CiU-15-72-142

A Tree Machine for Searching Problems

Jon Louis Ben'cley2
H. T. Kung
Depariment of Computer Science
Carncgie-Mellon University
Pittsburgh, Pennsylvania 15213

30 August 1979

Abstract

In this paper we describe a new tree-structured machine (suitable for vLSI
implementation) that solves a large class of searching probvle'ms. A set of N
elements can be maintained on an N-processor version of this machine such that
insertions, deletions, queries and updates can all be processed in 2 Ig N time units.
The queries can be very complex, including problems arising in ordsred set
manﬁnnaﬁon, data bases, and stalistics. The machine is pipelined so- that M
successive operations can be performed in M-1 + 2 lg N time units. In this paper>we
will study both the basic machine structure and the actual implementation of the

‘machine,.
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1. Introduction

-

Very -Large Scale lptegraled circuitry (VLS1) has been increasing in speed and
decreasing in size at an amazing rate over the past decade, and it promises to
continue at this rate far into the next decade (see Mead and Conway [1979]). In
this paper we will describe a tree-structured machine for solving searching problems
that is ideally suited for implementation in VLSI. The searching problems that the
machine solves arise in a number of applications areas (including ordered set
manipulation, data bases and statistics), and it is able to solve all of the problems

very efficiently.

Before describing this m.nchine in d-etai!', it is helpfui to characterize ijts
contribution in general terms. The authors believe that there is a spectrum of
impacts that advances in VLSI technology will have on computer architecture. At
one e?ttreme, this technology will allow conventional architectures to be
implemented' as smaller, faster and cheaper machines == this will iead to more
sophisticated interconnections of conventional machines (see, for example, Swan,
Fuller and Siewiorek [1977], or Sequin, Despain and Patterson [1978]). Also at this
end of the spectruim will be minor (register ievel) architectural changes that exploit
certain features of VLSI; this area has been explored by .Sites [1979]. At the other

extreme, VLS| architectures have been proposed that are radical departures from

the von Neumann {radition (see, for example, Backus [1978], Mago [1979] or Wiiner

[1978]). In this paper we will investigate an approach that lies between these two
extremes: a high-performance, special-purpose, non-von Neumann computing device
that is designed to be used in conjunction with a conventional computer. In general,
such devices should be constructed only when they solve a problem satisfying two
criteria: the problem should currently consume large quantities of computer time,
and the proposed special-purpose device must be much more efficient than
conventional wnys of solving the particular problem. When such a problem is
identified it is reasonable to augment a general-purpose computing system with a
special-purpose device for solving the problem; the structure of such a system is

depicted in Figure 1. Many such special-purpose devices have recently been
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probosed;' see, for example, Kung [1879] and Kung and Leiserson [1978].

BUS
Primary Device Special-
Disk Tape CcruU Memory Controlier— Purpana
Device

Figure 1. General system structure.

In this paper we will investigate a special-purpase machine for solving searching
problems. This machine is described at an abstract level in Section 2, where we will
also review some necessary background in searching problems. An arcﬁitecture
(that is, a user's view) of the machine is described in Section 3, and issues of
implementing that architecture in VLS are discussed in Section 4. Conclusions are

then offered in Section 5.

2. The Abstract Machine

in this section we will investigate the tree-structured searching machine at an
abstract level, apart from the details of architecture or implementation. The general
searching problem it solves calls for maintaining a file of fixed-format records. We

must be able to perform the operations of inserting a new record into the file,

deleting an. existing record fr.om the file, updating records in the file, and querying

the file to. answer questions. Before we examine the general searching problem, we

wm mvestlgate one searchmg prablem in particular.

* That particular problem is called member searching. In its abstract form, it
involves maintaining a set of elements so we can determine if a new element is a
member of the ‘set. In cpncrete applications, other information is usually alsd
requested. For eXample, after finding that a particular social security number is a
member of a set of social security numbers, we often wish to retrieve other

information (such as Year-to-Date taxes). We will now investigate how the tree
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machine solves the abstract member scarching preblem, and then return in the next

section to the complicating issues that arise in applications.
Input Node

Output Node

Figure 2. Structure of the tree machine.

