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Abstract—Current deep neural network (DNN) systems avoid
overflows in integer (e.g., 8-bit) dot products by performing
accumulations on expensive high-precision hardware (e.g., 32-
bit). Meanwhile, in floating-point summation, adding values
with different exponents may lead to loss of precision in the
mantissa of the smaller term, which is right-shifted to align
with that of the larger term. To avoid precision loss from
such shifting (a.k.a. ’swamping’), low-bitwidth floating-point dot
products (e.g., FP8) are also accumulated in higher precision
(e.g., FP32). We offer a novel approach for enabling low-power,
low-bitwidth accumulation in both integer and floating-point
DNN computations. We present Markov Greedy Sums (MGS),
an architecture that exploits the distribution of DNN data to use
narrow adders for the majority of dot product summations. MGS
avoids overflows in integer dot products as well as swamping
in floating-point dot products. In contrast to prior works for
narrow accumulation, MGS does not require modification of the
underlying DNN model, e.g., re-training. We implement MGS in
custom multiply-accumulate (MAC) units and integrate them into
a systolic array accelerator. Our evaluation across several models
and datasets shows that MGS significantly reduces accumulator
bitwidth and improves energy efficiency over conventional MAC
designs.

I. INTRODUCTION

Quantization has become a ubiquitous optimization for
compressing deep neural networks (DNNs) on both low-power
edge devices [21], [30], [37], [39] as well as large-scale
training and inference systems made up of many GPUs [35].
Low-power devices for tinyML typically have small local
memories [6] and often lack support for efficient floating-
point computation [3], [39]. Hence, integer quantization is, by
default, necessary on such systems, and most tinyML models
are quantized to 8 bits or less. Meanwhile, large generative AI
workloads push GPU-based training and inference clusters to
the limits of available memory, bandwidth, and computation
power. To this end, low-bitwidth formats such as brain float-
16 (bfloat16) [43], block floating point (BFP) [44], and 8-
bit floating-point (FP8) have been implemented in various
hardware [1], [2]. Such formats have been successful in
reducing memory footprint, memory accesses, computation
time, and power consumption [1], [2], [32]

When performing quantized matrix multiplications, dot
products are typically accumulated into wider registers. For
instance, partial products in FP8 may be accumulated in FP16
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Fig. 1: Example of Markov Greedy Sums (MGS). In (a), we
sum 12 ints into a narrow accumulator (green box) until the
sum si overflows the range [-15, 15]. Then, we accumulate si
into a wider accumulator (red box). The underlined red values
are those that would have caused an overflow of the narrow
accumulator, noting that 15 + 2 > 15 and −9− 7 < −15.
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Fig. 2: Context length vs. feedforward layer dot product length
for a variety of language models from 2018-present (log-log
scale)

or FP32 to ensure numerical accuracy. Modern large lan-
guage models (LLMs) increasingly rely on high-dimensional
dot products, with vector lengths regularly exceeding 10000
elements. Figure 2a demonstrates the trend that over the past
7 years, newer LLMs perform longer dot products to support
longer context lengths. For example, Qwen and Llama-3.1
models contain dot products in the feedforward blocks (FFN)
that exceed 25000 elements. Reducing accumulator bitwidth
for such long dot products can significantly reduce bandwidth
and energy usage while increasing inference throughput [11]–



[13], [34]. However, if the partial product sum overflows the
accumulator, its value may be clipped to a finite range. This
introduces numerical errors into the final matrix result that
degrade model accuracy and limit how much one can reduce
the accumulator bitwidth. In addition, there is the swamping
problem [24] that causes loss of precision due to right shifting
of significant digits when floating point numbers need to align
their mantissa before summation.

Prior works enable use of narrow accumulators while avoid-
ing overflow by re-training the network, e.g., loss function
regularization [34] or controlling weight magnitude during
training [11]–[13]. Re-training LLMs is expensive and may be
impossible if access to the original training data is unavailable.
In addition, re-training may damage properties of the pre-
trained model, such as fairness guarantees [42]. Other works
reorder dot product summations to avoid the majority of
overflows when using narrow accumulators [33]. However,
reordering requires additional sort/permute operations as well
as memory for temporary storage and is difficult to optimize
on existing hardware.

We propose Markov Greedy Summation (MGS), a novel
approach to enable low-precision accumulation in neural
network dot products without the need for retraining or
summation reordering. We analyze overflows during neural
network inference and model the value of the partial sum
in dot products as a Markov process to derive the expected
dot product length without overflow. Our key insight is that
based on the statistical properties of weight and activation
distributions, we can sum many partial products in reduced
precision before overflow occurs. MGS is greedy in the sense
that it uses a narrow accumulator to accumulate as many
values as possible while falling back on a wider accumulator
when the rare overflow occurs. Leveraging this insight, we
design dual-multiply-accumulate (dMAC) hardware units that
use narrow accumulators for the majority of sums. Our method
uses a narrower average accumulator bitwidth compared to
prior works when performing DNN computations. Our dMAC
units consume up to 64% less energy than conventional integer
and floating-point MACs that use wide accumulators for all
summations. Figure 1 provides an overview of MGS applied
to integer summation. The novel contributions of this paper
are:

• Analysis of dot product overflows in integer and floating-
point quantized neural networks (Section III ).

• Dual-MAC hardware architecture (dMAC) and algorithm
for avoiding overflows when using narrow accumulators
in quantized integer and floating-point dot products (Sec-
tions and IV and V).

• Evaluation of our methods w.r.t. accumulator compres-
sion for several data types and DNNs (Section VI).

• Energy consumption and area evaluation of dMAC units
compared to conventional integer and floating point
MACs when implemented in a 7nm process node. (Sec-
tion VI)

II. BACKGROUND

We present background on both integer and floating-point
quantization of DNNs and some prior work on avoiding
overflow during DNN execution.

