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Abstract

Pre-trained gaze models learn to identify useful patterns com-
monly found across users, but subtle user-specific variations
(i.e., eyelid shape or facial structure) can degrade model per-
formance. Test-time personalization (TTP) adapts pre-trained
models to these user-specific domain shifts using only a few
unlabeled samples. Efficient fine-tuning is critical in per-
forming this domain adaptation: data and computation re-
sources can be limited—especially for on-device customiza-
tion. While popular parameter-efficient fine-tuning (PEFT)
methods address adaptation costs by updating only a small
set of weights, they may not be taking full advantage of
structures encoded in pre-trained filters. To more effectively
leverage existing structures learned during pre-training, we
reframe personalization as a process to reweight existing fea-
tures rather than learning entirely new ones.
We present Attentive Low-Rank Filter Adaptation (Alfa)
to adapt gaze models by reweighting semantic patterns in
pre-trained filters. With Alfa, singular value decomposition
(SVD) extracts dominant spatial components that capture eye
and facial characteristics across users. Via an attention mech-
anism, we need only a few unlabeled samples to adjust and
reweight pre-trained structures, selectively amplifying those
relevant to a target user. Alfa achieves the lowest average
gaze errors across four cross-dataset gaze benchmarks, out-
performing existing TTP methods and low-rank adaptation
(LoRA)-based variants. We also show that Alfa’s attentive
low-rank methods can be applied to applications beyond vi-
sion, such as diffusion-based language models.

1 Introduction
Gaze estimation can infer the direction a person is looking
from facial or eye-region images. This capability is central
to many applications in augmented reality, human-computer
interaction, and assistive technologies. For example, in gaze-
assisted communication systems (Lee et al. 2024; Khan et al.
2022), detecting the user’s eye focus is essential for deliver-
ing intuitive and effective responses.

Gaze estimation models perform well under controlled
conditions, but may struggle in real-world settings. Dif-
ferences across users, camera configurations, and environ-
ments, such as changes in lighting or head pose, create
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Figure 1: Alfa achieves the lowest average gaze error, with
the smallest model size, across four cross-dataset bench-
marks: from ETH-XGaze to MPIIGaze, ETH-XGaze to
EyeDiap, Gaze360 to MPIIGaze, and Gaze360 to Eye-
Diap. Top: Comparison with other test-time personaliza-
tion (TTP) methods. Baseline refers to a ResNet-18 without
fine-tuning. Bottom: Comparison with low-rank adaptation
(LoRA)-based variants.

discrepancies between training and deployment conditions.
These domain shifts decrease accuracy when models lack
robustness outside their initial training conditions.

Test-time personalization (TTP) (Liu et al. 2024a; Bao
et al. 2022; Liu et al. 2021) is a variant of unsupervised
domain adaptation (UDA) (Wang et al. 2022; Bao et al.
2022; Liu et al. 2021) in which the model adapts to a new
user during deployment, relying only on unlabeled samples
collected at test time. TTP provides privacy-preserving, on-
device adaptation in a few-shot setting and offers a prac-
tical solution for real-world deployment without access to
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Figure 2: Overview of Attentive Low-Rank Filter Adaptation (Alfa). (a) The pre-trained weight matrix is approximated using
truncated SVD: Wd = UdSdV

⊤
d . Then, a tunable low-rank update ∆W is added for adaptation. (b) Alfa adapts gaze models

by reweighting spatial structures encoded in pre-trained filters. Alfa extracts dominant spatial patterns (Vbase = SdV
⊤
d ) via

singular value decomposition (SVD). For personalization, multi-head low-rank modules AQ and BQ generate query weights,
and Vbase and V ⊤

base are reused as key and value matrices. Using multi-head scaled dot-product attention, Alfa identifies the spatial
structures most relevant to a target user. Alfa aggregates this into a personalized update using additional low-rank modules AP

and BP , forming VAlfa, which encodes gaze-specific adaptations informed by the pre-trained spatial structure.

the original training data or ground-truth gaze labels. TTP
also addresses some key challenges in gaze estimation: dif-
ferences in users’ eye shapes, appearances, or camera place-
ment may degrade model performance.

Intuitively, human faces may exhibit spatially coherent
patterns (i.e., eye and facial geometry) (Tian et al. 2023;
Hong 2022). With sufficient pre-training, models learn to
capture useful general features that correspond to these
patterns, encoding them into spatial structures (e.g. filters)
within the weights. Yet, small changes to these patterns can
significantly reduce prediction accuracy. While fine-tuning
can help mitigate this, leveraging more information from the
pre-trained model may improve performance (Wang et al.
2025; Meng, Wang, and Zhang 2024). We find that leverag-
ing existing features rather than learning entirely new fea-
tures is effective for data-scarce adaptation in gaze estima-
tion (e.g., with only five new images).

In this paper, we propose Attentive Low-Rank Filter
Adaptation (Alfa), which adapts gaze models by reweight-
ing the spatial structure encoded in pre-trained filters. As
depicted in Figure 2, Alfa first performs SVD on pre-trained
weights to obtain dominant spatial structures that corre-
spond to common patterns (e.g., geometric features in the
eye and face). Instead of learning new filters or initializing
new weights, Alfa adapts models by modulating the influ-
ence of these dominant patterns by using a few unlabeled
samples from a target user. This enables personalized predic-
tions from minimal additional data while maintaining align-
ment with the original learned representation. Visualization

results demonstrate that Alfa attends to common and intu-
itive localized regions, such as the eyelids, which vary across
users and should be effectively detected during adaptation
(See Figure 5).

In summary, our contributions are as follows:

1. Attentive Low-Rank Filter Adaptation (Alfa) adapts gaze
models by attending over structured spatial patterns de-
rived from SVD, instead of treating weights as unstruc-
tured tensors.

