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In this paper we describe a new tree-structured machine (suitable for VLSI
implementation) that solves a large class of searching problems. A set of N
elements can be maintained on an N-processor version of this machine such that
insertions, deletions, queries and updates can all be processed in 2 Ig N time units.
The queries can be very complex, including problems arising in ordered set
manipulation, data bases, and statistics. The machine is pipelined so that M
successive operations can be performed in M-1 + 2 Ig N time units. In this paper we
will study both the basic machine structure and the actual implementation of the
machine.
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1 . Introduction

Very Large Scale Integrated circuitry (VLSI) has been increasing in speed and
decreasing in size at an amazing rate over the past decade, and it promises to
continue at this rate far into the next decade (see Mead and Conway [1979]). | n
this paper we will describe a tree-structured machine for solving searching problems
that is ideally suited for implementation in VLSI. The searching problems that the
machine solves arise in a number of applications areas (including ordered set
manipulation, data bases and statistics), and It is able to solve all of the problems
very efficiently.

Before describing this machine in detail, it is helpful to characterize its
contribution in general terms. The authors believe that there is a spectrum of
impacts that advances in VLSI technology will have on computer architecture. At
one extreme, this technology will allow conventional architectures to be
implemented- as smaller, faster and cheaper machines - this will lead to more
sophisticated interconnections of conventional machines (see, for example, Swan,
Fuller and Siewiorek [1977], or Sequin, Despain and Patterson [1978]). Also at this
end of the spectrum will be minor (register level) architectural changes that exploit
certain features of VLSI; this area has been explored by Sites [1979]. At the other
extreme, VLSI architectures have been proposed that are radical departures from
the yon Neumann tradition (see, for example, Backus [1978], Mago [1979] or Wilner
[1978]). In this paper we will investigate an approach that lies between these two
extremes: a high-performance, special-purpose, non-yon Neumann computing device
that is designed to be used in conjunction with a conventional computer. In general,
such deVices should be constructed only when they solve a problem satisfying two
criteria: the problem should currently consume large quantities of computer time,
and the proposed special-purpose device must be much more efficient than
conventional ways of solving the particular problem. When such a problem Is
identified it is reasonable to augment a general-purpose computing system with a
special-purpose device for solving the problem; the structure of such a system Is
depicted in Figure 1. Many such special-purpose devices have recently been
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proposed; see, for example, Kung [1979] and Kung and Leiserson [1978].

Figure I_. General system structure.

In this paper we will investigate a special-purpose machine for solving searching
problems. This machine is described at an abstract level in Section 2, where we will

also review some necessary background in searching problems. An architecture

(that is, a user's view) of the machine is described in Section 3, and issues of

implementing that architecture in VLSI are discussed in Section 4. Conclusions are
then offered in Section 5.

2. The Abstract Machine

in this section we will investigate the tree-structured searching machine at an
abstract level, apart from the details of architecture or implementation. The general
searching problem it solves calls for maintaining a f/7e of fixed-format records. We
must be able to perform the operations of inserting a new record into the file,
deleting an existing record from the file, updating records in the file, and querying
the file to answer questions. Before we examine the general searching problem, we

will investigate one searching problem in particular.

That particular problem is called member searching. In its abstract form, it
involves maintaining a set of elements so we can determine if a new element is a

member of the set. In concrete applications, other information is usually also
requested. For example, after finding that a particular social security number Is a

member of a set of social security numbers, we often wish to retrieve other
information (such as Year-to-Date taxes). We will now investigate how the tree
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section to the complicating issues that arise in applications.
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The basic organization of the tree-structured searching machine is depicted in
Figure 2. There are three kinds of nodes in the machine: circles (which broadcast
data), squares (which have limited storage and computation power), and triangles
(which "combine" answers to queries). A set of N elements is stored in this machine
by placing each element of the set into a distinct square node of the tree. Consider
now the problem of performing the member search to answer the query "Is 1 7 an
element of the set?". We accomplish this by inserting 17 into the input node and
broadcasting it clown the tree — Ig N steps later the value 17 will arrive at all of the
squares. This situation is illustrated in Figure 3a. At that point we compare the
values stored in each square to 1 7 and set a bit to one if the value is equal to 1 7
and zero otherwise; this is shown in Figure 3b. We can now combine the bits
together through the bottom portion of the network by letting each triangle compute
the logical or of its two inputs, as illustrated in Figure 3c. So after a total of 2 Ig N
time units have passed since the query was posed, a single bit emerges from the
output node telling whether or not 1 7 is an element of the set. We have thus
described a procedure for determining whether a given object is a member of the
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set whose elements are stored in the square nodes.