A. Integer Quantization

We consider the uniform quantization of weight and acti-
vation matrices per-tensor from FP32 to b-bit signed values
[27]. The floating-point values in a matrix M have a range
R = max(X)−min(X). To map values in M to integers in
[0, 2b−1], we partition R into 2b−1 uniform intervals of length
sx = R

2b−1
, also called the scale factor. For example, we can

map a FP32 activation x to a value xq in [0, 2b − 1] using the
equation xq = round(x

f

sx
). If the range is asymmetric around

zero, we shift xq by an offset ox = −2b−1 − round(min(X)
sx

)

into the range [−2b−1, 2b−1 − 1], guaranteeing that the FP32
value for 0 maps to an integer. We can obtain the approx-
imate FP32 representation of a quantized activation xq by
reversing the effect of the scale and offset via the equation
x∗ = sx(x

q −ox). Quantized dot products are then performed
using the FP32 approximations.

sz(z − oz) =

K∑
i=1

sw(w
q
i − ow)sx(x

q
i − ox)

where sw, ow, sz , and oz represent the quantization parameters
of weights w and output activations z. Floating point scale
factors are factored out and normalized to an integer represen-
tation, while weights are typically symmetric around zero with
ow = 0 [19], [27], [29], [41]. As a result, several terms under
the summation disappear, and the majority of computation
arises from the integer dot product z =

∑K
i=1 w

q
i x

q
i .

When FP32 weights and activations are quantized to low-
precision (e.g., INT8), the computation cost of multiplications
wq

i x
q
i decreases significantly. However, the compute bottle-

neck transitions to the K dot product summations, as these
accumulations are typically executed in higher precision, such
as 32-bit, to avoid overflow of the accumulator. For example,
assume we accumulate using a p-bit register where each partial
product wq

i x
q
i is 2b-bits and p > 2b. This leaves p − 2b bits

leftover for precision during accumulation. Hence, the dot
product overflows when K ≥ 2p−2b. However, if we use a
narrow accumulator p = 2b, overflow may occur during any
of the K partial sums, leading to inaccurate dot product and
poor model accuracy.

Previous works enable the use of narrow accumulators in
DNN computations by retraining the network to reduce partial
sum magnitude [11], [12], [34] or algorithmically avoiding
most overflows [33]. In practice, ML frameworks for quantized
DNNs avoid overflow by either using high-precision accumu-
lators (e.g., 32-64 bits) or clipping partial results into a finite
range (saturation arithmetic) as they are accumulated [5], [7],
[20]. Clipping is cheap to implement in hardware or software,
allowing for a modest reduction in accumulator precision,
e.g., from 32 to 16 bits. However, for narrower bitwidths



(< 16), clipping severely degrades numerical accuracy and
task performance [11], [33].
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Fig. 3: An example of mantissa bit swamping when adding
two E4M3 values with different exponents, A = −0.25 and
B = −0.029297, while using a narrow 4-bit accumulator. The
exponent bias in E4M3 is 7. A’s exponent of 5 is larger than
B’s exponent 1 (b), causing B’s mantissa to be shifted left by
5 − 1 = 4 bits (c). Since the entire mantissa shifts out, B is
treated as zero, and the final result is -0.25, differing from the
closest FP8 result of -0.28125 (d).

B. Floating-Point Quantization

FP32 DNN weights and activations may be quantized to
lower-precision floating-point formats such as bfloat16, BFP,
FP16, or FP8. In particular, FP8 formats for both inference
and training have been developed and implemented on several
commercial AI accelerators, such as Nvidia H100 GPUs and
Intel Gaudi2 [1], [2], [32]. Such formats are now widely
used and can achieve baseline FP32 performance on large AI
workloads, such as LLMs [14], [35].

FP8 summation involves several steps as shown in Figure
3. Consider the E4M3 format with one sign bit, four exponent
bits, and three mantissa bits [32]. When adding two FP8
values with different exponents, the lower order bits of the
smaller value are shifted out (‘swamped’) due to right-shifting
to align exponents with the larger value. This leads to a loss of
precision in the final sum. In contrast to floating-point formats
with wide mantissas, narrow formats such as E4M3 suffer
from a significant loss in numerical accuracy due to swamping.
Commercial hardware such as the H100 avoids swamping by
accumulating FP8 partial sums in a wider precision such as
FP16 or FP32 [2].

There are several classical algorithms for reducing swamp-
ing error in floating point summation, including pairwise
summation [24] and Kahan summation [28]. Although Kahan
summation has higher accuracy, it requires several extra float-
ing point operations to maintain the compensated error term.
Meanwhile, pairwise summation is efficient to implement but
suffers from large error in narrow floating-point formats.

Figure 4 illustrates the need for high-precision accumulation
of FP8 dot products. Using several summation algorithms, we
perform dot products between two Gaussian vectors in FP8
precision (4-bit mantissa accumulator) and plot the numerical
error relative to the baseline FP32 accumulation (24-bit man-
tissa accumulator). All algorithms exhibit significant errors

due to the swamping of lower order bits when using narrow
4-bit accumulators. Sequential summation loses all accuracy
after only 200 sums. Pairwise summation is significantly more
accurate than sequential summation but still exhibits up to 50%
error for longer dot products. In Section V-B, we discuss how
to accumulate FP8 mantissas in low-precision for a majority
of sums while attaining numerical accuracy on-par with FP32
accumulation.
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Fig. 4: % Error, relative to FP32 precision, of Gaussian
vector dot products performed in FP8 precision. We execute
each algorithm using solely a narrow accumulator and clip
partial sums upon overflow. All algorithms exhibit significant
errors due to the swamping of lower order bits when using
reduced-precision accumulators. MGS has lower error than
pairwise summation by separating partial product mantissas
by exponent and accumulating them in separate narrow accu-
mulators. This means that dot product errors result only from
clipping overflows. However, the ≈ 35% error of MGS, when
restricted to a narrow accumulator, is unacceptable for DNN
applications.