2. Within Alfa, a multi-head low-rank adaptation module
accepts scalable personalization capacity during fine-
tuning. Storing the pre-trained weight in truncated SVD
form reduces model size, and makes Alfa’s updates fully
mergeable without increasing model size at deployment
(See Section 3.4).

3. Empirical demonstration of Alfa outperforming prior
methods on four cross-domain gaze benchmarks using
only a few unlabeled test-time samples.

4. Extension of Alfa’s structured adaptation to diffusion-
based large language models (LLMs), showing improved
zero-shot reasoning across multiple benchmarks.

2 Related Work
2.1 Test-Time Personalization (TTP)
To improve generalization across domains, many gaze es-
timation methods adopt unsupervised domain adaptation
(UDA). In the standard UDA setting (Liu et al. 2021; Guo
et al. 2020; Kellnhofer et al. 2019), models are trained with



labeled source-domain data and unlabeled target-domain
data. PnP-GA (Liu et al. 2021) uses an outlier-guided loss
to improve adaptation with a few source samples and unla-
beled target data. To relax the need for source data, source-
free UDA methods (Bao et al. 2022; Wang et al. 2022) adapt
models using only unlabeled target data, though they still
require a relatively large amount of it. RUDA (Bao et al.
2022), for example, leverages rotation-based gaze synthesis
and geometric constraints to improve pseudo-label quality.
Personalization provides a complementary way by adapting
models to individual users. While few-shot methods (Ghosh
et al. 2022; Chen and Shi 2020; Park et al. 2019; Yu, Liu,
and Odobez 2019) fine-tune models with a small number of
labeled personal samples, obtaining gaze labels is often ex-
pensive or impractical. TTP (Liu et al. 2024a) addresses this
challenge by adapting the model to each user during infer-
ence using a few unlabeled personal samples. TTP is well-
suited for on-device scenarios, where user appearance varies
and updating the full model is often too resource-intensive.
These constraints motivate efficient, lightweight adaptation
methods that support per-user personalization without re-
quiring labeled data or access to the source domain. Alfa
supports test-time personalization with no additional infer-
ence cost, is scalable through multi-head adaptation during
fine-tuning, and uses SVD to select critical semantic com-
ponents, resulting in a compact and efficient model.

2.2 Low-Rank Adaptation
Low-rank adaptation injects small trainable matrices into
pre-trained models to fine-tune them efficiently without al-
tering the original weights. LoRA (Hu et al. 2022) is a
widely adopted method that adds rank-constrained updates
to existing layers and has shown strong performance across
various tasks. Building on this idea, MiLoRA (Wang et al.
2025) initializes adaptation weights using principal compo-
nents from SVD, while PiSSA (Meng, Wang, and Zhang
2024) directly updates the top spectral components. Spec-
tral AdapterA (Zhang and Pilanci 2024) introduces learnable
weights applied to the spectral bases, and MoSLoRA (Wu
et al. 2024) places a mixer matrix between LoRA modules
to improve representation capacity. DoRA (Liu et al. 2024b)
decomposes pre-trained weights into independent direction
and magnitude components. MELoRA (Ren et al. 2024) en-
sembles multiple mini-expert LoRA branches, and FLoRA
(Si et al. 2025) applies Tucker decomposition to capture
multi-dimensional parameter changes through a shared low-
rank core. Despite their varied adaptation strategies, they of-
ten treat model weights as unstructured tensors and overlook
the spatial structure encoded in pre-trained filters. In con-
trast, Alfa attends to these spatial structures and reweights
them during personalization, enabling structure-aware adap-
tation guided by meaningful semantics.

3 Alfa
3.1 Problem Definition and Preliminary
We consider the TTP task for gaze estimation, formulated as
a variant of UDA. The goal is to adapt a gaze model trained
on a general source domain DS to a new, unseen user in a

target domain DT , with only a few unlabeled samples. Let
each RGB input image be denoted as I , and its ground-
truth gaze direction represented by a 2D vector g ∈ R2

(yaw and pitch). The source domain provides labeled data
DS = {(ISi , gSi )}

NS
i=1, while the target domain provides a

small unlabeled set DT = {ITk }
NT

k=1, typically with NT = 5.
In a gaze model, we denote the input and output features
of a convolutional or linear layer as X ∈ Rn×h×w and
F ∈ Rm×h′×w′

, respectively, where n and m are the input
and output channel dimensions, and h,w and h′, w′ are the
height and width of the input and output spatial resolutions.
These features are connected through a pre-trained weight
matrix W ∈ Rm×n.

To enable data- and parameter-efficient adaptation from
a few unlabeled samples, we build on LoRA, which injects
a trainable low-rank update into a pre-trained weight ma-
trix: ∆W = AB, where A ∈ Rm×r, B ∈ Rr×n, and
r ≪ min(m,n), with r as the LoRA rank. Typical initializa-
tions set A ∼ N (0, σ2) and B = 0. However, this formula-
tion overlooks the spatial and geometric structure embedded
in the pre-trained weights: structure that captures critical vi-
sual patterns relevant to gaze across users. Alfa addresses
this limitation by personalizing gaze models through struc-
tured reweighting of semantic filters extracted from pre-
trained weights. Section 3.2 introduces SVD-based decom-
position of pre-trained weights to extract a semantic basis
dictionary. Section 3.3 describes the structured reweighting
mechanism that selectively adapts semantic components for
personalization.

3.2 Structured Decomposition of Gaze Filters
Gaze estimation relies on structured visual patterns shaped
by the anatomy of the eyes and surrounding facial regions.
While these patterns vary across individuals, the variations
tend to follow a few set of consistent spatial changes, such as
shifts in iris position or subtle deformations in surrounding
facial muscles. These consistencies suggest that pre-trained
weights encode recurring spatial structures that are broadly
shared across users (see Section 4.6).

