackets

Dataset
WC_AO-MS (Random)
WC_AO-MS (Sequential)

Train Test Total
277 [277] 70 [70] 347
281[277,2,2] 66[11,7,48] 347

Table 3 Train/test split of adapted datasets. The number of workpieces
is shown in brackets

Dataset Train Test Total
WC_TAN-MS 412,2] 83 [37, 46] 87
WC_TC-AS 61[2,2,2] 28[5,2,19] 34
Experiments

See Tables 1, 2 and 3.
Settings

Datasets: The datasets were collected from three distinct
outer diameter machining tasks, and were named on the
basis of the material and coating of the cutting tool, as well
as the material of the workpieces under machining. All of the
cutting tools used in the experiments were made of Tung-
sten Carbide (WC). The coatings of the cutting tools include
Aluminium Oxide (AO), Titanium Aluminium Nitride
(TAN), and Titanium Carbonitride (TC). The materials of
the workpieces included Medium-Carbon Steel (MS) and
Alloy Steel (AS). On the other hand, except for the vibra-
tion and the machine controller signals, adjustments to the
machining configurations (e.g. spindle speed, initial tool
position) and context changes (e.g. machining dates) along
with the machining processes were also recorded. Table 1
shows the summary of each dataset, and the details are
described as follows:

o WC_AO-MS: 347 MS workpieces were machined using
a tool made of WC and coated with AO. The workpieces
were machined on seven different dates, with varying
spindle speeds for each date. Besides, according to the
judgment of on-site personnel, the cutting tool under-
went eight position adjustments to offset its machining
precision. Tool adjustments were required when ma-
chining precision declined beyond a threshold deter-
mined by the machining worker.
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Besides the first machining, the acts of machining on the
other dates and the tool position adjustments are consid-
ered a machining configuration adjustment. This dataset
was used for model pre-training.
To evaluate the performance of the pre-trained model,
the dataset was split into training and testing sets for
assessment. The testing dataset was generated in two
different ways. First, 80% of the data was randomly se-
lected for training, and the remaining 20% for testing.
Second, the first 80% of the dataset (sequenced by ma-
chining time) was used for training, and the remaining
for testing. In the following sections, the first dataset is
named WC_AO-MS (Random) and the second one as
WC_AO-MS (Sequential).
WC_TAN-MS: 87 MS workpieces were machined us-
ing a tool made of WC and coated with TAN. The
workpieces were machined on two different dates, with
varying spindle speeds for each date. Since we plan to
fine-tune the pre-trained model to adapt the tool differ-
ences in WC_TAN-MS, each machining date in WC_
TAN-MS is considered as machining configuration ad-
justment. To assess whether the pre-trained model can
adapt to changes in cutting tools through fine-tuning,
few-shot learning is applied for each machining date,
i.e. machining configuration adjustments, as described
in Section “Fine-tuning method”. In other words, for
each date, the first two workpieces are used for model
fine-tuning, and the remaining ones are used for testing.
o WC _TC-AS: 34 AS workpieces were machined using a
tool made of WC and coated with TC. All the workpieces
were machined on the same date. However, there were
three instances of machining configuration adjustments:
(1) when the machine started in the morning, (2) when
the machine resumed after the lunch break, and (3) when
the cutting tool is adjusted for precision offset. The two
workpieces processed after each machining configura-
tion adjustment were used for model fine-tuning. Sub-
sequent workpieces, processed until the next machin-
ing configuration adjustments or end of the machining,
were used for testing. This allowed us to assess whether
our fine-tuning approach could adapt to changes in both
cutting tools and workpiece materials.Evaluation Met-
rics: The performance of our method is evaluated by
Root Mean Square Error (RMSE), Mean Absolute Er-
ror (MAE) and Pearson Correlation (CORR). MAE and
RMSE are both used to assess whether a model accu-
rately estimates actual machining errors. RMSE is more
sensitive to outliers compared to MAE, and MAE is
considered more intuitive to the domain experts.