III. ANALYSIS OF DOT-PRODUCT OVERFLOWS

We begin by providing an analytical framework for reason-
ing about overflows. We define two types of integer overflow
and discuss multiple algorithms for avoiding them.

Transient Overflow: Overflow that may occur at any
point during the sequential summation of k integers X =
{x1, x2, ..., xk} when using a b-bit accumulator.

Persistent Overflow: Overflow that occurs when the final
sum y =

∑k
i=1 xi overflows a b-bit accumulator.

Note that transient overflows may occur even when there
is no persistent overflow. We aim to minimize these transient
overflows.

A. Avoiding All Overflows

Several prior works aim to avoid both persistent and tran-
sient overflows entirely by retraining the neural network such
that partial sums are always within the accumulator bounds.
A2Q [11] and A2Q+ [12] eliminate the possibility of both
transient and persistent overflows by constraining the weight



vector’s L1-norm during quantization-aware training (QAT).
They first bound the dot product result :

|
K∑
i=1

wixi| ≤
K∑
i=1

|wi||xi| ≤ 2p−1 − 1

In the worst case, all activations are maximal |xi| = 2b−1 and
the weight L1-norm may be bounded such that:

k∑
i=1

|wi| = ∥w∥1 ≤ 2p−1 − 1

2b−1

This bound acts as an L1-regularizer and pulls most weight
values toward zero, ensuring that partial sums never grow be-
yond p bits. L1 regularization promotes unstructured sparsity
in the weight matrices, reducing the model size and enabling
acceleration by skipping zero computations. However, network
sparsification may reduce model accuracy [31] Meanwhile,
retraining a pre-trained DNN to satisfy accumulator constraints
may alter properties of the pre-trained model, such as algo-
rithmic fairness guarantees [42]. We find that enforcing strict
bounds on weight magnitude is not necessary for using narrow
accumulators.

B. Avoiding Transient Overflows

Persistent overflow is a true overflow where the final result
is simply too large for the accumulator. Transient overflows are
‘temporary’ and arise when a partial sum overflows but where
the final sum may not actually overflow the accumulator.
Hence, in the absence of persistent overflow, we should be able
to eliminate transient overflows by reordering the summation.

Theorem 1. Let X = {x1, x2, ..., xk} be a list of k signed
integers, where each xi is represented using n bits. Let y =∑k

i=1 xi be the sum of all elements in X , representable using
m ≥ n + 1 bits without persistent overflow (i.e., −2m−1 ≤
y ≤ 2m−1 − 1). Then, there exists an ordering of summation
for X that avoids transient overflow when using an m-bit
accumulator.

Proof. Suppose k = 2. The list X = {x1, x2} contains n-bit
numbers, and its sum x1+x2 (or x2+x1) can require at most
n+1 bits. Since m ≥ n+1, the sum does not overflow m-bits,
and the theorem holds for k = 2.

Let l ≥ 2 and assume the theorem holds ∀k ≤ l, i.e., there
exists an ordering of X = {x1, x2, ..., xl} such that the sum
of elements of X w.r.t. said ordering avoids transient overflow
(inductive hypothesis). Denote this ordering by the index set
αl and the so-ordered list by Xαl

. Suppose that k = l+1 and
X = Xαl

∪ xk. Then,

y =

k∑
i=1

xi = xk +
∑
i∈αl

xi

By the inductive hypothesis, the second term in the sum,
denoted by ŷ =

∑
i∈αl

xi, avoids transient overflow. Since ŷ
is an m-bit signed integer, and xk is an n-bit signed integer
with n ≤ m − 1, the sum y = xk + ŷ is represented by at

most m bits. Therefore, a feasible ordering to avoid transient
overflow is αk = {αl, k}. Thus, by induction, our theorem
must hold for any k ≥ 2.

The proof shows how to construct a summation sequence
without transient overflow by building the ‘right’ permutation
sequence at each step. One example of such an algorithm is
first to sort the k values, divide them into a list of negative
values and a list of positive values, and repeatedly form the
sum of the largest positive and most negative values. We can
then take the resulting list, with length at least k/2, and apply
the algorithm recursively until a single pair of values remains.
This method is guaranteed to avoid transient overflow while
using the narrowest possible accumulator as the running sum
increases monotonically. Performing summations in a sorted
order is also beneficial for retaining floating point accuracy
since adding pairs of values of similar magnitude reduces the
number of bits swamped in the smaller value [16]. However,
sorting before adding becomes expensive in DNN applications
with long dot products.

AGS is a recent method to avoid transient overflow by
reordering in integer-quantized DNNs [33]. AGS first splits
the sequence by sign into a positive list and negative list,
then alternates summing values from either the negative or
positive list depending on whether the accumulator overflows
its maximum or minimum value, respectively. This allows
AGS to avoid transient overflows while also avoiding sorting
and using only an extra bit for overflow detection. However,
AGS may require additional registers or memory to buffer
partial products. For example, once an overflow is detected,
AGS may need to buffer several positive values while waiting
for a negative partial product to arrive. The extra memory
requirements may overwhelm the benefits of using a narrow
accumulator, challenging AGS hardware implementation.