it is important to note that the tree machine has a very regular data flow: the
data moves in discrete steps in only one direction (from the input node to the output
node). Thus if many successive elements are going to be tested for membership in
the set stored in the square nodes, then the process of answering those queries
can be pipelined. As the value of the first element to be tested is going down the
tree, the next value can follow one step behind, and so on. If M successive tests
are performed in this manner, exactly M-1 + 2 Ig N time units pass between the
entry of the first query at the top of the tree and the exit of the last of the
answers at the bottom of the tree.

The tree machine is able to solve many problems besides member searching. For
example, if a multiset of elements (that is, a set in which one element can appear
many times) were stored in the square nodes of the tree, we might wish to count
how many times a given object appears in the set. We proceed exactly as we did
for member searching, first broadcasting the given element through the circles to
the square nodes. We load a one into each square if its element is equal to the
given object and zero otherwise, and then combine the answers by letting the
triangles sum the values of their inputs. Another example is given by nearest
neighbor searching. If we wish to find the distance to the element of the set that is
closest to 17, then we do the following: broadcast 17 through the input node to aii
squares, subtract the value stored in the square from 17 and take the absolute
value of the difference, and finally take the minimum of all those values by having
the triangles return the minimum of their two inputs. As for member searching, for
both member counting and nearest neighbor searching, we can answer a single
query in 2 Ig N time and a series of M queries in M-1 + 2 Ig N time.

in general, the tree machine can solve any problem that can be phrased as
computing some function over every element in the set (such as equality or absolute
value of difference) and then combining the values of those functions by some
associative, commutative binary operator. For example, the rank of an element X In



a set (that is, the number of elements in the set less than X) can be calculated by
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storing in each square a one if the element is less than X and zero otherwise; the
final answer is then computed by having the triangles add their inputs. Other
problems defined on totally ordered sets that can be solved by the tree machine
include predecessor (what is the greatest element less than the given?), successor
(what is the least element greater than the given?), and minimum (what is the least
element in the set?). In general, the tree machine can solve all of the
"Decomposable Searching Problems" defined by Bentiey and Saxe [1979] \jhat
reference contains both an algebraic definition of the class and a list of over
twenty particular searching problems in the class.

The tree machine is also able to answer much more complicated kinds of queries
(of the form that arise in data base applications, for Instance). Suppose, for
example, that every square node of the tree contains a record with ten keys. We
might want to know how many records there are in the file with first key equal to a
given value, the second key at least as great as the third key, the fourth key in a
certain range, and so on. This type of query is easily answered: we merely
broadcast each of the conditions down to the square nodes, keeping track in each
node of whether it has satisfied ail the conditions shipped so far. We load a one if
all conditions have been satisfied and a zero otherwise, and combine by having the
triangles sum their inputs. Many applications call for a list of the satisfying records
instead of merely their count, and this can be accomplished by letting the triangles
compute the union of their inputs. This can be viewed intuitively by observing each
triangle independently, and imagining a person "tapping" the entire machine at each
time step. As each triangle is tapped, there are three cases to consider: if it has
no items in its inputs, it reports that; if it has one item, it returns it; and if it has two
items, it returns only one (delaying the other until the next tap). This "tapping"
process continues as long as there are elements that have yet to be reported.
(Note that to compute unions in this manner, the pipelining must be carefully
designed to ensure that no "overflow" occurs.)