The basic organization of the tree-structured searching machine is depicted in

Figure 2. There are three kinds of nodes in the machine: circles (which broadcast

'data), squares {(which have limited slorage and computation power), and triangles

(which "combine" answers to queries). A set of N elements is stored in this machine
by placing each clement of the set into a distinct square node of the tree. Consider
now the problem of performing the member search to answer the query “Is 17 an
element of the set?". We accomplish this by inserting 17 into the input node and
broadcasting il down the tree -- Ig N steps later the value 17 will arrive at all of the
squares. This situation is illusirated in Figure 3a. At that point we compare the
values stored in each square 10 17 and set a bit to one if the value is equal to 17
and zero otherwise; this is shown in Figure 3b. We can now combine the bits
together through the bottom portion of the network by letting each triangle compute
the logical or of its two inputs, as illustrated in Figure 3c. So after a total of 2 ig N
time units have passed since the query was posed, a s:’ngie bit emerges from the
output node telling whether or not 17 is an element of the set. We have thus

described a procediwre for delermining whether a éiven object is a member of the
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set whose elements are stored in the square nodes.

It is important to note that the tree niaélﬂne has a very regular data flow: the
data moves in discrete steps in only one direction (from the input node to the output
node). Thus if many successive elements are going to be tested for membership in
the set stored In the square nodes, then the process of answering those queries
can be pipelined. AAs the value of the first element to be tésted Is going down the
tree, the next value can follow one step behind, and so on. If M successive tests
are performed in this manner, exactly M-1 + 2ig N time units pass between the
entry of the first query at the top of the tree and the exit of the last of the

answers at the bottom of the tree.

The tree machine is able to solve m'any problems besides member searching. For
example, if a multiset of elements (that is, a set In which one element can appear
many times) were stored in the square nodes of the tree, we might wish to count
how'many times a given object appears in the set. We proceed éxactly as we did
for member searching, first broadcasting the given element through the &:irc!es to
the square nodes. We load a one into each square if its element is equal to the

given object and zero otherwise, and then combine the answers by letting the

triangles sum the values of their inputs. Another example is giveﬁ by nearest

neighbor searching. If we wish to find the distance to the element of the set that is

-closest to 17, then we dn the following: broadcast 17 through the input node to all

squares, subtract the value stored in the square from 17 and take the absolute
value of the~diffe‘rence and finally- take. the minimum of all those values by having
the triangles return the minimum of their two inputs. As for member searching, for
both member counting and nearest neighbor searching, we can answer a single

query in2 lg N time and a series of M queries in M-1 + 2 lg N time.

In general the tree _machine can solve any problem that can be phrased as

- computing some function over every element in the set (such as equality or abso!ute/

vailue of difference) and then combining the values of those functions by some

associative, commutative binary operator., For example, the rank of an element Xin

B
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Figure 3. A member search.
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storing in each square a one if the element is less than X and zero otherwise; the
final answer is then computed by having the triangles add their inputs. Other
problems defined on total(y ordered sets that can be solved by the tree machine
include predecessor {(what is the greatest element less than the given?), successor
(what is the least element greater than the given?), and minimum (what Is the least

element in the set?). In general, the tree machine can solve all of the

: #
reference contains both an algebraic definition of the class and a list of over

twenty particular searching problems in the class.

The tree machine is also able to answer much more complicated kinds of queries
(of the fbrm that arise in data base applications, for Instance). Suppose, for
example, that every square node of the tree contains a record with ten keys. We
might want to know how many records there are in the file with first key equal to a
given value, the second key at least as great as the third key, the fourth key in a
certain’ range, and so on. This type of query is easily answered: 'we merely
broadcast each of the conditions down to the squafe nodes, keeping track in each
node of whether it has satisfied all the conditions shipped so far. We load a one if
all conditions have been satisfied and a zero otherwise, and combine by having the
triangles sum their inputs. Many applications call for a list 'of the satisfying records
instead of merely their count, and this can be accomplished by letting the triangles
compute the union of their inputs; This can be viewed intuitively by observing each
triangle independently, and imagining a person "tapping" the entire machine at each

time step. As each triangle is tapped, there are three cases to consider: if it has

- no items in its inputs, it reports that; if it has one item, it returns it; and if it has two

‘items, it returns only one v(de!aying the other untli the next tap). This "tapping"
process continues as long as there are elements that have yet to be reported.
(Note that to compute unlons in. this manner,. the pipelining must be carefuily

designed to ensure that no "overflow" occurs.)