IV. MARKOV GREEDY SUMMATION

In this section, we detail how our proposed MGS avoids all
overflows while using narrow accumulators for the majority
of summations. We first analyze MGS on dot products in
integer-quantized CNNs such as MobileNetV2 (Section IV-A).
We show that since weights and activations are normally
distributed or half-normally distributed, the chance of overflow
during summation is actually low. We then derive the expected
number of summations before overflow by modeling the run-
ning sum as a random walk. Then in Section IV-C, we apply
our analysis to FP8 mantissa accumulation in MobileNetV2,
GPT-2, and LLAMA-3.2. Although mantissa distributions vary
widely across models and quantization schemes, we are still
able to accurately model dot product overflow and show that
MGS performs the majority of summations using a narrow
mantissa adder. We note that our analysis may be applied to
other data types such as FP4 (Section VI).

A. Estimating the Probability of Integer Overflow

We consider b-bit quantized neural network dot products
Z =

∑k
i=1 wixi with weights and activations in the range

[−2b−1, 2b−1]. Weight and input activation vectors w and x
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Fig. 5: (a) We estimate the probability of overflow based
on the model described in Section IV-A, when performing
dot product at different accumulator bitwidths. 5-bit Gaus-
sian weights in the range[-15,15] are multiplied with 7-
bit Gaussian activations in [-63,63] to yield partial products
Z ≈ N(0, k ∗ σwσx). We set σ of weights and data such
that the extreme values lie 3 σ’s away from the mean 0, i.e.,
σw = 15/3 = 5 and σx = 63/3 = 21. The figure shows that
despite 7+5=12-bit partial products, we can use accumulators
with ¡ 12 bits for most sums before overflow. For example,
there is only a ≈ 12% chance of overflow when summing
10 elements in a narrow 10-bit accumulator. In (b), we plot
the average accumulator bitwidth when running MobileNetv2
inference with 5-bit weights and 7-bit activations. Although
one would expect that at least 5+7=12 bits are required to
prevent overflow, the average accumulator bitwidth required
varies between 7 and 10 bits.

are truncated, zero-centered i.i.d normal distributions N(µw =
0, σw) and N(µx = 0, σx), respectively. Input activations
may also be half-normal distributions due to ReLU operations
in the previous layer. The partial products pi = wixi are
i.i.d product-normal distributions with µp = 0 and σ2

p =
(σ2

w + µ2
w)(σ

2
x + µ2

x) − µ2
wµ

2
x = σ2

wσ
2
x. The summing of

partial products can be represented by the random variable
Z =

∑k
i=1 pi. By the central limit theorem (CLT), for large

enough k, Z ≈ N(0, k∗σ2
wσ

2
x). This enables us to approximate

the probability of overflow given a particular dot product
length k and accumulator bitwidth a.

Pr(|Z| > 2a−1) ≈ 2Φ

[
−2a−1

σwσx

√
k

]
where Φ is the CDF of the standard normal distribution.
Figure 5a displays the probability of overflow for different
vector lengths and accumulator bitwidths when performing dot
product with 5-bit weights and 7-bit activations. The figure
shows that for relatively long dot products, such as 10 or 15
elements, the chance of overflow is relatively low, even for
narrow accumulators. In Figure 5b, we empirically observe
that the average accumulator bitwidth is small across DNN
layers, suggesting that wide accumulators may not be needed
for a majority of sums.

B. Computing the Expected Number of Overflows

The approximation above provides a loose bound showing
that overflow is relatively rare, even with narrow accumulators.

15 10 5 0 5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(a) Weight
Distribution

60 65 70 75 80 85 90
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Input Activation
Distribution

600 400 200 0 200 400 600
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(c) Partial Product
Distribution

8 9 10 11 12 13

Accum Bitwidth
0

10

20

30

40

50

M
ea

n 
Su

m
m

at
io

n
Le

ng
th

(d) Summation Length Before
Overflow in Uniform Distr

Measured During Inference
Modelled by Random Walk

5 6 7 8 9 10

Accum Bitwidth
0

10

20

30

40

50

M
ea

n 
Su

m
m

at
io

n
Le

ng
th

(e) Summation Length Before
Overflow in MobileNetV2

Measured During Inference
Modelled by Random Walk

Fig. 6: Plotting the empirical measured average dot product
length versus expected dot product length based on our random
walk model. 5-bit Weights follow a normal distribution in the
range [-15, 15] (a), while 7-bit activations have a half-normal
distribution in the range [0,127] after ReLU (b). Note that the
plot shows that with the accumulation bitwidth equal to 10, we
do not expect overflow at a summation length of about 32 (e).
In contrast, a naive analysis would conclude that 17 = 5+7+5
bits are required to avoid overflows, noting that 5 = log2 32.
Applying our analysis to the case of dot products between 5-
bit and 7-bit uniformly distributed vectors, (d) shows that we
can accumulate up to 14 values using 12-bits and 5 values
using 11-bits before overflow, on average

We can derive the expected number of summations before
overflow more precisely by modeling summation as a random
walk, specifically a Markov chain with a single absorbing state
representing overflow.

To illustrate the idea, consider the summation of integers
from the range [-2,2] using an accumulator that can only
hold values in [-2,2]. In each step, we randomly select an
integer from the range [-2,2] and add it to the accumulator.
We stop when the accumulator overflows out of range [-2,2],
i.e., we enter the absorbing state. Once entered, the process
cannot leave the absorbing state. Hence, the random walk will
eventually end as the accumulator is permanently absorbed
into an overflow state. A 6× 6 transition matrix P represents
the probabilities of entering different states given the current
sum, with each row summing to 1.