CORR is used to observe whether the model’s estimated
machining errors are correlated with the actual errors. In
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certain machining processes that demand high precision,
the variations of machining errors are small. A model can
give machining error estimation within a narrow range of
values to get small MAE and RMSE. However, in such
circumstances, if the model is not truly capable of predict-
ing the machining error, the CORR would be low. In other
words, CORR assists us in distinguishing whether a model
really learns the relationships between the signals during
the machining processes and the machining errors. A low
CORR accompanied by a high MAE or RMSE suggests that
the model’s estimation is biased.

Baselines: Three methods were chosen as the baseline
methods for comparison.

e SVR: Support vector regression (SVR) is a kernel-based
machine learning model for regression tasks (Cortes &
Vapnik, 1995). SVR utilizes kernel functions to identify
key data points influencing the regression hyperplane
and efficiently map the input data into a high-dimension-
al feature space. In CNC machine applications, SVR has
been applied to engineering optimization problems such
as surface roughness improvement and cutting force re-
duction in milling (Yeganefar et al., 2019), as well as
motor current control of machine tool drives (Schwen-
zer et al., 2020). In this study, referring to Sayyad et
al. (2022), the statistical features of vibration, spindle
speed, and motor current signals were processed as in-
put to SVR with an RBF kernel for model training and
machining error inference.

e 1D-CNN: The one-dimensional convolutional neu-
ral network (1D-CNN) is commonly employed for the
analysis of time series data. In this study, we adopted the
1D-CNN method proposed by Huang and Lee (2021)
as a representative baseline. In their approach, 1D-CNN

Table 4 DeepMachining architecture hyperparameter overview

Step Module Hyperparameters Output Shape

1 Inputs - -

1.1  Inputs (time) - N x 10240 x 8
1.2 Inputs (freq) - N x 5121 x 2
2 Signal Encoder (time) — N x 192

21 Stem s=11,c=96 N x 2048 x 96
2.2 D-Inception s=9,c=96,7r =4 N x 2048 x 96
23 Downsampling c— 96 N x 1024 x 96
2.4 D-Inception s=0,c=96,7r =4 N x 1024 x 96
2.5 GAP + GMP - N x 192

3 Signal Encoder (freq) Same as time branch N x 192

4 Concat (time + freq)  — N x 384

5 Aggregation - -

5.1 D-Inception s=3,c=96,r =4 N x96

52 GAP + GMP N x 192

6 Projection Head — 1

was combined with a sensor fusion technique to accu-
rately estimate tool wear and surface roughness in CNC
machining. The vibration signals were utilized as inputs
to the model for machining error estimation.

o 2D-CNN: Once a series of vibration or sound signals is
transformed into spectrograms, a visual representation
of the spectrum of frequencies as they vary with time,
the resulting images can be analyzed using a two-dimen-
sional convolutional neural network (2D-CNN). In this
study, the approach proposed by Liao et al. (2021) was
introduced as a representative 2D-CNN baseline. Liao
et al. applied Short-Time Fourier Transform (STFT)
(Brigham, 1988) to sound signals to obtain spectro-
grams, which were then used to predict specific machin-
ing configurations. They fine-tuned a VGGI16-based
model pre-trained on ImageNet (Deng et al., 2009) to
accept spectrograms as input. We adopted their model
framework but replaced the input signals with vibration
signals processed into spectrograms using STFT, and
fine-tuned the model for machining error estimation.

Hyperparameters: The main hyperparameters of Deep-
Machining are summarized in Table 4. These include the
kernel sizes s used in the multi-branch convolutions, the
output channel dimensions c (i.e., feature channels), and the
reduction ratio  in the bottleneck-style modules and atten-
tion mechanisms. Additionally, the overall model employs a
dropout rate of 0.1 after convolutional concatenations.

Devices: We pre-trained the core of DeepMachining on
a workstation equipped with an AMD Ryzen Threadripper
3990X processor (256 MB cache, 2.9 GHz), 256 GB RAM,
and an NVIDIA Quadro RTX 8000 GPU (48 GB GDDR6
RAM) using TensorFlow. AdamW optimizer was employed
for both pre-training and 2-shot tuning, with specific hyper-
parameters adjusted as follows: for pre-training, a learning
rate 0of 0.001, a batch size of 512, and 512 epochs; for 2-shot
tuning, a learning rate of 0.00001, a batch size of 32, and
64 epochs.