When trained on a diverse population, the model learns to
encode this structure in its weights, forming a strong foun-
dation for general gaze prediction. To make this structure
explicit, we apply SVD to the pre-trained weight matrix. Let
W ∈ Rm×n denote the weight matrix of a convolutional or
linear layer. We compute a truncated SVD:

W ≈ Wd = UdSdV
⊤
d (1)

where d ≪ min(m,n) is the target rank, yielding:

• Ud ∈ Rm×d: output projection matrix (left singular vec-
tors),

• Sd ∈ Rd×d: singular values representing the importance
of each direction,

• V ⊤
d ∈ Rd×n: dominant spatial directions in input space.

Thus, we obtain the semantic basis dictionary, defined as:

Vbase = SdV
⊤
d ∈ Rd×n



Vbase reflects the highest-energy components learned during
gaze pre-training. These components capture key spatial pat-
terns relevant to gaze behavior (e.g., iris and peri-ocular cues
co-activating). Components reused most frequently during
pre-training to reduce gaze loss have the highest energy.
Since SVD ranks weight-space patterns by energy, trun-
cating to these leading components preserves the dominant
gaze-relevant structure, yielding a compact, structure-aware
basis for personalization. Retaining only the top d compo-
nents ensures we focus on the most expressive, information-
rich parts of the filter space while providing a compact basis
for downstream adaptation. In Alfa, this semantic structure
facilitates learning efficient, personalized updates in later
stages.

3.3 Personalizing the Semantic Basis Dictionary
The semantic basis dictionary extracted via SVD provides
a compact set of spatial patterns that generalize well across
individuals in gaze estimation. However, these patterns may
not fully capture the unique appearance characteristics of
each user. Alfa introduces a low-rank update that reweights
the components of the semantic basis dictionary without
discarding the shared structure learned during pre-training.
This approach allows the model to adapt to individual differ-
ences while preserving gaze-relevant information encoded
in the pre-trained filters. To personalize the model, we add a
low-rank update ∆W on top of the pre-trained weight Wd.
The adapted weight is defined as:

Ŵ = Wd +∆W (2)

where ∆W ∈ Rm×n is a low-rank personalization term
computed as ∆W = UdValfa, where, Valfa is a learnable up-
date produced by the Alfa module.

Attending to Semantic Basis Dictionary Alfa computes
a personalized adaptation by applying a multi-head attention
mechanism over the semantic basis dictionary Vbase ∈ Rd×n.
The dictionary captures shared spatial patterns from pre-
training, and Alfa uses attention to reweight the slices most
relevant to the target subject. Let H be the number of at-
tention heads. Different heads attend to different rank slices,
combining complementary cues and reducing drift when a
few personal samples are available (see supplementary ma-
terial Section F). For each attention head indexed by h ∈
{1, . . . ,H}, we define a pair of low-rank projection matri-
ces: AQ

h ∈ Rr×d for the query projection, and BQ
h ∈ Rd×r

for the query back-projection. The query projections are ini-
tialized as

AQ
h ∼ N (0, σ2), BQ

h = 0, (3)

where σ denotes the standard deviation of the initialization
distribution. Each head computes a query matrix as

Qh = BQ
h AQ

h Vbase ∈ Rd×n (4)

Key and value matrices are directly derived from Vbase and
shared across all attention heads. The key matrix is defined
as K = Vbase ∈ Rd×n. The value matrix is its transpose, V =
V ⊤

base ∈ Rn×d. For each head, scaled dot-product attention is

computed using its query Qh as:

Attnh = softmax
(
QhK⊤
√
n

)
∈ Rd×d (5)

Zh = V Attn⊤
h ∈ Rn×d (6)

Each output Zh is transposed and then stacked across heads:

Z = [Z⊤
1 , . . . , Z⊤

H ] ∈ RHd×n (7)

Integrating Multi-Head Adaptation After aggregating
the multihead outputs into Z ∈ RHd×n, we project them
back into the semantic space using two low-rank matrices,
AP ∈ RrH×Hd and BP ∈ Rd×rH . These are initialized as:

AP ∼ N (0, σ2), BP = 0 (8)

We compute the personalized update as:

VAlfa = BPAPZ + Vbase ∈ Rd×n (9)

This completes the adaptation process, resulting in a low-
rank update ∆W = UdVAlfa.

3.4 Fine-tuning and Inference with Alfa
We describe the fine-tuning procedure for Alfa and discuss
how it maintains computational efficiency during inference,
despite the inclusion of multi-head LoRA modules.

Fine-Tuning Human faces typically exhibit left-right
symmetry, and gaze behavior should remain consistent un-
der horizontal flips. To exploit this property, we apply a sym-
metry loss following Kellnhofer et al. (2019) using the five
unlabeled personal samples {ITk }

NT

k=1, where NT = 5. Let
fθ(·) denote the gaze model. For each image, we generate a
horizontally flipped version IT,flip

k and obtain predictions:

ĝTk = fθ(I
T
k ), ĝT,flip

k = fθ(I
T,flip
k ), (10)

where ĝ = [ĝyaw, ĝpitch] ∈ R2. The symmetry loss is com-
puted as:

Lfine-tune =
1

NT

NT∑
k=1

∣∣∣ĝTk − FlipYaw(ĝT,flip
k )

∣∣∣
1

(11)

Inference Adaptation reuses the left basis Ud from the
pre-trained weight Wd, preserving the original model struc-
ture. This enables efficient update merging at inference time.
Specifically, the full adapted weight becomes:

Ŵ = Wd +∆W = UdVbase + UdVAlfa

= Ud (Vbase + VAlfa) (12)

We denote the sum in parentheses as a factor Vadapt, yielding:

Ŵ = UdVadapt, where Vadapt = Vbase + VAlfa (13)

Adapted weights stay in low-rank form, keeping the same
structure as the original compressed model. We can simply
update the right-hand side to get Ŵ = UdVadapt without first
reconstructing the full weight matrix. In contrast, standard
LoRA variants add the low-rank term AB to the full matrix:

Ŵ = Wd +AB = UdSdV
⊤
d +AB. (14)
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Merging AB necessitates expanding Wd to its full size in
Rm×n and negates the benefit of parameter compression
(e.g., model increases from around 2M to 11M parameters).
Storing Wd in its truncated SVD form UdSdV

⊤
d would pre-

clude directly merging the low-rank term AB. Alfa updates
only the SVD right factor SdV

⊤
d and keeps Ud fixed, ensur-

ing the adaptation remains low-rank and directly mergeable.