P = Input State

-2
-1
0
1
2

Ovfl

Output State
-2

1/5

-1

1/5

0

1/5

1
0

2
0

Ovfl

2/5
1/5 1/5 1/5 1/5 0 1/5
1/5 1/5 1/5 1/5 1/5 0
0 1/5 1/5 1/5 1/5 1/5
0 0 1/5 1/5 1/5 2/5
0 0 0 0 0 1


For example, the 5th row represents the probability of

different output states given the starting accumulator value
of 2. The value 2 may be summed with either 1 or 2 with



probability 2/5 as both are equally likely to be the next
state (uniform random draws). Since 2+1=3 and 2+2=4 both
overflow the accumulator, we enter the overflow state (ovfl
column) with probability 2/5. The last row shows that if we
start in an overflow state, we will remain in that state surely.

We can represent the transition matrix P in a blocked form:

P =

(
Q R
0 I

)
where 0 is a zero matrix and I is the identity matrix. R
represents the transitions from transient states to absorbing
states, and Q represents the transitions between transient
states. To compute the transition probabilities after k steps,
we simply multiply P by itself k times.

P k =

(
Qk R+QR+ ...+QkR
0 I

)
=

(
0 (I −Q)−1R
0 I

)
Qk = 0 reflects the fact that the random walk will eventually
end, i.e., eventually there is zero probability of being in a non-
absorbed state. The fundamental matrix of the Markov chain
N = (I − Q)−1 represents the expected number of visits to
non-absorbing state j ∈ [−2, 2] starting from non-absorbing
state i ∈ [−2, 2], before absorption. The accumulator starts
with the value 0, varies across different non-absorbing states
with each partial sum, and eventually overflows. The expected
number of steps to reach overflow is simply the sum of the
entries in row 3 of N , corresponding to the state 0. This
sum represents the total expected number of visits to all
non-absorbing states before absorption, i.e., the total expected
number of sums we may perform before overflow.

We apply our random walk model to dot product accu-
mulation when executing quantized MobileNetV2 inference
on Imagenet1K with 5-bit weights and 7-bit activations [15],
[38]. Since weights and activations may deviate slightly from
normal, we compute transition probabilities using their em-
pirical distributions during DNN inference. Figure 6 plots the
empirical versus modeled average summation length before
overflow in a 1x1 convolution layer in the 13th residual block.
When summing partial products derived from multiplying 5-
bit weight and 7-bit activations, we expect that 5+7=12 bit
accumulation is required. However, Figure 6 shows one may
use a narrow 9-bit accumulator to sum 10 values before
needing to use a wider accumulator, on average.

Even under weaker distributional assumptions, we can still
significantly reduce the average accumulator bitwidth. Con-
sider a worst-case scenario where 5-bit weights and 7-bit ac-
tivations after ReLU are uniformly distributed in [-16,15] and
[0,127], respectively. Despite this, our analysis/experiments
demonstrate that we can accumulate 14 values using 12-bits
and 5 values using 11-bits before overflow, on average (Figure
6d).

C. FP8 Mantissa Accumulation

Similar to integer-quantized DNNs, weight, activation, and
partial product values of FP8 DNNs follow well-defined
distributions (see Figure 6). The distribution of partial product
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Fig. 7: Distribution of partial product mantissas during dot
product in MobileNetV2, GPT-2, and Llama-3.2 (a,b,c). De-
spite the variability in mantissa distributions across DNNs,
MGS precisely models the expected number of summations
before overflow within 1% of the measured summation length
(d,e,f).

mantissas during FP8 dot product accumulation varies depend-
ing on these underlying weight and activation distributions.

Consider the E4M3 FP8 format with 3 mantissa bits. Before
summation, we prepend a leading 1 to the partial product
mantissa if that FP8 value is not subnormal. After including
the sign bit, the mantissas are in the range [-15,15] with
subnormal mantissas occupying the sub-range [-7,7]. However,
the actual distribution of the mantissa varies significantly
between models, layers within the same model, and quanti-
zation schemes. For example, since MobileNetV2 activations
have high sparsity due to ReLU (Figure 6b), around 40% of
FP8 partial product mantissas are also 0 (Figure 7). In the
case of LLMs, the presence of outliers and FP8 quantization
methods such as per-tensor scaling [4], [32] yield partial
product mantissa distributions in Figures 7b and 7c, with a
smaller fraction of values in the subnormal range relative to
MobileNetV2.

Following the analysis of Section IV, we can model man-
tissa summation as a Markov chain and compute transition
probabilities using the empirical partial product mantissa
distributions during DNN inference. Figures 7d, 7e, and 7f
compare the empirical versus modeled average summation
length before mantissa overflow for MobileNetV2, GPT-2, and
Llama-3.2 networks, respectively. Our model estimates the
expected summation length within 1% of the true measured
length before overflow across all networks.

V. DUAL-ACCUMULATOR MAC DESIGN

In this section, we describe the hardware for dual-multiply-
accumulate (dMAC) units, leveraging our observation that the
majority of dot product sums do not overflow when using
narrow accumulators. We first introduce the dMAC for integer
dot products and then show how this design enables narrow
accumulation in FP8.



A. Integer dMAC

The integer dMAC unit uses a narrow adder (green in
Figure 8) for most summations and a wide adder (red) to
handle partial sums that overflow the narrow adder. It has a
slightly higher area overhead than a conventional MAC unit,
containing two adders and additional overflow handling logic.
However, dMAC consumes significantly less dynamic power
by exploiting the low overflow rate in DNN dot products.
In addition, we clock-gate the wider accumulator to reduce
dynamic power usage further when not performing wide
accumulations.