For 2-shot tuning, the core was executed on a host featur-
ing an Intel Xeon Silver 4210 processor (13.75 MB cache,
2.2 GHz), 256 GB RAM, and an NVIDIA RTX 2080 Ti
GPU (11 GB GDDR6 RAM) using TensorFlow. The 2-shot
tuning required 2.5 min on the GPU and 35 min on the CPU,
with respective inference times of 0.026 s and 0.036 s.

Additionally, we evaluated the practical runtime of Deep-
Machining on an industrial PC (IPC) equipped with an Intel
Core 17-6700 processor (8 MB cache, 3.4 GHz) and 16 GB
DDR4 RAM in a CNC lather machine. On this IPC, two-
shot fine-tuning required approximately 25 min on the CPU,
while the inference time per workpiece was around 0.1 s.
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Evaluation and comparison

Initially, we validated the model’s performance on the pre-
trained dataset WC_AO-MS, as shown in Table 2. As dem-
onstrated in Table 5, whether the testing set was generated
randomly (WC_AO-MS (Random)) or sequentially (WC _
AO-MS (Sequential)), our approach surpasses all baseline
methods across various metrics. The bold font denotes the
best performance achieved among the compared algorithms.
SVR presents the weakest performance among all the meth-
ods, as highlighted by the highest MAE and RMSE, coupled
with the lowest CORR. Notably, the CORR of SVR is close
to 0.5 in WC_AO-MS (Random) but declines significantly
to nearly 0 in WC_AO-MS (Sequential), indicating its lim-
ited robustness as machining progresses.

2D-CNN outperforms 1D-CNN in most metrics but
exhibits a lower CORR for WC_AO-MS (Sequential).
Moreover, compared to WC_AO-MS (Random), both
ID-CNN and 2D-CNN exhibit a substantial increase in
estimation errors and a decrease in CORR on WC_AO-MS
(Sequential).

In reality, only the first few workpieces processed can be
used for model fine-tuning. An approach that fails to per-
form well with sequential workpieces during production
would not be practical for real-world applications. Com-
pared to WC_AO-MS (Random), our approach exhibits

1D-CNN
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Table 5 Performance comparison on pre-trained dataset

Dataset Method MAE RMSE CORR
WC_AO-MS SVR 0.0049  0.0062  0.5052
(Random) 1D-CNN 0.0039  0.0053  0.5864
2D-CNN 0.0036  0.0049  0.7353
Our Approach 0.0026  0.0040  0.8020
WC_AO-MS SVR 0.0050  0.0061  —0.0463
(Sequential)  |1D-CNN 0.0045  0.0057  0.4722
2D-CNN 0.0043  0.0052  0.4029
Our Approach 0.0028 0.0036 0.7754

only a slight uptick in estimation errors and a limited reduc-
tion in CORR in WC_AO-MS (Sequential). These results
demonstrate that our approach can sustain robust predictive
performance throughout continuous machining processes.
Figure 5 illustrates the relationships between the esti-
mated machining errors produced by each method (x-axis)
and the corresponding actual machining errors of the testing
set (y-axis). Figure 5a shows the results for WC_AO-MS
(Random), while Fig. 5b presents those for WC_AO-MS
(Sequential). The axes scales are consistent across the plots
for the same dataset. The red diagonal line indicates a per-
fect agreement between the estimated and actual values.
Figure 5b indicates that SVR only estimates machin-
ing errors within a limited range of 0.003 to 0.007 mm and
shows virtually no correlation between the estimated and
actual values on WC_AO-MS (Sequential). Both 1D-CNN

2D-CNN Our Approach
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Fig. 5 Scatter plots of the actual machining errors versus the estimated errors by different methods on the pre-trained dataets. Different colors

represent different machining configurations
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Table 6 Performance comparison of adapted dataset