Having discussed searching at some length, we will now turn to the issues of
maintaining the set of elements stored in the square nodes. A tree machine with N
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square nodes (where N is n power of two) can store up to N records. A new record
can be inserted into the set by placing it in any unused square. We find such a
square by having each circie keep track of the number of unused square
descendants of each of his two sons. When a request comes to the root for a new
(unused) position, he passes the request to one of his sons with unused square
leaves, and so on. Mechanically, this is accomplished by turning off all of the
squares except the one finally chosen as the holder of the new record; this square
is then loaded with the desired data. Note that a single record can be inserted in
Ig N steps, and a set of M records can be inserted in M-1 + Ig N steps.

Another maintenance operation is that of updating a set of records: this can be
easily accomplished by broadcasting the conditions that the changed records must
meet, turning off all processors that do not meet the conditions, and then making the
desired changes. (Although the update set will often have just one element, an
example of a "mass update" might be processed on the first of the month: for all
salesmen with Month-Of-Starling-Employment equal to This-Month, add one to
Years-Of-Service.) To delete a single record we set a flag in its square node saying
that it is unused and then adjust the counts in all of the circles above it. This can
be accomplished either by pushing information "backward" to the* top of the tree
(adding one to each counter as you go), or by doing a dummy reinsertion of that
element, and modifying the counters on the way down. The time for either of these
operations is proportional to Ig N. Notice that after a set of elements in squares
have been identified for deletion, they can be deleted in parallel (in a single step)
and all counters can be reset (by pushing the intormation up the tree) in ig N steps.
Although having information go up the tree is handy for deletion, it does complicate
the basic design severely; this feature might therefore not be implemented.

So far in our discussion each machine has represented but one set. In some
applications, however, a given user might wish to represent many sets, or many
users might want to use the machine independently for their respective sets. Either
of these can be accomplished so long as the sum of the sizes of the sets is less
than N, the number of square nodes. Although we could "slice" the machine into
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sections to accomplish this, there is a much more elegant solution. Namely, a fixed
portion of each record is dedicated to a "set identification field", or "SetlD". To
process an operation on Set 56 (or a set belonging to user 56), we have as a
prelude to the operation the sequence "check SetlD for equality with 56 and turn
off the processor if not equal". (Notice that we are not requiring that all records in
ail sets be of the same format, but just that they have one field In common.) In an
environment with much sharing, this prelude will occur so often that.it might be
advantageous to provide a single instruction that accomplishes its purpose.

Although so far we have used the tree machine to solve only searching problems,
it can be applied to many other problems as well. For instance, it can be used to
sort a set of M elements in time proportional to M (as long as M is between Ig N and
N, where N is the number of square nodes in the tree machine). This is accomplished
by making two passes through the M elements: the first inserts the elements into
the machine, and the second counts for each element the number of elements less
than it (that is, it computes the element's rank, as we saw before). ' This tells
precisely where each element occurs in sorted order (the output is a permutation
vector), and it is then trivial to arrange the elements into sorted order.' By use of
pipelining, both steps run in time linear in M. Note that it was critical to phrase
sorting as a counting problem, rather than as extracting the minimum, to make use of
pipelining in the second step - this algorithm essentially implements an N2 algorithm
in N time by using ail N processors in parallel. There are many other examples of
such speedups for problems that are not prima facie searching problems. Two such
examples are computing all nearest-neighbor pairs in a k-dimensional point set
(which arises in data analysis) and reporting all pairwise design rule violations in a
VLSI mask (a design automation task). The application of this machine to the
problem of constructing minimum spanning trees has been discussed by Bentley
[1979]--he shows how an N/lg N-processor version of the tree machine can
construct the minimum spanning tree of an N-node graph in 0(N Ig N) time, which is
optimal for complete graphs. Other applications of tree-structured machines have
been studied by Browning [1979].
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This concludes our discussion of the machine at an abstract level, and we can

now state the properties that a concrete embodiment of the machine must possess.

There must be three kinds of nodes in such a machine: circles, squares and

triangles. The circles must broadcast data and have a small amount of state

(namely, to remember how many unused squares are descendants of each of their

sons). The only processing required of a circle is incrementing or decrementing by

one. The squares, however, must have substantial memory and computation power.