Figure 8 displays our integer dMAC design when multiply-
ing 4-bit weights and activations using 8-bit and 32-bit adders.
After multiplication, the product p is accumulated in an 8-
bit register a8. If the 8-bit adder’s carry-out overflow flag is
set, we accumulate a8 in the wider 32-bit register a32 instead
and write p to a8. Once all the partial products have been
accumulated, we add a8 and a32 and return the output.
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Fig. 8: Dual accumulator MAC hardware unit (dMAC) with
output-stationary behavior. In this example, 4-bit weights and
data arrive for multiplication and summation with an 8-bit
accumulator a8. If an overflow occurs (oflow = 1), a8 is
summed into the wider 32-bit accumulator a32, and the 8-
bit partial product is written to a8. Upon completing the dot
product (done = 1), we return the sum of a8 and a32.

B. 8-bit Floating-Point dMAC

Existing hardware for FP8 MAC operations accumulate
partial products in higher precision such as FP32 [1], [2] This
not only requires the use of wide mantissa adders but also
FP8-¿FP32 data conversions and FP32 normalizations. Figure
9 provides a high-level view of the difference between our
hardware and existing FP8 MAC units. We show that using
dMACs for mantissa accumulation can avoid several expen-
sive operations in wide registers while maintaining numerical
accuracy.

Figure 10 displays our FP8 dMAC design. A new weight
and activation in the E4M3 format arrive each cycle. After
multiplication and rounding, the partial product sign bit con-
verts the 4-bit mantissa (with leading 1) to 5-bit signed 2’s
complement. Using a narrow 5-bit adder, we then accumulate
the mantissa into one of 16 5-bit registers based on its 4-
bit exponent, which ranges from 0 to 15. By accumulating
mantissas of the same exponent in the same register, we avoid

FP8 Multiply

FP8 ----> FP32

FP32 Normalize +
Round

FP32 Accumulation

FP32 Normalize +
Round

FP8 Multiply

FP8 Normalize +
Round

FP8 Accumulation

dMAC-FP8FP8

Fig. 9: High-level view of operations in our dMAC-FP8 unit
versus conventional FP8 MACs. The gray boxes represent the
operations that must occur every time a pair of values arrives.
Conventional FP8 incurs overhead from data conversion and
wide accumulation and normalization operations. In contrast,
dMAC-FP8 performs the majority of computation in narrower
precision while amortizing the cost of normalization across
multiple partial summations.

the shifting operations required when adding two FP8 values
with differing exponents while also avoiding numerical error
from swamping (see 3).
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Fig. 10: FP8 dMAC hardware unit. We display the FP8 accu-
mulation step in the computation. A new partial product arrives
every cycle. Partial product mantissas are written to one of 16
registers such that they are always accumulated with other
values of the same exponent, thereby preventing swamping
while enabling the use of the narrow accumulator (green) for
most summations. When the narrow accumulator overflows, it
is left-shifted and summed with the wide accumulator (red) to
prevent precision loss.

When the 5-bit adder overflows, we left-shift the accu-
mulator by its exponent and accumulate into a wide 32-bit
accumulator. Left-shifting by the exponent forces the 5-bit
accumulator value to have exponent zero, allowing partial



sums with different exponents to be added into the same
wide register without error. Since overflows are rare, dMAC
amortizes the shifting cost of mantissa alignment over several
summations instead of between each pair of elements as in
conventional FP32. Once the dot product is complete, the
values in each accumulator register are left shifted by their
respective exponent and summed into the 32-bit accumulator.
This 16× shift+add operation is only performed once per
dot product. Finally, the result is normalized, rounded, and
returned.

VI. EVALUATION

We evaluate MGS in terms of accumulator compression and
power consumption on several vision and language models.
In Section VI-B, we compare MGS to state-of-the-art (SOTA)
works in accumulator compression when performing inference
on various DNNs. We show that MGS can significantly reduce
accumulator bitwidth while achieving accuracy on par with
FP32 baselines, without retraining. We include the accuracy
metric only for comparison with prior works noting that the
numerical result of dot products performed with dMACs is the
exact same as that on conventional MACs. In Section VI-C,
we implement dMAC units for INT8, FP8, and FP4 in a 7nm
node and measure power consumption relative to conventional
MACs. Then, in Section VI-D, we integrate dMAC units into
an output-stationary systolic array accelerator and estimate the
energy efficiency when running inference on several LLMs.
Our dMACs can reduce inference power consumption by up
to 64%. While our evaluation focuses on INT8, FP8, and FP4
inference, MGS may also be applied to other data formats
to reduce accumulator bitwidth, e.g., during training with the
E5M2 FP8 datatype.

A. dMAC Emulation Library

Prior works have addressed the difficulty of efficiently
profiling overflows due to lack of support in standard deep
learning frameworks [11], [34]. We have built a C++/CUDA
library to emulate dMACs on both CPUs and GPUs to
run experiments quickly. We extend PyTorch’s quantization
framework with custom linear and convolution layers im-
plementing MGS for INT8, FP8, and FP4 quantization to
measure the impact on model accuracy. We unroll dot product
computations, allowing users to vary weight, activation, and
accumulator bitwidths and evaluate overflow solutions such as
MGS, clipping, or wraparound arithmetic.

B. Reducing Accumulator Bitwidth

In this section, we evaluate the ability of MGS to enable
low-resolution accumulation while maintaining FP32 model
accuracy in MobileNetV2 [25], ResNet-18 [22], and ViT [17]
on ImageNet [15].