Dataset Method MAE RMSE CORR
WC_TAN-MS  SVR 0.0056 0.0064 0.0319
1D-CNN 0.0027 0.0034 0.4058
2D-CNN 0.0016 0.0022 0.7240
Our Approach 0.0013 0.0016 0.8838
WC_TC-AS SVR 0.2709 0.3247 0.0339
1D-CNN 0.0041 0.0052 0.2518
2D-CNN 0.0029 0.0037 0.6010
Our Approach 0.0024 0.0032 0.7599

and 2D-CNN provide estimates with moderate correlation
to the actual values in both datasets. However, as observed
in Fig. 5a, the estimates produced by 1D-CNN exhibit
higher variance, as evidenced by the wider spread of points
around the diagonal line. In contrast, in Fig. 5b, the esti-
mates made by 2D-CNN appear constrained by an invisible
lower bound around —0.001 mm, despite the actual machin-
ing errors reaching as low as —0.006 mm in WC_AO-MS
(Sequential). As illustrated in Fig. 5, compared to 1D-CNN
and 2D-CNN, our approach exhibits smaller estimation
errors and stronger correlation for both the WC_AO-MS
(Random) and WC_AO-MS (Sequential) datasets. Addi-
tionally, the points are distributed more compactly along the
diagonal line, indicating better estimation accuracy.

As summarized in Table 3, WC_TAN-MS is designed to
evaluate the adaptability of models in machining scenarios
involving identical workpiece materials but different cutting
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tools, while WC_TC-AN is used to assess adaptability
when both workpiece and tool materials differ. As shown
in Table 6, the correlation coefficient (CORR) of SVR is
close to zero, revealing that SVR fails to adapt to changes
in machining conditions (regardless of differences in work-
pieces or tools) for machining error prediction. On the other
hand, 2D-CNN outperforms 1D-CNN on both datasets.
Notably, our approach surpasses all other methods, achiev-
ing the best performance across all metrics.

As shown in Fig. 6, the estimations made by SVR exhibit
no correlation with the actual values and, in the case of
WC _TC-AN, even fall outside the plotting range due to
large errors. For the adapted datasets, both 1D-CNN and
2D-CNN perform better than SVR but still worse than our
approach, and both methods appear constrained by a lower
bound around 0.03 in their estimations on WC_TC-AN.
These results demonstrate that our approach achieves strong
adaptability and generalization across datasets involving
variations in both workpiece and tool materials.

Ablation study

To investigate the contributions of key architectural com-
ponents in the core of DeepMachining, we conducted an
ablation study using the adapted datasets WC_TAN-MS
and WC _TC-AS. Specifically, we examined the following
variants:
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Fig. 6 Scatter plots of the actual machining errors versus the estimated errors by different methods on the adapted datasets. Different colors repre-

sent different machining configurations
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Table 7 Ablation study of model architecture on adapted dataset

Table 8 Ablation study of signal sampling rate on adapted dataset

Dataset Method MAE RMSE CORR Dataset Sampling Rate (Hz) MAE RMSE CORR
WC_TAN-MS  w/o Transformer- 0.0075 0.0102 0.7689 WC _TAN-MS 102 0.0042  0.0051 0.3161
inspired components 204 0.0048 0.0057 0.3464
w/o adapter 0.0034 0.0052 0.3892 512 0.0036 0.0048 0.4048
w/o frequency inputs  0.0027 0.0044 0.3947 1024 0.0020 0.0025  0.6500
w/o dilation 0.0021 0.0028 0.5202 2048 0.0035 0.0049 0.3210
convolution 5120 0.0030  0.0041 0.5283
Our Approach 0.0013 0.0016 0.8838 10240 (Original)  0.0013  0.0016  0.8838
WC_TC-AS w/o Transformer- 0.0033 0.0042 0.6367 WC TC-AS 82 0.0028 0.0037 0.7449
inspired components - 164 0.0029  0.0038 0.6939
w/o adapter ' 0.0030 0.0038 0.7321 410 0.0028 00037 0.7086
w/o frequency inputs  0.0026 0.0035 0.7527 820 0.0029 00039 0.6830
w/o dilat.ion 0.0028 0.0038 0.7151 1638 0.0028 00039 0.7104
convolution
Our Approach 0.0024 0.0032 0.7599 409 0.0030"0.0039 07087
8192 (Original) 0.0024 0.0032 0.7599

e w/o Transformer-inspired components: This variant re-
moved Layer Normalization and Dropout, and replaced
GELU activation with ReLU.