Having discussed searching at some length, we will now turn to the Issues of

maintaining the set of elements stored in the square nodes. A tree machine with N
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square nodes (where Nis a power of two) can store up to N records. A new record

can be inserted into the set by placing it in any unused square. We find such a

square by having each circle keep track of the number of unused square
descendants of each of his two sons. When a request comes to the root for a new
(unused) position, he passes the request to one of his sons with unused square -
leaves, and so on. Mechanically, this is accomplished by turnihg off all of the
squares except the one finally chosen as the holder of the new record; this square
is then loaded with the desired data. Note that a single record can be inserted in

Iy N steps, and a set of M records can be inserted in M-1 +ig N steps.

Another mainfenance operation is that of updating a set of records: this can be

easily accomplished by broadcasting the conditions that the changed records must

meet, turning off all processors that o not meet the conditions, and then making the

desired changes. (Although the update set will often have just one element, an

examplie of a "mass update” might be processed on the first of the month: for all
salesmen wilh Month—Of—Starting-Empioyment equal to This-Month, add one to
Years-Of-Service.) To delete a singie record we set a flag in its square node saying
that it is ufused and then adjust the counts in all of the circles above it. This can
be accomplished either by pushing information "backward" to the’ top of the tree
(adding one 1o each counter as you go), or by doing a dummy reinsertion of that
element; and modifying the counters on the way down. The time for either of these
operatlions is proportional to lg N. Notice that after a set of elements in squares
have been identified for deletion, they can be deleted in paralle! (in a single step)
and all counters can be reset (by pushin‘g the information up the tree) in ig N steps.
Although having informuation go up the tree is handy for deletion, it does complicate

the basic design severely; this feature might therefore not be implemented.

So far in our discussion each machine has represented but one set. In some
applications, however, a given user might wish to represent many sets, or many
users might want to use the machine independently for their respective sets. Either
of these can be accomplished so long as the sum of the sizes of ihe sets is less

than N, the number of square nodes. Although wé could "slice" the machine into
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sections to accomplish this, there is a much more elegant solution. Namely, a fixed
portion of each record is dedicated to a "set identification field", or "SetiD". To
process an operation on Set .56 (or a set belonging to ‘user 56), we have as a
pre!ude to the operation the sequence "check SetlD for equality with 56 and turn
off the processor if not equal”. (Notice that we are not requiring that all records in
all sets be of the same format, but just that they have one field in common.) in an
environment with much sharing, this prelude will occur so often that.it might be

advantageous to provide a single instruction that accomplishes its purpose.

Although so far we have used the tree machine to solve only searching problems,
it can be applied to many other problems as well. For instance, it can be used to
sort a set of M elements in time proportional to M (as long as M is between lg N and

N, where N is the number of scjuare nodes in the tree machine). This is accomplished

by making two passes through the M elements: the first inserts the elements into -

the machine, and the second counts for each element the number of elements less
than it (that is, it computes the element's rank, as we saw before).’ Thus telis
precisely where each element occurs in sorted order (the output is a permutation

vector), and it is then trivial to arrange the elements into sorted order.- By use of

Pipelining, both steps run in time linear in .M. Note that it was critical to phrase

sorting as a counting problem, rather than as extractmg the minimum, to make use of
pipelining in the second step -- this algorithm essent:ally implements an N2 algorithm
in N time by using ali N processors in parallel. There are many other examples of
such speedups for problems that are not prima facie searching problems. Two such
exampies are computing all nearest-neighbor pairs in a k-dimensional point set

(which arises in data analysis) and reporting all pairwise design rule violations in a