4 Experiments
4.1 Datasets
For gaze estimation, we use a cross-domain setup (Liu
et al. 2024a; Bao et al. 2022; Liu et al. 2021) with models
trained on ETH-XGaze (DE) or Gaze360 (DG) as source
domains, and evaluated on MPIIGaze (DM ) and EyeDiap
(DD) as target domains. All preprocessing follows TPGaze
(Liu et al. 2024a). For LLM experiments, we fine-tune on the
s1K reasoning dataset (Muennighoff et al. 2025) and evalu-
ate zero-shot performance on GSM8K (Cobbe et al. 2021),
MATH500 (Lightman et al. 2024), Countdown (Pan et al.
2025), and Sudoku (Arel 2025). Full dataset details are in
the supplementary material.

4.2 Experimental Setup
We use one NVIDIA RTX 4090 for gaze experiments, and
two NVIDIA A40 GPUs for LLM experiments. For TTP
pre-training and personalization, learning rate is set to 10−4.
For LLM adaptation, we follow the fine-tuning from d1
(Zhao et al. 2025) with LLaDA-8B-Instruct (Nie et al. 2025)
as the base model. Below, we describe the details for TTP:

Pre-training We use Adam with a batch size of 120 for
50 epochs on source domains DE and DG. After applying
SVD, we fine-tune all parameters on the same data for 25
additional epochs to mitigate information loss, resulting in
the truncated pre-trained weights Wd.

Personalization We use the first 5 images per subject as
in TPGaze (Liu et al. 2024a). Each image is repeated once

and augmented with ColorJitter, GaussianBlur, and Rando-
mAffine (see supplementary material for details). We use
AdamW with a 10× learning rate for layer3 and layer4 of
ResNet-18, and apply the same fine-tuning scheme across
all LoRA variants for fair comparison.

Evaluation Metric We report angular gaze error (in de-
grees), measuring the angle between predicted and ground-
truth gaze directions. We convert model outputs, 2D yaw and
pitch, into 3D vectors to compute the error, following prior
works (Liu et al. 2021; Bao et al. 2022; Liu et al. 2024a).

4.3 Comparison with SOTA Methods
Table 1 compares Alfa with state-of-the-art TTP methods
across four cross-domain gaze estimation benchmarks. We
evaluate model adaptation from ETH-XGaze or Gaze360 to
MPIIGaze and EyeDiap. The baseline is a ResNet-18 (He
et al. 2016) model without fine-tuning. For fair comparison,
we also adopt ResNet-18 as the backbone. Alfa achieves
the lowest average angular gaze error across all benchmarks
while remaining around 5× smaller than other methods.

4.4 Comparison with LoRA-based Methods
We compare Alfa with other LoRA-based methods (see Sec-
tion 2.2) in Table 2, and illustrate their architectural dif-
ferences in Figure 3. All methods operate on the same
truncated pre-trained weight Wd = UdSdV

⊤
d . However,

not all LoRA-based variants support merging updates into
this decomposed form of Wd during inference. In contrast,
Alfa exploits the spatial structure of pre-trained weights and
reweights semantically meaningful patterns. Alfa’s person-
alized updates are fully compatible with the truncated SVD
form (see Section 3.4), and incur no additional inference-
time cost over other methods. This gaze-specific structural
prior guides adaptation toward meaningful filter reweight-
ing without disrupting pre-trained semantics, leading to the
lowest average gaze error across four cross-domain bench-
marks.



Method # Parameters (M) Source → Target Domain (5-shot) Avg
Train Tuned Test DE → DM DE → DD DG → DM DG → DD

Baseline (ResNet-18) 11.18 0 11.18 8.02 7.30 7.79 8.19 7.83
PnP-GA† (Liu et al. 2021) 116.9 116.9 116.9 6.91 7.18 7.36 8.17 7.41
RUDA† (Bao et al. 2022) 12.20 12.20 12.20 6.86 6.84 6.96 5.32 6.50
TPGaze (Liu et al. 2024a) 11.18 0.13 11.18 6.30 5.89 6.62 5.04 5.96

Alfa 5.26 2.98 2.31 5.30 5.82 5.91 5.86 5.72

Table 1: Comparison with state-of-the-art TTP methods across four cross-domain benchmarks. Datasets are denoted as follows:
DE = ETH-XGaze, DM = MPIIGaze, DG = Gaze360, and DD = EyeDiap. Baseline is a ResNet-18 model without any fine-
tuning. Results are reported in angular gaze error (◦). Bold indicates the best result. The symbol † indicates results obtained
from the re-implementation of TPGaze (Liu et al. 2024a).

Method Rank # Parameters (M) Source → Target Domain (5-shot) Avg
SVD LoRA Train Tuned Test DE → DM DE → DD DG → DM DG → DD

Baseline (No Adaptation) 64 - 2.31 0 2.31 6.60 8.84 6.86 6.83 7.29
LoRA (Hu et al. 2022) 64 8 2.84 0.53 2.84 5.66 6.17 6.23 5.72 5.95

MiLoRA (Wang et al. 2025) 64 8 2.84 0.29 2.84 5.67 6.25 6.23 6.00 6.04
DoRA (Liu et al. 2024b) 64 8 2.87 0.56 2.87 5.51 5.83 6.30 5.98 5.91

MoSLoRA (Wu et al. 2024) 64 8 2.85 0.54 2.85 5.55 6.13 6.31 5.70 5.92
MELoRA (Ren et al. 2024) 64 8 2.57 0.27 2.57 5.56 6.12 6.29 5.84 5.95

Spectral AdapterA (Zhang and Pilanci 2024) 64 8 2.59 0.29 2.31 5.50 6.15 6.23 6.00 5.97
FLoRA (Si et al. 2025) 64 8 2.38 0.07 2.38 5.85 6.36 6.40 5.71 6.08

Alfa 64 8 5.26 2.98 2.31 5.30 5.82 5.91 5.86 5.72

Table 2: Comparison with other LoRA-based variant methods. The baseline is not fine-tuned on the target domain (i.e. no
adaptation). All methods use the same truncated pre-trained weight matrix Wd = UdSdV

⊤
d . While some variants introduce

additional components that cannot be merged into Wd, Alfa supports full mergeability, enabling efficient inference without
extra computational overhead. Bold indicates the best result.