Each square must have enough processing capability to handle the most difficult

kinds of queries and updates desired and (usually) enough memory to store the

largest record in most applications. The triangles must be able to combine answers.

Most of the "combinnlors" we desire are very simple to implement; these are and,

or, mm, max, and plus. The only complicated cbmbinator is union, and we are willing

to "turn off" pipelining in the presence of that operator.

3. An Architecture

In Section 2 we described the tree-structured searching machine at an abstract

level, ignoring many issues of implementation. In this section we will move one step

closer to an implementation, and describe a particular architecture (that is, a user's

view of the machine) realizing the abstract machine. It is essential that the reader

understand that the architecture we will investigate is not proposed as the best

possible architecture realizing the abstract machine of the last section. Rather, it is

put forth only as evidence that there is at least one reasonably efficient

architecture for the machine, in Section 4we will discuss how this architecture can

be implemented in VLSI.

The basic structure of the architecture we will investigate is that studied in

Section 2 (illustrated in Figure 2). The flow of instructions and data in the machine

is exclusively from the input node (at the top of the figure) to the output node (at

the bottom) — we will not have deletions that employ any "backwards flow". The

machine is based on 1 0-bit instructions and 32-bit data words (which are

interpreted either as integers in twos-complement or as 32-bit vectors). The top
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data paths in the machine (the son links from circles in Figure 2) are 16 bits wide;

the bottom data paths (links to triangles) are 80 bits wide. The entire machine

operates synchronously; an operation is (perhaps) performed at each node and data

is transmitted from the node to its sons on each major cycle. Having described the

machine at this gross level, we will now examine the circles, squares and triangles
individually.

The primary function of the circle on each major cycle is to broadcast what it just

received to its sons. In only three contexts must it perform a more sophisticated

operation. As a new element is being inserted, it must decide which way to direct
the insertion (to one that has unused square leaves) and then decrement the
appropriate counter by one; it then ships a "no-op" to the other son. The no-op is
effected by having one bit in the instruction turned off as the 1 6-bit instruction is
passed to the "other" son. To accomplish a deletion we insert an instruction packet

of three 16-bit instructions at the root node. The first instruction is the deletion
and the next two 16-bit words contain the binary address of the node to be

deleted. The circles can tell by looking at appropriate bits of the address whether
they should increment one of their counters as they see this instruction. The final

capability the circles must have is that of passing data to the squares, without
Interpreting that as an instruction to them; we will return to this issue as we discuss
the squares.

While the circles have the simplest architectures of the three units we will see,
the squares have the most complex. The abstract machine requires that the

squares be able to store data and to perform enough calculations to answer queries

and perform updates. This architecture will accomplish both these tasks by shipping
combinations of instructions and data to the machine. We now have to rnalce a

fundamental design decision: should the individual squares be special-purpose

devices (honed for a particular view of the tree machine's task), or should they be
(in some limited sense) general-purpose computing devices? We will choose the

latter course, and make each square a "baby" yon Neumann computer; it is
Important, however, to emphasize that this is merely a design decision and not an
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inherent property of the abstract machine.

Each square will be a small yon Neumann-like processor that receives its

instructions o\u\ data from an external, 16-bit stream. An individual processor

contains sixteen 32-bit words of memory, two 32-bit registers, and a vector of

eight single-bit data flags (F[o], F[l], ..., F[7]). The processor also contains an

eight-bit Set Identification number (SetlD), and an Instruction Register. The first bit

of the F vector (F[o]) is used as the "Active" bit of the processor; a special

"Enable" command turns on all processors (by setting F[o] to one), and a processor

can conditionally turn itself off by storing a zero in F[o]. The basic layout of the

machine is shown in Figure 4 (notice that because the machine is toiated 90°, the

data flows from right to left rather than from top to bottom).

The 16-bit instruction format for the square processor is shown in Figure 5. The

first bit of an instruction processed by the squares is always zero; a one in that bit

signifies an instruction that is ignored by the squares but passed on to the triangles.