VLSI mask (a design automation task). The application of this machine to the

 problem of constructing minimum spanning trees has been discussed by Bentley

[1978])--he shows how an N/lg N-processor version of the tree machine can
construct the minimum spanning tree of an N-node graph in O(N Ig N) time, which is

optimai for complete graphs. Other applications of tree-structured machines have
been studied by Browning [1979]. .
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This concludes our discussion of the machine at an abstract level, and we can
now state the properties that a concrete embhodiment of the machine must possess.
There must be three kinds of nodes in suct:a a machine: circles, squares and
triangles. The circles must broadcast data and have a small amount of state
(nramely, to remember how many unused squares are descendants of each of their
sons). The only processing required of a circle is increfnehﬁné of'decrement‘ing by
one. The squares, however, must have. substantial memory and computation power.
Eaéh square must have enough processing capability to handle the most difficult
kinds of queries and updates desired and (usually) enough memory to store the
largest record in most applications. The triangles must be able {o combine answers.
Most of the "combinators" we desire are very simple to implement; these are and,
or, min, max, and plus. The only complicated combinalor is vnion, and we are willing

to "turn off" pipelining in the presence of that operator,

3. An Architecture

In Section 2 we described the tree-structured searching machine at an abstract
level, ignoring many issues of implementation. In this section we will move one step
closer 1o an impiementation, and describe a particular architecture (that is, a user's
view of the machine) realizing the abstract machine. It is essential that the reader
understand that the archilecture we will investigate is not proposed as the best
possible archileclure realizing the abstiract machine of the last secticn. Rather, it is
put forth only as evidence that there is at least one reasonably efficient
architecture for the machine. In Section 4 we will discuss how this architecture can

be implemented in VLS

.

The basic structure of the architecture we will investigate is that studied in
Section 2 (illustrated in Figure 2). The flow of instructions and data in the machine
is exclusively from the input node (at the top of the figure) to the output node (at
the bottom) -- we will not have deletions that employ any “backwards flow". Thé
machine is based on 16-hit instructions and 32-bit data words {which are

interpreted either as integers in 1wo‘s-cémplement or as 32-bit vectors). The top
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data paths in the machine (the son links from circles in Figure 2) are 16 bits wide;
the bottom data paths (links to triangiesv) are 80 bits wide. The entire machine
operates synchronously; an operation is (perhaps) performed at each node and déta
is transmitted from the node to its sons on each major cycle. Having described the
machine at this gross level, we will now examine the circles, squares and triangles

individually.

The primary function of the circle on each major cycie is to broadcast what it just

received to its sons, In only three contexts must it perform a more sophisticated
operation. As a new element is being inserted, it must decide which way to direct
the insertion (to one that has unused square leaves) and then decrement the
appropriate counter by one; it then ships a "no-op" to the other son. The no-op is

effected by having one bit in the instruction turned off as the 16-bit instruction is

passed to the "other” son. To accomplish a deletion we insert an instruction packet"

of three 16-bit instructions at the root node. The first instruction is the deletion

and the next two 16-bit words contain the binary address of the node to be

deleted. The circles can tell by looking at appropriate bits of the address whether
they should increment one of their counters as they see this instruction. The final
capability the circles must have is that of passing data to the squares, without

Interpreting that as an instruction to them; we will return to this issue as we discuss

- the squares.

While the circles have the simplest architectures of the three units we will see,

the squares have the most compiex. The abstract machine requires that the
squares be able to store data and to perform enough calculations 1o answer queries
and perform updates. This architecture Will accomplish both these tasks by shipping
combinations of iﬁstructions and data to the machine. W‘e now have to make a
fundamental design decision: should the individual squares be special-purpose
devices ('honed. for a particular view of the tree machine’s task), or should they be
(in some limited sense.) general-purpose computing devices? We will choose the
latter course, and make each square a "baby" von Neumann computer; it is

important, however, to emphasize that this is merely a design decision and not an
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inhierant properly of the abstract machine,