4.5 Ablation Studies
We conduct ablation experiments to evaluate the effect of
attention head count and the LoRA rank on Alfa’s perfor-
mance. For all settings, we fix SVD rank to 64. As shown in
Table 4, increasing the number of attention heads generally
improves personalization performance, dropping gaze error
from 6.20 (1 head) to 5.72 (16 heads). Since Alfa reuses the
same left basis Ud from the pre-trained Wd, all adaptations
are merged into the base weight at inference time, incurring
no additional computational cost regardless of the number
of heads (see Section 3.4). Additional ablation studies are
included in the supplementary materials.

4.6 Visualization of Pre-trained Spatial Patterns
Figure 4 illustrates some spatial patterns encoded during
pre-training by visualizing individual rank slices from the
SVD-decomposed weights of a ResNet-18 model trained on
ETH-XGaze. The s-th SVD slice is computed as:

Ud[:, s]Sd[s]V
⊤
d [s] (15)

where s indexes the rank component of the decomposition.
The left column sketches the spatial structure encoded by
that slice, while the middle and right columns display ac-
tivations for two different subjects (Subject 0 and Subject
16). For example, the 22nd slice emphasizes the eyebrows,
lower eyelids, and lower mouth, while the 24th slice acti-
vates around the nose sides, regions beside the eyes, and fa-
cial muscles near the mouth. Consistent patterns across indi-
viduals demonstrate that pre-training captures reusable spa-
tial structures aligned with facial geometry relevant to gaze.

Rank Slice: 22

Rank Slice: 24

Rank Slice: 32

Pattern Subject 0 Subject 16 

Figure 4: Spatial patterns captured during pre-training. Visu-
alizations use rank slices from SVD-decomposed weights of
ResNet-18 (pre-trained on ETH-XGaze) from conv1 and the
first block of layer3. Left column: visualization of encoded
pattern. Middle and right columns: activations for Subject 0
and 16 from ETH-XGaze using Ud[:, s]Sd[s]V

⊤
d [s] for slice

s. Red regions indicate higher activations.

4.7 Visualization of Adaptation Behavior
We visualize low-rank updates ∆W for three users from
the MPIIGaze dataset (subjects p02, p04, and p13) in Fig-
ure 5. Alfa’s updates consistently focus on gaze-relevant



Backbone Method LoRA
Rank

Tuned Params
(Usage %)

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (0-shot)

128 256 128 256 128 256 128 256

LLaDA-8B-Instruct

LoRA 128 100.7M (1.24 %) 66.5 78.8 26.2 32.6 20.3 14.5 16.5 8.5
DoRA† 128 101.1M (1.25%) 68.1 76.8 26.2 33.4 21.5 16.0 17.2 8.0
LoRA† 64 50.3M (0.62%) 67.9 77.9 25.0 33.0 16.4 12.5 14.5 7.9

Alfa 64 69.2M (0.85%) 68.4 77.1 26.6 33.8 27.3 17.2 9.7 8.3

Table 3: Comparison of Alfa, LoRA, and DoRA on LLaDA-8B-Instruct across four zero-shot reasoning tasks. Alfa achieves
competitive or better performance while using only 0.85% of tunable parameters. Bold indicates the best result, and italics
indicate the second best. The symbol † indicates re-implementation.

LoRA
Subject: p02

Low-rank Update Δ𝑊

Alfa

Subject: p04

Subject: p13

Target 
User

Figure 5: Visualization of low-rank updates ∆W on the
MPIIGaze test set for LoRA and Alfa using filters from
conv1 and the first block of layer3 in the ResNet-18 model
(pre-trained on ETH-XGaze). Red regions indicate higher
activation values. When using LoRA updates, model is
highly inconsistent with respect to the significant regions of
focus across users. In contrast, Alfa captures localized re-
gions consistently across users. This shows Alfa identifies
useful components that translate well between source and
target domains from the semantic base dictionary. Reweight-
ing these components allows for effective adaptation.

facial regions, such as the eyes and surrounding muscles.
The patterns vary slightly across users, reflecting person-
alized adjustments while still maintaining alignment with
the model’s original spatial semantics. In contrast, LoRA
yields dispersed and inconsistent updates even when using
the same backbone layers with personalization. However,
we note that LoRA does not explicitly avoid key regions:
it simply lacks targeted semantic guidance and can rely on
gaze-relevant signals (e.g., pose cues) from other regions.
This visualization highlights Alfa’s ability to identify useful
components from the semantic basis dictionary. Since the
components reflect domain-specific discrepancies between
the pre-trained source model and the target user, we need
only reweight them for effective user-specific adaptation.