e w/o adapter: The Adapter modules used during fine-tun-
ing were omitted, so that only the final projection head
and biases were updated.

e w/o frequency inputs: This variant retained only the
time-domain signal encoder by entirely removing the
frequency branch.

e w/o dilation convolution: The dilated convolutions in
the multi-branch structure were replaced by standard
convolutions of the same kernel size.

Table 7 summarizes the performance of each ablated model.
Across both datasets, removing the Transformer-inspired
components led to the most substantial performance deg-
radation, particularly on WC TAN-MS where CORR
decreased from 0.8838 to 0.7689 and both MAE and RMSE
nearly doubled. This underscores the critical role of Layer
Normalization, Dropout, and GELU in stabilizing feature
extraction and enhancing correlation with actual machining
errors.

Excluding the Adapter modules also notably weakened
the model’s ability to adapt through few-shot fine-tuning.
For example, on WC _TAN-MS, CORR dropped from
0.8838 to 0.3892, highlighting the importance of light-
weight feature transformation via adapters for rapid adapta-
tion to new machining contexts.

Omitting the frequency-domain input resulted in further
performance drops, especially in correlation on WC_TAN-
MS, indicating that frequency features complement the
time-domain signals and strengthen the model’s robustness
under varying cutting conditions.

Finally, replacing dilated convolutions with standard con-
volutions also led to consistent reductions in performance.
Although the impact was less pronounced than omitting
frequency inputs or adapters, the steady decrease in CORR
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across both datasets emphasizes the benefit of capturing
broader temporal dependencies through dilations.

Overall, these findings demonstrate that each architec-
tural component, including the transformer-inspired com-
ponents, adapters for fine-tuning, dual-domain inputs, and
dilated convolutions, plays a vital role in ensuring DeepMa-
chining’s predictive accuracy and generalization.

To assess the effect of signal resolution on the proposed
model’s performance, we conducted an ablation study by
systematically downsampling the input signals while keep-
ing the adapted datasets unchanged. This analysis is essen-
tial for evaluating DeepMachining’s deployment feasibility,
particularly in edge environments with limited sensing or
computational resources (Bernard et al., 2021).

Table 8 summarizes the results of this sampling rate
ablation. For the WC TAN-MS dataset, model perfor-
mance declined markedly as the sampling rate decreased.
Specifically, the CORR dropped from 0.8838 at 10,240 Hz
to 0.3161 at 102 Hz, while both MAE and RMSE nearly
quadrupled. This substantial degradation suggests that high-
frequency components in the signal are critical for capturing
diagnostic features specific to this turning configuration. A
partial recovery at mid-level rates (e.g., 1,024 Hz yielding
CORR = 0.6500) indicates that some low-frequency struc-
tures are retained, but aggressive downsampling discards
fine-grained temporal information essential for accurate
error estimation.

In contrast, the WC_TC-AS dataset exhibits substantially
higher robustness to reductions in sampling rate. Even with
a considerable drop from the original 8,192 Hz to 82 Hz, the
model maintains a CORR of 0.7449. This performance is
comparable to the baseline of 0.7599. While Table 8 indi-
cates only marginal changes in MAE and RMSE across
sampling rates (within £0.0006), further examination of the
scatter plots in Fig. 7 reveals a critical observation. At lower
sampling rates, predicted values tend to converge toward a
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Fig. 7 Scatter plots of the actual machining errors versus the estimated errors at different sampling rates on the WC_TC-AS dataset. Different

colors represent different machining configurations

limited range, reducing output variance. This phenomenon
results in deceptively stable performance metrics, which
obscure the model’s inability to capture the full variabil-
ity of true machining errors across different configurations
(Ghosh et al., 2021).