1) 8-Bit Integer Quantized DNNs: We sweep the design
space by varying weight and activations from 5 to 8 bits while
varying the accumulator bitwidth from 8 to 20. We select the
best-performing models with the lowest required accumulator
bitwidth to generate a Pareto frontier. For models on the

TABLE I: Average FP8 Mantissa Accumulator Bitwidth

MAC Unit MobileNetV2 ResNet-18 ViT-Large GPT-2 Llama-3.2 Phi-3-mini-4k
FP32 24 24 24 24 24 24
FP16 11 11 11 11 11 11

Bfloat16 16 or 24 16 or 24 16 or 24 16 or 24 16 or 24 16 or 24
FP8-MAC 11 or 24 11 or 24 11 or 24 11 or 24 11 or 24 11 or 24
FP4-MAC 11 or 24 11 or 24 11 or 24 11 or 24 11 or 24 11 or 24

FP8-dMAC 7 7 8 8 8 8
FP4-dMAC 4 4 4 4 4 4

frontier, we use our software library to evaluate accuracy
compared to SOTA methods A2Q [11], A2Q+ [12], AGS [33],
and overflow clipping [5], [7], [20].

Figure 12 shows that MGS can push the accumulator bit
width lower than A2Q+ while also maintaining task per-
formance. The magenta lines show that clipping transient
overflows within dot products can limit how much we may
reduce accumulator bitwidth. AGS accurately avoids transient
overflows but clips persistent overflows, leading to accuracy
drops at lower bitwidth where clipping becomes more preva-
lent.

2) Floating-Point Quantized DNNs: We evaluate MGS
when performing floating-point inference using our target
models. For FP8, we employ the E4M3 datatype and vary
the narrow mantissa accumulator bitwidth from 5 to 10 bits
while for FP4 we use the E2M1 datatype and vary the narrow
accumulator bitwidth from 3 to 6 bits. Typically, E4M3 and
E2M1 dot products are accumulated in FP16 or FP32 precision
using a 11-bit or 24-bit mantissa, respectively. Table I shows
that MGS is able to use a narrower mantissa accumulator
than conventional FP4, FP8, FP16, and FP32 MAC units.
On average, MGS enables use of the narrow accumulator for
≈ 90% of summations.

C. dMAC ASIC Physical Implementation

We compare the ASIC implementations of various MAC
designs for accurate power, performance and area charac-
terization. We perform the full physical implementation of
the designs at the 7 nm node using the ASAP7 PDK [9]
with a 0.7 V supply voltage. To balance switching speed and
power consumption, we implement the design using standard
threshold voltage transistors targeting a clock frequency of
500 MHz. We synthesize designs using Cadence Genus [8],
perform implementation using Cadence Innovus, run gate-
level simulations using Synopsys VCS [40], and characterize
power consumption based on transient behavior using Cadence
Voltus.

D. Energy Efficiency on Accelerator

We integrate our dMAC units into a 128 × 128 output-
stationary systolic array accelerator with a single 2MB level of
local SRAM memory (128 16KB banks) and a 1GB external
DRAM memory with 1KB page size (Figure 13) We use FN-
CACTI [36] to estimate energy consumption of the SRAM and
DRAM memories at the 7nm node. All MAC units are fully
pipelined with 1 MAC/cycle throughput. Table II summarizes
the area and power breakdown of the various components and
possible MAC units.
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Fig. 11: Comparing INT8 MGS to SOTA methods for low-precision accumulation during quantized inference using several
models. We sweep weight and activation bitwidths from 5 to 8 bits while varying the accumulator from 8 to 20 bits. We
then plot the best-performing models with the lowest required accumulator bitwidth. Since MGS uses both narrow and wide
accumulators during the dot product, we plot the average accumulator bitwidth when running MGS. In principle, MGS can
indefinitely reduce the narrow accumulator bitwidth as it always falls back on the wide accumulator. However, we stop reducing
accumulator bitwidth for MGS when additional reduction increases the average bitwidth (using the wide accumulator more
often) and instead start clipping those overflows. By using narrow accumulators for the majority of sums, MGS can reduce
accumulator bitwidth beyond the SOTA.
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Fig. 12: Energy Efficiency (TOPs/Watt) when running various LLMs on our systolic array accelerator. Models are sorted by
their embedding dimension (k).
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Fig. 13: 128×128 Output-stationary systolic array accelerator
with integrated dMAC units.

We compare dMACs to conventional MACs when running
inference computations from the MLP layer of several LLMs
on GSM8K [10], Hellaswag [46], MMLU [23], and ANLI
[45] datasets. We measure the energy Efficiency (TOPs/Watt)
when running various LLMs on our systolic array accelerator.

Component Area (um2) Power (W)
INT8-MAC 1336 0.424

FP8 mul, FP32 Accum 4262 1.558
FP4 mul, FP32 Accum 5774 1.398
FP4 mul, FP16 Accum 3671 0.914

INT8-dMAC 1510 0.394
FP8 dMAC, 32b Wide Accum 4207 1.068
FP4 dMAC, 32b Wide Accum 3927 0.572
FP4 dMAC, 16b Wide Accum 2841 0.507

SRAM - 0.102
DRAM - 0.083

TABLE II: Power consumption when using different MAC
units in the systolic array

When implemented with dMAC units, the accelerator has up
to 1.6× higher energy efficiency compared to conventional
MACs across data types.

E. Worst-Case Hardware Costs

We clarify (1) when MGS offers little or no benefit and
(2) the worst-case hardware costs of dMAC. MGS requires
the wide accumulator to be clock gated on the overflow
flag for energy reduction benefits. In addition to the cases
mentioned in the paper, we provide results below for: (a)
”always-on” fallback logic where there is no gating of the



METRIC INT8 MAC INT8 dMAC
INT8 dMAC

(always on fallback)
narrow accum bitwidth 32 16 16

critical path (ps) 1047 953 1028
critical path overhead – -9% -2%
logic cell area (um2) 1336 1510 1619

logic cell count overhead – 13% 21%
chip area (um2) 2114 2372 2532

chip area overhead – 12% 20%
total power mobilenetv2 (uW) 25.9 24.1 33.4
total power adversarial (uW) 28.4 24.9 33.4

TABLE III: Worst-case results for INT8-dMAC with 16b
narrow and 32b wide accumulators

wide accumulator, and (b) adversarial inputs with frequently
toggling bits and overflows. Tables III and IV provide re-
sults for power/performance/area of the maximum and min-
imum narrow accumulator bitwidths for INT-dMAC and FP8-
dMACs. In summary, although dMACs incur logic and area
overheads, employing clock-gating of the expensive wide
accumulator minimizes switching activity and reduces over-
all power consumption, even when adversarial inputs cause
significant switching and overflow.