4.8 Applying Alfa to Diffusion-Based LLMs
Table 3 compares Alfa to LoRA and DoRA when applied
to the diffusion-based LLaDA-8B-Instruct model across

Method # Heads # Parameters (M) Source → Target Domain (5-shot) Avg
Train Tuned Test DE → DM DE → DD DG → DM DG → DD

Alfa 1 2.35 0.04 2.31 5.74 6.84 6.36 5.87 6.20
Alfa 2 2.40 0.10 2.31 5.91 6.65 6.32 5.75 6.16
Alfa 4 2.58 0.27 2.31 5.47 6.12 6.32 5.82 5.93
Alfa 8 3.16 0.86 2.31 5.67 6.19 6.24 5.76 5.97
Alfa 16 5.26 2.98 2.31 5.30 5.82 5.91 5.86 5.72
Alfa 32 13.20 10.90 2.31 5.20 6.17 6.10 6.17 5.91

Table 4: Ablation study on the number of attention heads
in Alfa. Increasing head count generally improves person-
alization performance, with 16 heads achieving the lowest
average gaze error. Since all heads share the same left ba-
sis Ud, adapted weights can be merged into the base model
without incurring extra inference-time computation.

four zero-shot reasoning benchmarks: GSM8K, MATH500,
Countdown, and Sudoku. We adapt with 1,000 samples.
We include LLM experiments as reasoning tasks reuse
token-interaction patterns (e.g., formats, step markers), and
reweighting these patterns is shown to be beneficial when
data is limited. LoRA results are from d1 (Zhao et al. 2025).
We reimplement DoRA using HuggingFace PEFT library1.
While LoRA and DoRA use a LoRA rank of 128, Alfa uses a
lower rank of 64 and tunes only 0.85% of the model’s param-
eters. For all experiments in Table 3, we retain the full pre-
trained weight matrix W without SVD truncation. Alfa uses
a SVD rank of 128 and 8 heads for computing the low-rank
update ∆W . Despite this smaller footprint, Alfa achieves
comparable or superior accuracy across benchmarks. This
suggests that reasoning patterns in language models may
also be representable by generalizable components encoded
during pre-training and of interest for future work.

5 Conclusion
We present Alfa, a structure-aware method for test-time per-
sonalization of gaze estimation models. By attending over
spatial patterns extracted via SVD, Alfa reuses meaningful
components from pre-trained filters, enabling efficient do-
main adaptation through a multi-head low-rank design. This
approach allows scalable personalization during fine-tuning
and maintains a compact model without increasing inference
cost. Experiments on four cross-domain gaze benchmarks
demonstrate state-of-the-art performance with only a few
unlabeled samples. Furthermore, Alfa’s structured adapta-
tion shows promise for other applications, such as zero-shot
reasoning tasks with diffusion-based language models.

1https://github.com/huggingface/peft
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A TTP Datasets
We use four gaze datasets in out experiments:
• ETH-XGaze (DE) (Zhang et al. 2020) is a large-scale

dataset with 756,540 images from 80 subjects, collected
in a controlled indoor environment using a synchronized
multi-view setup with varied illumination. It covers a
broad range of head poses (up to about ±80◦) and gaze
directions (up to about ±120◦), with dense sampling of
gaze targets. These characteristics provide consistent an-
notations across substantial appearance and pose varia-
tion. We use ETH-XGaze as a source domain for pre-
training.

• Gaze360 (DG) (Kellnhofer et al. 2019) contains 100,933
images after filtering out samples without visible faces,
following prior work (Liu et al. 2021, 2024). This dataset
is recorded in unconstrained indoor and outdoor envi-
ronments, with large variability in lighting, backgrounds,
and viewing distances. It covers a very wide range of
head poses (up to about ±90◦) and gaze directions (up to
about ±140◦), reflecting physically unconstrained view-
ing conditions. These characteristics provide strong ap-
pearance diversity that complements controlled datasets.
We use Gaze360 as a source domain for pre-training.

• MPIIGaze (DM ) (Zhang et al. 2019) contains gaze data
collected from subjects using personal laptops in ev-
eryday environments. This dataset reflects natural varia-
tion in appearance, illumination, and background, and in-
cludes moderate head-pose changes (up to about ±15◦)
and gaze directions (up to about ±20◦) that commonly
occur during daily laptop use. We follow the standard
evaluation split (Zhang et al. 2019), which uses 3,000 im-
ages per subject. For adaptation, we use the first 5 images
from each subject, following (Liu et al. 2024).

• EyeDiap (DD) (Mora, Monay, and Odobez 2014) pro-
vides gaze recordings captured in controlled indoor set-
tings across several session types, including variations in
visual targets and head-pose conditions. This dataset cov-
ers moderate head-pose variation (up to about ±15◦) and
gaze directions (up to about ±25◦). We use 16,674 im-
ages from 14 subjects under screen-target sessions as the
evaluation set, and use the first 5 images per subject for
adaptation, following (Liu et al. 2024).

B LLM Reasoning Datasets and Evaluation
The s1K dataset contains 1,000 curated examples of multi-
format reasoning questions. We first fine-tune LLaDA-8B
Instruct on the s1K dataset for 20 epochs using a sequence
length of 4096 tokens. Then, we evaluate adaptation perfor-
mance on four zero-shot reasoning tasks across mathemati-
cal and planning domains:
• GSM8K consists of grade school math word problems

that require multi-step arithmetic reasoning.
• MATH500 is a curated subset of 500 high school compe-

tition math problems from the MATH dataset (Hendrycks
et al. 2021).

• Sudoku involves solving 4×4 puzzles through constraint-
based number placement.

• Countdown is a numerical planning task where models
must reach a target value using basic arithmetic opera-
tions on three given numbers.

C Data Augmentation for TTP
To enhance model robustness, we apply data augmentation
to the target user samples. Since only five images per subject
are available, each image is repeated once and augmented to
simulate realistic appearance variations. We use PyTorch’s
torchvision library to apply three types of augmentations:

1. ColorJitter (adjusting brightness, contrast, saturation,
and hue) to simulate lighting variations.

2. GaussianBlur to mimic camera shifts or softening ef-
fects caused by misfocus, motion, or lens variability. We
use a larger kernel size (i.e., 5) for ETH-XGaze due to its
controlled lab setting, to reflect real-world imperfections.

3. RandomAffine to introduce minor spatial distortions.

Table 1 summarizes the augmentation settings used for each
source–target adaptation pair. These augmentation settings
are applied across all LoRA variants for fair comparison.