The two Fam bits specify one of the four families to which an instruction can belong

(Arithmetic-Logical, Load-Store, Bit or Special), and the Code gives the opcode of

the instruction. There is a one bit flag. (Flag) in each instruction, and arguments to
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the instruction are either two four-bit addresses (A1and A2), an 8-bit string (Name)
or a five-bit integer (Num). The actual instructions are described by group in an
ISP-like language in Table. 1. All of the arithmetic-logical instructions are
zero-address instructions, combining registers RA and RB and storing the result in
either RA or RB (usually RA). The load-store instructions specify one of 16 memory
addresses as their operand; the data movement is then between that address and
the register RB. The bit operations generally have two addresses: they combine
the first and the second operands, storing the result in the first. The exceptions to
this pattern are the unary not operator and the compare (comp) operation; the latter
compares RA with RB and stores in the first bit (F[Al]) whether or not the values
are equal and tells which inequality in the second bit (F[A2]) — this is just a
straightforward encoding of three states into two bits.

Figure 5. Instruction format.

The only instructions that are not entirely obvious are the special instructions.
The enable instruction turns on all processors in the tree. The ins (insert)
instruction turns on precisely one processor, turning off the rest (and decrementing
the counters in the circles). The" del (delete) instruction has no effect on the
processors; it only increments the appropriate counters in the circles (the squares
must ignore the two following instructions packets, though — they are just the
processor address). The ship instruction allows data to enter the RB register from
the data/instruction stream. The Flag bit tells whether the next one or two 16-bit
packets should be loaded into RB; the data can then be processed as desired. The
chksid and setsid instructions are for manipulating the 8-bit SetlD register; the
former turns off the processor if SetlD is not equal to Name, and the latter loads the
SetlD field from Name.
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sub -> RA <- RA -RB

rand -* RA <- RA ARB
ror -* RA<- RA VRB
rxor -* RA <- RA ©RB

swap

■

-♦ RA RB

Bit
bandAl,A2 -> F[Al ]«- F[Al ] A F[A2]
bor AI.A2 '-* F[Al ]<- F[Al] VF[A2]
bxorAl,A2 -> F[Al ]<- F[Al ] © F[A2]
bnot A 1-* FfAll <- ~ FfAi 1

ins ~* F[o] <- this processor selected
del -» (defined in text)
ship Flag -» (defined in text)
chksid Name -> F[o] <- SetlD = Name
setsid Name -* SetlD *- Name

Table U Instruction set for squares.

To illustrate the operation of the processors we will study two program segments
for performing searches. The first segment is for member searching.

Arithmetic-logical

«'* dcJ -4 RA <- RA +RB

neg ~+ ra <- -RA

mot -* ra «- ~RA
shift Num -* RA <- RA left shifted by Num
tab -> ra <- RB
tba -> rb «- RA

Load-Store
Idb Num

■

-» RB <- M[Num]
stb Num -» M[Num] <- RB

bnot A 1-* F[Al] «- ~ F[Al]
comp A1,A 2-* F[Al] «- RA=RB; F[A2] <- RA <RB

Special
enable -> F[o] «- 1
ins -> FfOl <- tl
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chksid ThisSet // Turn off undesired processors
ship Two // The next two packets hold the comparand
data^
datap
tab // Put comparand in RA
Idb KeyAd // Put key in RB
comp 1 ,2 // Answer is in F[l]

The search key enters the RB register from the data stream and is then transferred
to the RA register. The program then loads the key field of the record into the RB
register (KeyAd is an integer identifying which of the 16 memory words holds the
key), and makes the comparison. F[l] is then one if and only if the record's key
field is equal to the data shipped in the stream. At this point, the answer can be

combined in the triangle network.

The next program that we will examine arises in "nearest neighbor" searching; it
computes the distance between the data and the key field of the record. Since we

desire the absolute value of the difference of the key and the data, we must have
a conditional step in our program.

chksid ThisSet
ship Two // RA <- Data
dataj_
datap
tab
Idb KeyAd // RB «- Key
comp 2,0 // If Data<Key, leave processor on
swap
chksid ThisSet // Turn ail processors back on
sub // RA «- |Key-Data|

The crucial step of this program is the comp instruction: if Data is less than Key
then a one is stored in F[o], which leaves the processor on; the swap then
interchanges key and data. The next instruction (chksid) turns all appropriate

processors back on, and the subtract correctly computes a positive value. The
triangles can then be instructed to return the minimum of these values.