Fach square will be a small von Heumann-like processor that receives its
instructions and data from an external, 1G-bi‘£ stream. An individual processor
. contains sixteen 32-bit words of memory, two 32-bit registers, and a vector of
eight single-bit data flags (F[0], F[1], o F[7]). The processor also contains an
eight-bit Set Identification number (Set!D), and an Instruction Régiéfer. The first bit
of the F vector (F[0]) is used as the "Active" bit of the processor; a special
"Enable" command turns on all processors (by setting F[0] to one), and a processor
can conditionally turn itself off by storing a zero in F[0]. The basic layout of the

machine is shown in Figure 4 (notice that because the machine is tolated 90°%, the

data flows from right to left rather than from top to bottom).

RA
'Y
e
F[0..7]
RB
"
7% I W : ”
/ (1]
Mernor /
Conlrolied
M[15]

Figure 4. Components of the square.

The 16-bit instruction format for the square processor is shown in Figure 5. The
first bit of an instructlion processed by the squares is always zero; a one in that bit
signifies an instruction that is ignored by the squares but passed on to the triangles.
The two Fam bits specify one of the four families to which an instruction can belong
(Arithmetic-Logical, Load-Store, Bit or Special), and the Code gives the opcode of

the instruction. There is a one bit flag (Flag) in each instruction, and arguments to
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the instruction are either two four-bit addresses (A1 and A2), an 8-bit string (Name)
or a five-bit integer (Num). The actual instructions are described by group in an
ISP-like Ianguacje in Table 1. " Al of the arithmetic-logical instructions are
Zero-address instructions, combining registers RA and RB and storing the result in
either RA or RB (usually RA). The toad-store instructions specify one of 16 memory
addresses as their operand; the data movement is then between that address and
the register RB. The bit operations generally have two addresses: they combine
the first and the second operands, storing the result in the first. The exceptions to
this pattern are the unary not operator and the compare (comp) operation; the latter
compares RA with RB and stores in the first bit (F[A1]) whether 6r not the values
are equai and tells which inequality in the second bit (F[A2]) -- this is just a

straightforward encoding of three states into two bits.

el Al A2
I Name
a

0 [Fam|Code & Num

Ui 23 678 1011 15

Figure 5. Instruction format.

The only instructions that are not entirely obvious are the special instructions.

The enable instruction turns on all processors in the tree. The ins (insert)

_instruction turns on precisely one processor, turning off the rest (and decrementing

the counters in the circles). The def (delete) instruction has no effect on the
processors; it only mcrements the appropriate counters in the circles (the squares
must ignore the two following mstructnons packets, though -- they are just the
pfocessor address). The ship instruction allows data to enter the RB register from
the data/instruction stream. The Flag bit tells whether the next one or two 16-bit

packets should be loaded into RB; the data can then be processed as desired. The

rchk.sid and setsid instructions are for manipulating the 8-bit SetiD register; the

former turns off the processor if SetiD is not equal to Name, and the latter loads the
SetlD field from Name.
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Arithmetic-Logical

add = RA«RA+RB

sub = RA«RA-RB )
- heg — RA«-RA

rand -~ PRA«BRAARB

ror - RA«<RAVRB

rxor -2 RA<RA@RB

rnot = RAe«~RA

shift Num = RA « RA left shifted by Num

tab = RA«RB

tba = RB«RA

swap -

RA < RB

gzd-Store

ldb Num = RB e« M[Num]
stb Num -  M[Num] « RB

Bit ,

band A1,A2 = F[A1] « F[A1] A F[A2]

bor A1,A2 > F[A1] « F[A1] v-F[A2]

bxor A1,A2 - F[A1]«F[A1] o F{A2]

bnot A1 = F[A1]« ~ F[A1]

comp A1,A2 = F[A1] « RA=RB; F[A2] « RA < RB
Special '
enable = F[0]« 1

ins = F[0] « this processor selected
del = (defined in text)

ship Flag =  {(defined in text)
chksid Name = F[0] « SetID = Name
setsid Name = SetlD « Name

Table 1. Instruction set for squares.