D Additional Results on SOTA Comparisons
We present additional comparisons with source-available
UDA methods (i.e., where source-domain data is available)
in Table 2, including DAGEN (Guo et al. 2020), GazeAdv
(Wang et al. 2019), and Gaze360 (Kellnhofer et al. 2019).
Alfa outperforms these methods despite lacking access to
source-domain data. We also include the result from a
source-available in-domain supervised method, DFT Gaze
(Hsieh et al. 2024), which adapts using labeled data from the
target domain. Even with supervision from DFT Gaze, Alfa
achieves lower gaze error when adapting to DM , demon-
strating the effectiveness of its structure-aware personaliza-
tion approach.

E Visualization of Adaptation Behavior
In Figure 5 of the main paper, we visualize low-rank updates
∆W from Alfa and LoRA for three target users (p02, p04,
and p13) on the MPIIGaze dataset. We extend this visualiza-
tion to all target users for Alfa in Figure 1, while Figure 2
shows the corresponding updates from LoRA.

We compare low-rank updates from Alfa and LoRA
across all target users in Figures 1 and 2. LoRA pro-
duces dispersed and less structured changes, while Alfa
yields more spatially coherent and gaze-aligned updates.
This highlights the effectiveness of Alfa’s attention-based
reweighting over the semantic basis dictionary.

F Visualization of Attention over Rank Slices
We visualize the behavior of individual attention heads over
the semantic basis dictionary. For each subject, we show
how different heads selects different spatial patterns. Sub-
ject p02: Figures 3 to 5 show head 0, head 7, and head 12.
Subject p04: Figures 6 to 8 show head 1, head 4, and head
10. Subject p13: Figures 9 to 11 show head 5, 6, and head 9.



Augmentation
From DE From DG

→ DM → DE → DM → DE

Repeat 1 1 1 1

ColorJitter

brightness=0.2 brightness=0.2 brightness=0.2 brightness=0.2
contrast=0.2 contrast=0.2 contrast=0.2 contrast=0.2

saturation=0.1 saturation=0.1 saturation=0.1 saturation=0.1
hue=0.05 hue=0.05 hue=0.05 hue=0.05

GaussianBlur kernel size=5 kernel size=5 kernel size=3 kernel size=3

RandomAffine
degrees=5 degrees=5 degrees=5 degrees=5

translate=(0.02, 0.02) translate=(0.02, 0.02) translate=(0.02, 0.02) translate=(0.02, 0.02)

Table 1: Gaze data augmentation settings used for TTP. We use PyTorch torchvision to apply augmentations to each target
user image. Each image is repeated once to generate 10 personalized samples per subject.

Method # Parameters (M) Source → Target Domain (5-shot) Avg
Train Tuned Test DE → DM DE → DD DG → DM DG → DD

Baseline (ResNet-18) 11.18 0 11.18 8.02 7.30 7.79 8.19 7.83
Source-available UDA Methods

DAGEN (Guo et al. 2020) - - - 7.53 8.46 9.31 12.05 9.34
GazeAdv (Wang et al. 2019) - - - 8.48 7.70 9.15 11.15 9.12

Gaze360 (Kellnhofer et al. 2019) - - - 7.86 9.64 7.71 9.54 8.69
TTP Methods

PnP-GA† (Liu et al. 2021) 116.9 116.9 116.9 6.91 7.18 7.36 8.17 7.41
RUDA† (Bao et al. 2022) 12.20 12.20 12.20 6.86 6.84 6.96 5.32 6.50
TPGaze (Liu et al. 2024) 11.18 0.13 11.18 6.30 5.89 6.62 5.04 5.96

Alfa 5.26 2.98 2.31 5.30 5.82 5.91 5.86 5.72

Source-available In-Domain Adaptation with Supervision
Method Train Tuned Test DM → DM

DFT Gaze (Hsieh et al. 2024) 0.28 0.014 0.28 5.35 - - - -

Table 2: Comparison with state-of-the-art source-available UDA and TTP methods across four cross-domain benchmarks.
Results are reported in angular gaze error (◦). Datasets are denoted: DE = ETH-XGaze, DM = MPIIGaze, DG = Gaze360, and
DD = EyeDiap. Baseline is a ResNet-18 model without any fine-tuning. Bold indicates the best result. The symbol † indicates
results obtained from a re-implementation of TPGaze (Liu et al. 2024). We also include source-available in-domain adaptation
results with supervision (e.g., DFT Gaze (Hsieh et al. 2024)). Despite DFT Gaze having access to target-domain labels, Alfa
achieves better performance when adapting to DM without labels.

The visualizations provide insight into how Alfa performs
personalized adaptation. We see that Alfa applies struc-
tured updates: each attention head selectively emphasizes
different spatial patterns, aligning with gaze-relevant regions
such as eye corners, eyelids, and facial muscles around the
eyes. The attention is distributed unevenly, which suggests
the heads specialize in capturing different aspects of user-
specific gaze features. The final low-rank updates from Alfa
for these three subjects are shown in Figure 5 of the main
paper.

G Further Ablation Studies
We provide additional ablation studies to examine how dif-
ferent design choices influence Alfa’s performance. Table 3
shows a LoRA rank of 8 achieves the lowest average gaze
error. Table 4 evaluates different SVD ranks and shows that
a moderate rank of 64 achieves the best balance between
adaptation capacity and stability. Table 5 analyzes the effect
of the number of personal samples and indicates that per-
formance improves with more images but saturates around
5-10 samples. Table 6 studies the role of the attention mech-

Method LoRA
Rank

# Parameters (M) Source → Target Domain (5-shot) Avg
Train Tuned Test DE → DM DE → DD DG → DM DG → DD

Alfa 4 3.79 1.48 2.31 5.39 6.09 6.08 5.78 5.84
Alfa 8 5.26 2.98 2.31 5.30 5.82 5.91 5.86 5.72
Alfa 16 8.22 5.92 2.31 5.44 6.12 6.13 5.91 5.90
Alfa 32 14.14 11.83 2.31 5.36 6.10 6.21 5.82 5.87

Table 3: Ablation study on LoRA rank in Alfa. Rank r = 8
achieves the best trade-off between adaptation capacity and
stability, resulting in the lowest average gaze error.

anism and demonstrates that removing attention degrades
performance, confirming its importance for selecting and
reweighting semantic basis slices.