This behavior can be attributed to two primary factors.
First, the WC_TC-AS dataset inherently presents low vari-
ability in actual machining errors, which compresses the
observable metric range and diminishes sensitivity to regres-
sion spread. Second, the axial force signals in this dataset
predominantly contain low- to mid-frequency components,
making them less prone to aliasing or distortion under
aggressive downsampling. Consequently, even when the
model yields oversmoothed predictions at low resolutions,
standard error metrics such as MAE and RMSE remain
deceptively low. Nonetheless, retaining high-frequency
signal content enhances the model’s capacity to capture
fine-grained dynamics and produce physically meaningful
predictions.

Collectively, these results underscore that sensitivity to
sampling rate is inherently dependent on the machining task
and signal spectral characteristics. As demonstrated by WC
TC-AS, conventional error metrics alone may fail to reveal
degenerate prediction behaviors, such as variance collapse,
especially under low signal variance conditions. This high-
lights the necessity of supplementing aggregate metrics
with diagnostic visualizations to comprehensively assess
model generalization and predictive fidelity (Ghosh et al.,
2021). While high-frequency sampling remains essential for

preserving discriminative features in configurations such as
WC_TAN-MS, scenarios like WC_TC-AS allow for more
lenient resolution constraints. DeepMachining maintains
effective performance under reduced sampling conditions,
provided that signal acquisition strategies are aligned with
the frequency distribution and expected variability of the
underlying process signals.

Discussion
Research hypothesis

One of the main challenges preventing the effective deploy-
ment of deep learning models in real-world machining
environments is the diversity of machining conditions. Vari-
ations in tools, materials, and manufacturing settings often
lead to distributional shifts that undermine the performance
of deep learning models trained on large historical datas-
ets, thereby resulting in degraded accuracy. To enable the
practical application of deep learning in machining settings,
models must be capable of adapting to changing machining
conditions.

Model fine-tuning is a technique in deep learning
designed to cope with shifts in data distributions. Since
the training data typically only covers a limited subset of
possible machining conditions, fine-tuning with newly col-
lected data is necessary to adapt the model to novel sce-
narios. According to multiple studies on transfer learning
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and distribution shift (Cohen-Wang et al., 2024; Wu et al.,
2022; Kumar et al., 2022), model fine-tuning is effective
only when the new data distribution does not fundamentally
differ from the original training distribution, i.e., when the
shift is due to bias rather than differences in the underlying
nature of the data distribution.

Therefore, at the outset of this study, we made a strong
assumption: the training data for the base model must
include machining condition variations that cannot be cor-
rected through model fine-tuning. In contrast, data associ-
ated with variations that can be addressed via fine-tuning
can be reserved for future adaptation. Based on prior experi-
ences, we posit that tool wear, the tool’s life cycle, cannot
be effectively compensated by fine-tuning alone. Conse-
quently, the training data for the base model was constructed
to cover the complete tool life cycle, from new to fully worn.
Our experimental results finally validated this assumption.

Implementation insight and limitation

We conducted tests on DeepMachining across different
types of products in various manufacturing factories. Sev-
eral practical lessons were learned and are summarized as
follows.

1. Sensor installation: Proper placement of sensors on
CNC machines is crucial. Incorrect sensor placement
may lead to ineffective signal acquisition, resulting in
weak signal amplitudes or noise interference due to sen-
sor cable tension.

2. Sensor sampling rate: Differences in sampling rates
between the pre-training and fine-tuning stages can
significantly impact model performance. To ensure the
accurate functionality of DeepMachining, the sampling
rate should remain identical during both stages.

3. Decimal precision: Low measurement precision—for
example, measuring a workpiece with a required toler-
ance of 0.001 mm using an instrument with only 0.01
mm precision—cannot accurately reflect the differences
in machining errors among workpieces. This lack of
precision in the data can hinder the model’s ability to
generate accurate machining error estimations.

In this study, we evaluated the performance of DeepMachin-
ing exclusively on outer diameter machining tasks using a
lathe machine, which limits its current application scope.
However, CNC machining encompasses a broader range of
processes, including internal turning, drilling, milling, and
planing operations, across various machine types.