We analyze dMAC’s critical-path delay where the delay
is defined as the maximum combinational logic delay from
the output of one register to the input of another register.
MGS uses two alternative data-paths following the proposed
gating: (1) narrow accumulation and (2) dMAC’s ”reduced”
32b-accumulation. The critical path determines the maximum
clock frequency of the designs. Since dMAC splits multiply
and accumulate operations in different stages, the critical path
is shorter than in conventional MACs as there is less logic
between flip-flops. For the ”always-on” dMACs without clock-
gating, latency is similar to that of conventional-MACs, while
also achieving power-saving benefits. The dMAC unit cycle
times are < 2ns, and we may clock our designs at 500MHz.

For power, we compared dMACs to conventional-MACs
when running inputs that maximize bit toggles (labeled ad-
versarial). For example, FP8 adversarial weights/activations
cause partial-products to utilize and switch all 16 expo-
nent registers while incurring frequent mantissa overflow.
As expected (last row of tables), using an adversarial input
increases power consumption compared to mobilenetv2 for
all designs due to increased switching activity. Even under
such adversarial inputs, both int and float DMACs use less
power than conventional-MACs running the same workload.
This is because we clock-gate the dMAC wide accumulator
based on the overflow flag. When we remove clock-gating,
for a worst case “always-on” fallback logic running adversarial
inputs, INT8-dMAC consumes 14% to 17% more power than
conventional-MACs while FP8-dMAC consumes 10% less
power than conventional-MAC at narrow bitwidth by avoiding
FP8 to FP32 conversion and normalization (Figure 9).

F. Estimating the Expected Overflow Rate

For a target accumulator bitwidth, transition probabilities
associated with each matrix-multiplication in a pre-trained
DNN can be efficiently estimated using a single inference pass

METRIC FP8-MAC FP8-dMAC
FP8-dMAC

(always on fallback)
mantissa bitwidth 32 5 5
critical path (ps) 1321 635 1260

critical path overhead – -52% -5%
logic cell area (um2) 4262 4207 4350

logic cell count overhead – -1% 2%
chip area (um2) 6438 6363 6570

chip area overhead – -1% 2%
total power mobilenetv2 (uW) 95.1 65.2 83.3
total power adversarial (uW) 95.3 68.9 85.5

TABLE IV: Worst-case results for FP8-dMAC with 5b narrow
and 32b wide mantissa accumulators

over the training and/or test dataset. Given the fixed dataset and
fixed weights of the pre-trained DNN, we can obtain partial-
product statistics via a single inference pass with the dataset.
For every matmul, we record the empirical frequency of each
distinct quantized partial-product. These frequencies are then
used to construct the state transition matrix P, from which
the expected summation length is derived via the fundamental
matrix N = (I − Q)−1 (Analysis Section). This estimation
procedure introduces minimal computational overhead rela-
tive to that of quantization-aware-training or post-training-
quantization techniques for FP8 or integer-quantized networks,
which typically require multiple additional epochs of training.
Moreover, despite variability in the input data, we observe that
the distribution of partial-products remains highly consistent
across inputs within a given matrix-multiplication layer due
to normalization operations such as batchnorm. Hence, the
construction of P doesn’t require full dataset coverage and
can be further accelerated by sampling a fraction of training
and/or test data without significant loss in estimation quality.

G. Applying MGS to New Hardware and Applications

MGS’s methodology can be applied to any application in-
volving summation of integer or floating-point numbers. There
is no loss of accuracy when using MGS as the dMAC defaults
to using a wide, high-precision accumulator upon overflow.
Consider, for example, dot-products for two applications in
bfloat16 precision, (1) matched filtering (1D-convolution) for
radar chirp signals [26] and (2) solving a linear ODE via
the Forward Euler method. The ODE is an energy transport
master equation y′(t) = Ay(t) modeling thermal energy flow
inside a protein [18] where A is a 500 × 500 dense matrix
representing interactions (rate constants) between 500 heavy
atoms in hemoglobin and y(t) is kinetic energy of each atom
at time t. In both applications, the 7-bit mantissas of bfloat16
partial-product values have a roughly uniform distribution.
Based on our Markov analysis and empirical measurements
of dot-products in these workloads, MGS can use a narrow
accumulator for 5 out of every 6 sums. We expect MGS to
yield power savings for several non-ML applications.

VII. CONCLUSION

This paper introduced MGS to reduce the required accu-
mulation bitwidth in performing dot products that form the
bulk of DNN computations. Based on the statistical properties



of weight and activation distributions, we can sum many
partial products in reduced precision before overflow occurs.
Specifically, MGS uses a narrow accumulator to accumulate
as many values as possible while falling back on a wider
accumulator when the rare overflow occurs. We have designed
dual-multiply-accumulate (dMAC) hardware units that use
narrow accumulators for most sums, resulting in a narrower
average accumulator bitwidth compared to prior works. Using
MGS, we can compute dot products with significantly reduced
energy usage without accuracy loss and without retraining the
model. Since dot products are one of the most frequently
performed operations in DNNs, the MGS approach proposed
in this paper is expected to be fundamental to efficient DNN
computations.
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