H Personalizing With Only Frontal Images
To study the effect of personalizing from only limited
frontal views, we conduct a within-dataset personalization
experiment on ETH-XGaze (DE). The pre-trained model
already covers a wide range of head poses, but in real-
world use, only a few near-frontal images may be avail-
able for personalization. We randomly select five sub-



Method SVD
Rank

# Parameters (M) Source → Target Domain (5-shot) Avg
Train Tuned Test DE → DM DE → DD DG → DM DG → DD

LoRA 32 1.70 0.53 1.70 6.98 6.93 7.19 7.41 7.13
Alfa 32 2.64 1.48 1.16 6.45 6.64 7.46 6.22 6.69

LoRA 64 2.84 0.53 2.84 5.66 6.17 6.23 5.72 5.95
Alfa 64 5.26 2.98 2.31 5.30 5.82 5.91 5.86 5.72

LoRA 128 4.95 0.53 4.95 5.90 6.83 6.18 5.94 6.21
Alfa 128 9.55 5.14 4.42 5.50 6.45 5.78 5.85 5.90

Table 4: Effect of SVD rank on Alfa. A rank of d = 64
provides the best balance between adaptation capacity and
stability, achieving the lowest average gaze error across do-
mains.

Method Num
Samples

# Parameters (M) Source → Target Domain (5-shot) Avg
Train Tuned Test DE → DM DE → DD DG → DM DG → DD

Alfa 1 5.26 2.98 2.31 5.52 6.96 6.37 5.65 6.13
Alfa 5 5.26 2.98 2.31 5.30 5.82 5.91 5.86 5.72
Alfa 10 5.26 2.98 2.31 5.45 5.88 5.64 5.84 5.70

Table 5: Effect of the number of personal samples. Perfor-
mance improves as more samples are provided.

jects—subject0003, subject0007, subject0027,
subject0075, and subject0102—and remove them
entirely from pre-training. For each subject, we select at
least five images whose head poses fall within a near-frontal
range, defined by |yaw| ≤ 15◦ and |pitch| ≤ 10◦. These
frontal images are used for personalization, and evaluation
is performed on all remaining images of that subject, includ-
ing those with larger head-pose variation. Table 7 presents
the results of this within-dataset personalization experiment.
Alfa achieves the lowest average gaze error and improves
performance for most subjects compared to the baseline and
LoRA. Even though personalization relies only on frontal
views, the improvements extend to non-frontal poses. This
suggests that reweighting semantic basis components helps
Alfa capture subject-specific cues that generalize beyond the
poses seen during personalization.
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Figure 1: Visualization of low-rank updates ∆W across all target users on the MPIIGaze test set for Alfa, using filters from
conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions indicate stronger activation.
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Figure 2: Visualization of low-rank updates ∆W across all target users on the MPIIGaze test set for LoRA, using filters from
conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions indicate stronger activation.



Figure 3: Visualization of selected rank slices from Alfa with head index h = 0 for subject p02 on the MPIIGaze test set. We
show 64 rank slices from conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions
indicate stronger activation. Black borders highlight the top-10 personalized rank slices selected for subject p02. Head index
starting from 0.



Figure 4: Visualization of selected rank slices from Alfa with head index h = 7 for subject p02 on the MPIIGaze test set. We
show 64 rank slices from conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions
indicate stronger activation. Black borders highlight the top-10 personalized rank slices selected for subject p02. Head index
starting from 0.



Figure 5: Visualization of selected rank slices from Alfa with head index h = 12 for subject p02 on the MPIIGaze test set. We
show 64 rank slices from conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions
indicate stronger activation. Black borders highlight the top-10 personalized rank slices selected for subject p02. Head index
starting from 0.



Figure 6: Visualization of selected rank slices from Alfa with head index h = 1 for subject p04 on the MPIIGaze test set. We
show 64 rank slices from conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions
indicate stronger activation. Black borders highlight the top-10 personalized rank slices selected for subject p04. Head index
starting from 0.



Figure 7: Visualization of selected rank slices from Alfa with head index h = 4 for subject p04 on the MPIIGaze test set. We
show 64 rank slices from conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions
indicate stronger activation. Black borders highlight the top-10 personalized rank slices selected for subject p04. Head index
starting from 0.



Figure 8: Visualization of selected rank slices from Alfa with head index h = 10 for subject p04 on the MPIIGaze test set. We
show 64 rank slices from conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions
indicate stronger activation. Black borders highlight the top-10 personalized rank slices selected for subject p04. Head index
starting from 0.



Figure 9: Visualization of selected rank slices from Alfa with head index h = 5 for subject p13 on the MPIIGaze test set. We
show 64 rank slices from conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions
indicate stronger activation. Black borders highlight the top-10 personalized rank slices selected for subject p13. Head index
starting from 0.



Figure 10: Visualization of selected rank slices from Alfa with head index h = 6 for subject p13 on the MPIIGaze test set. We
show 64 rank slices from conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions
indicate stronger activation. Black borders highlight the top-10 personalized rank slices selected for subject p13. Head index
starting from 0.



Figure 11: Visualization of selected rank slices from Alfa with head index h = 9 for subject p13 on the MPIIGaze test set. We
show 64 rank slices from conv1 and the first block of layer3 in a ResNet-18 model pre-trained on ETH-XGaze. Red regions
indicate stronger activation. Black borders highlight the top-10 personalized rank slices selected for subject p13. Head index
starting from 0.