To illustrate the operation of the processors we will study two program segments

for performing searches. The first segment is for member searching.
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chksid ThisSet // Turn off undesired processnrs

ship Two // The next two packets hold the comparand
datag B :
datap : )

. tab // Put comparand in RA
Idb KeyAd // Put key in RB

comp 1,2 // Answer is in F[1]

The search key enters the RB register from the data stream and is then transferred
to the RA register. The program then loads the key field of the record into the RB
register (KeyAd is an integer identifying which of the 16 memory words holds the
key), and makes the comparison. F[1] is then one if and only if the record's key
field is equal to the data shipped in the stream. At this point, the answer can be

combined in the triangle network.

The next program that we will examine arises in "nearest neighbor" searc.hlng; it
- computes the distance between the data and the key field of the record. Since we
desire the absolute valuz of the difference of the key and the data, we must have
a conditional step in our program.

chksid  ThisSet

ship Two // RA « Data

dataL

datap

tab

Idb KeyAd //RB «Key

comp 2,0 . /1 If DatafKey, leave processor on
swap : ‘

chksid - ThisSet // Turn all processors back on

sub /] RA « [Key-Data|

The crucial step of this program is the comp instruction: if Data is less than Key
then arone is stored in F[ 0], whfch leaves the processor on; the swap then
interchanges key and data. The next instruction (chksid) turns all appfdpriate
processors back on, and the subtract correctly computes a positive value. The

triangles can then be instructed to return the minimum of these values.

The two code segments that we have just seen illustrate many of the aspects of
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cading the tree machine, Many other examples have been coded, and all of them
;f appear 1o be fairly officient, More quantitatively, the ratio of tree machine
instructlions {o "critical" operations in the lask clusters very ciosely around 2. S. i
This statistic is avidence for the vindication of our design decision to make the f'
~Squares gencral-purpose machines, rather than special devices tailored to the
searching taszk domain. (Pursuing that alternative remains an interesiing open

problem.) :

Before ending our discussion of the squares, it is interesting to compare the

design of the processor with a more typical von Neumann processor. In some ways,

we faced exactly the same problems: the choices of cata representation,
instruction formatlling, operation set, and addressing were gl taken from the von
Neumann design space as discussed by Blaauw and Brooks [1879]. On the other

hand, we avoider many of the issues faced by desugners of typtf-al machmes these
W@A g
mc!ude mstructlon sequencmg, dnterrupt hand!mg, and mput/output control,

i L
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Before we discuss the archilecture of the triangle, we must settie one more point

about what we want it to do. In most applications that compute the minimum of a set
(for instance), we want 10 know not only what the value of the minimum is but also
what element has that value. We therefore have three objects associated with
computing the minimum: the operation (minimum), the value, and the name (which Is a
32-bit word associated with the value; its address or "key" in many applications).
When combining two such objects, we take the value as the minimum of the two
values, and the name from the name of the smaller value. The name is thus
inherited from the minimum. We will also associate names wilh other binary
operators: the name of maximum is inherited from the node with greater value; for
plus, from a nonzero element; for or, from a nonzero bit vector (arbttrary if both are

zero); and for and from a zero bit vector.

Having defined the concepts of value, name and inheritance, it is straightforward
to describe the architecture of the triangles. They will Operate on 80-bit packets:

16 bits of instruction, and 32 bits each of value and name. Computing min, max,
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Plus, and, and or are all simple. Union is a bit more detailed, but also conceptually

straightforward. One aspect that we have not mentioned is the interface between

the squares and the triangles; we must include instructions for transferring the
contents of the RB register'to the name or value field of the triangle immediately
beneath it (these could be included in the load-store family). This allows us to give
complete programs for answering queries. After computing the answers (as
illustrated in the two segments shown above), we load them into the desired fields

of the triangles, and combine them as desired.

It is impbrtant to emphasize that the architecture we have just seen is not the
architecture that the ultimate user of the machine will see. Rather, there will be a
hierarchy of functions available to him. At the highest level, he will be able to
perfbrm operations on sets (load a set, erase a set, for each element in the set, and
so forth); at an intermediate fevel there are record-handling operations (defining -
queries or inserting, deleting and updating records); and at the lowest level there

are the machine instructions themselves. At the lowest level the user can make

~ very efficient code by knowing the details of the machine; at the higher levels he

sacrifices efficiency for clean and easy code.