The proposed architecture of DeepMachining, compris-
ing dual-domain signal encoders with D-Inception modules
and lightweight adapters, is general in design and can be
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directly trained or fine-tuned on datasets collected from
other machining processes. For instance, the same architec-
ture can be applied to classify or regress quality metrics on
milling or drilling signals, either by training from scratch or
by leveraging pre-trained models on turning data to initial-
ize representations and subsequently fine-tuning on milling
or drilling data. This approach could also facilitate trans-
fer learning for abnormal event detection in different CNC
operations.

Comparison with transformer-based architectures

Transformer-based architectures are well-recognized for
their ability to capture long-range dependencies via self-
attention mechanisms. However, they typically incur sub-
stantially higher parameter counts and computational
footprints compared to convolutional designs. Specifi-
cally, the self-attention operation scales quadratically with
the input sequence length, resulting in significant memory
and compute demands that pose challenges for real-time
machining scenarios.

By contrast, the proposed DeepMachining framework
leverages multi-branch convolutional modules (D-Incep-
tion) in conjunction with lightweight channel-temporal
attention blocks. This design enables effective receptive
field expansion and feature recalibration while maintaining
a notably lower parameter and computational complexity
than full self-attention mechanisms.

Quantitatively, the core of DeepMachining contains
approximately 260,000 parameters, with only 6.5% updated
during fine-tuning. This is in sharp contrast to typical trans-
former-based approaches, which often comprise several
million parameters and introduce considerable inference
latency. Such parameter efficiency and reduced computa-
tional overhead make our approach particularly suitable
for deployment on CNC edge devices subject to stringent
resource constraints.

Conclusion

This paper presents DeepMachining, a deep learning-based
framework for estimating machining errors in outer diame-
ter processing using horizontal CNC lathe machines. Deep-
Machining consists of two stages: (1) pre-training a deep
learning model using historical data, and (2) adapting the
model to new machining tasks via few-shot learning, typi-
cally using two-shot adaptation.

The core model is initially trained on data collected
from a single tool and workpiece material, covering the full
tool life cycle from a new to a fully worn-out tool. When
machining configurations change, the model can be adapted
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by fine-tuning on just two workpieces from the new setting.
This few-shot learning strategy allows DeepMachining to
generalize effectively across different tools, workpieces,
and machining conditions.

Experimental results show that DeepMachining consis-
tently outperforms baseline methods in terms of estimation
accuracy and generalizability. Notably, the core model is
compact, containing approximately 260,000 parameters,
and requires fine-tuning only 6.5% of the parameters over
12.5% of the training epochs used in pre-training, enabling
deployment under limited computational resources. This
design aligns with practical requirements in the CNC
machining industry. Furthermore, the ablation study inves-
tigates the key components of DeepMachining and the
impact of the sampling rate on the model, while considering
its deployment on edge devices in CNC machines.

In addition, surface roughness is another important qual-
ity metric commonly used in CNC machining. Currently,
DeepMachining has not yet been extended to address sur-
face roughness estimation. Expanding DeepMachining to
predict both machining error and surface roughness will
be an important direction for future development. Another
promising direction is to utilize DeepMachining for learn-
ing generalized CNC signal representations to predict the
remaining useful life (RUL) of cutting tools. Ultimately,
the long-term vision is to develop DeepMachining into an
open-source intelligent manufacturing platform that can
support a wide range of CNC applications and accelerate
adoption in the industry.

Looking forward, the increasing complexity of manufac-
turing processes introduces richer interdependencies among
machining data, machine logs, and product quality. Digi-
tal twin (DT) is an intelligent manufacturing solution for
synchronizing machine tools within complex manufactur-
ing environments (Ghosh et al., 2021). By integrating the
proposed DeepMachining, DT can autonomously monitor
and troubleshoot quality tasks, representing a promising
research direction. Furthermore, large language models
(LLMs) have demonstrated strong capabilities in under-
standing structured and unstructured data (Gautam et al.,
2025). Leveraging LLMs for interpreting machine logs and
process instructions holds promise for reducing machine
downtime and enhancing product quality. Therefore, inte-
grating LLMs into intelligent manufacturing represents a
promising direction for future research.
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