An lmportant part of the Iimplementation of this architecture is that there be a

T L

fairly soph:sttcated device controller for the tree machine (such as an off-the-shelf

it
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microprocessor). This controller will :mplement the hierarchy of functions mentioned
above. This will also reduce the bus actwuty substantially by having the controller
fetch items from main memory and issue instructions to the tree machine; it appears

that having the CPU itself perform these tasks would lead to a substantial

- degradation in overall system performance.

4. Discussion of Implementation

- In this section we will discuss one implementation of the architecture of Section 3
in VLSI technology. The tundamental description of tiie implementation is that It is
bit-serial. There are two motivations for this: one, to exploit the shift-register

technology of VLSI, and two, to use very few pins on packages.
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The implementation of both the circles and the triangles described in the last
sction is straightforward, The squares are also easy 1o implement bit-serially, The
16-word memory is in fact a parallel shift register, 16 bits wide and 32 bils long.
The two registers RA and RD are also shift registers. To load or store a word, RB
| and the memory shilt rcg\ister are shifted in parallel, and t.l-ve memory controller of
Figure 4 is just a mullipiexor (decoding a 4-bit address to one of 16 lines). All of
the arithmetic-logical operations are accomplished by puttfng a ﬁingle-bit function
box belween the RA and RB registers, and then shifting the pair through it (all
operations require at most one bit of memory). Notice that we have assumed that
the squares have 32 minor cycles during each major cycle of the machine. The bit
operations are straightforward to implement if the Flag array is just a small RAM.

Estimates by experienced VLS designers indicale 1hat the 9hxp area for the

Nt s T

functiohality, in_ihe square is about equal to the clup area reqmrcd for the 512 bit

R s o R T T e T L SR L SR e s .

memory Using current technology, it is casy lo mmgme putting 16 squares on a

single chip.

Now that we know how we will implement the individual processing elements
(circles, squares and triangles), we must describe how to place them on a chip. The
first simplification we will make is to consider them as standard binary trees rather
than the "mirrored" binary tree of Figure 2; the unmirroring process is illustrated in
Figure 6. We now face the problem of laying out a binary tree on a chip. This
probiem has been studied by Mead. and Rem [1978], who suggest the
space-economical layout illustrated in Figure 7. The amount of space used in thét
layout is proportional io the number of processors on the chip. Note that each edge
in that layout is realized by two "wires" on the chip -~ one for data going to the

squares, and one for data coming from the squares,

Since only some fixed number of the processors in a tree machine will fit on a
single chip, it is important that we discuss the packaging of the chips. The
packaging strategy we propose is illustrated in Figure 8. There are two kinds of

chips in that figure: the /eal chips and the internal chips. The leaf chips contain
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Figure 6. "Unmirroring" the tree machine.

N
)
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e
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Figure 7. Tree layout on a chip.

(say) 16 square nodes and 15 circle and triangle nodes. All the communication to a
leaf chip is through two wires, so the chip needs only two communications pins

(besides power, ground and timing synchronization pins). Notice that this implies

- that with technological advances in VLSI, we will be abile to place many more

processors on a square chip; we are not bound by pin limitations. The internal chips

- would probably be constructed with seven circles and triangles on them; this implies

that there is one input-output pair of wires at the tdp of the chip and eight pairs at
the bottom. The total number of pins for this chip is therefore eighteen (plus
mis_cellaneous pins). This chip Is therefore pinbound even in today’s fabrication
technology; unless there are unexpected advances in packaging technology, the
internal chips will probably continue to have seven or at most fifteen pairs of circles

and triangles.

To get a better feeling for the size of the tree machine, we will briefly consider
how one might be built today. Suppose that we put sixteen square nodes on each

leaf chip, and seven circle-triangle pairs on each internal chip (both of these are

Vo by K

e
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Internal
Chip

Leaf Chip

Figure 8. Two kinds of chips.

easily accomplished in today's technology). We will now put 64 leaf chips and nine
internal chips on a board; this gives us 1024 square nodes. We can then put
sixteen of these boards in a small cabinet, giving a tree machine of more than
sixteen thousand square nodes, each holding a 512-bit record. If we assume that
technology continues to doubie the number of components on a chip every two

years, this implies that we can expect a tree machine of one million records to fit in

about a cubic foot of space by the end of the 1980's.

These rough (but fairly conservative) estimates indicate that the tree machine
might be one reasonable way 1o exploit the processing power that VLS| will give us.
Before we can assert this with confidence, however, we must show that the tree -

machine is a wiser way to invest resources than other structures for searching. For

P LT VL I,

example, might it be betlter to put the same resources into a large RAM memory
rather than a tree machine? The authors’ preliminary investigations strongly
suggest that the excess cost of the tree machine compared to a RAM is very small
~compared 1o the functionality purchased, but the detailed compariso[\ of this

architecture to the RAM and its other compelilors remains an open prcbiem.

5. Conclusions

In this paper we have investigated the tree machine for séarching problems on

several levels. In Seclion 2 we studied it in an abstract setting and showed that it
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can rapidly solve many searching problems, as well as some other problems that do
not immediately appear to be searching problems. In Section 3 we saw an
architecture (that is, a user's view) of the machine, and in Section 4 we saw that
that architecture can he efﬁéiently implemented in VLS| technoiogy. Having studied
the machine at these various levels, we will now spend a few moments summarizing

the contributions of this work.

This machine can be compared with many other ardhitectures. It is similar to an
associ;tive memory in many aspects, but it can perform many more operations than
even the most powerful associative memories considered to date (see, for example,
Lamb and Vanderslice [‘1978]). One might consider the square processors as
forming a Single-instruction, Multipie-Data stream (SIMD) computef, but each square
is considerably simpler than most SIMD machines proposed to date. The tree
machine is also superficially similar to the CASSM computer of Su et af [1973], but .
there‘are fundamental differences in the two machines at both the architectural and
implementation levels. Two other machines to which it might be compared are the
tree-structured machines of Mago [1979] and Sequin, Despain and Patterson
[1978]. Both of these machines, however, are put forward as general-purpose
computing devices, while our machine is much more specialized to the particular

problem of searching.

Although we explored only one design path in this paper, it is important to
remember that there are many variants of the tree machine. For example, in the
unmirrored tree machine of Figure 6, the circle-triangle nodes could be made more
powerful so that they could interact with passing data in more sophisticated ways,
thereby substantially enhancing the machine’s capability. So far we have
inVestigated only binafy trees; in _cerfain appiications, other branching factors may
prove superior. Other interesting yariants df the machine come from changing the
amount of memory in a square processor; might it be reasonable, for instance, to
have thousands of memory words in each square? Many other des'ign paths remain
unexplored -- in this paper he have only attempted to describe the fundamental

concepts of the machine.
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Aninteresting aspect of the tree machine is what we might call its "computational
structure”, which is illustrated in Figure 9. That diagram has three intcrpretations.
First, it illustrates the tree machine itself: very small input and output chaninels, with
massive computatlion going on in between. Second, it describes the searching
problem: a small question és asked about a large set, giving a smail answer. And
finally, the figure illustrates the constraints of working with pinbound VLSI: the
number of pins on a chip is very small compared to the number of functional
co‘mponénts. The fact that the abstract structure of both the searching probiem
and the tree machine’s solution to it closely model the medium of VLSI indicates that

this approach might be very successful.

v

' Figure 9. A computational structure.

To summarize the tree machine, the authors feel that tihis work has three
contributions. The first is the abstract tree machine: it gives a number of nice

"theoretical” solutions {o a large set of problams. The second contribution is the

architecture and impicmentation we have proposed; they indicate that thiz machine

might be a reasonable device to build as further advances in VLS| technology occur.
Finally, we feel that the "computational structure" we just investigated provides an
example of the kind of argument that will justify special-purpose architectures

prcpased for implementation in VLSI,
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