The two code segments that we have just seen illustrate many of the aspects of
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instructions to "critical" operations in the task clusters very closely around 2 5Th,s statist* is evidence for the vindication of our design decision to make thesquares general-purpose machines, rather than special devices tailored to thesearching task domain. (Pursuing that alternative remains an interesting openproblem.) y p n

Before ending our discussion of the squares, it is interesting to compare thedes.gn of the processor with a more typical yon Neumann processor. In some wayswe faced exactly the same problems: the choices of data representation'
.nstruction formatting, operation set, and addressing were all taken from the yonNeumann design space as discussed by Blaauw and Brooks [1979]. On the otherhand, we avoided many of the issues faced by rip«*i

"«*
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Before we discuss the architecture of the triangle, we must settle one more point
about what we want it to do. In most app.ications that compute the minimum of a set(for .nstance), we want to know not oniy what the value of the minimum is but alsowhat element has that value. We therefore have three objects associated withcomputing the minimum: the operation (minimum), the value, and the name (which Is a32-bit word associated with the value; its address or "key" in many applications)
When combining two such objects, we take the value as the minimum of the twovalues, and the name from the name of the smaller value. The name is thusmnerUed from the minimum. We will also associate names with other binary
operators: the name of maximum is inherited from the node with greater value- forPlus, from a nonzero eiement; for or, from a nonzero bit vector (arbitrary if both arezero); and for and from n zero bit vector.

Having defined the concepts of value, name and inheritance, it is straightforward
to describe the architecture of the triang.es. They win operate on 80-bit packets-
-16 bits of instruction, and 32 bits each of value and name. Computing mm. max



30 August 1979 Tree Machine for Searching

16

il

I*
il
I

plus, and, and or are all simple. Union is a bit more detailed, but also conceptually
straightforward. One aspect that we have not mentioned is the interface between
the squares and the triangles; we must include instructions for transferring the
contents of the RB register to the name or value field of the triangle immediately
beneath it (these could be included in the load-store family). This allows us to give
complete programs for answering queries. After computing the answers (as

illustrated in the two segments shown above), we load them into the desired fields
of the/triangles, and combine them as desired.

It is important to emphasize that the architecture we have just seen is not the
architecture that the ultimate user of the machine will see. Rather, there will be a
hierarchy of functions available to him. At the highest level, he will be able to
perform operations on sets (load a set, erase a set, for each element in the set, and
so forth); at an intermediate level there are record-handling operations (defining
queries or inserting, deleting and updating records); and at the lowest level there
are the machine instructions themselves. At the lowest level the user' can make
very efficient code by knowing the details of the machine; at the higher levels he
sacrifices efficiency for clean and easy code.

Nt P^t of the implementation of this architecture is that there be a
fairly sophistiqat«.c<,4cyice^ontrollerfor the tree machine (such as an off-the-shelf
microprocessor). This controller will implement the hierarchy of functions mentioned
above. This will also reduce the bus activity substantially by having the controller
fetch items from main memory and issue instructions to the tree machine; it appears
that having the CPU itself perform these tasks would lead to a substantial
degradation in overall system performance.

4. Discussion of Implementation

in this section we wMI discuss one implementation of the architecture of Section 3
in VLSI technology. The fundamental description of the implementation is that it is
bit-serial. There are two motivations for this: one, to exploit the shift-register
technology of VLSI, and two, to use very few pins on packages.
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The implemr.ntation of both the circles and the triangles described in the last

section is straightforward. The squares are also easy to implement bit-serially. The

16-word memory is in fact a parallel shift register, 16 bits wide and 32 bits long.

The two registers RA and RB are also shift registers. To load or store a word, RB
and the memory shift register are shifted in parallel, and the memory controller of

Figure 4 is just a multiplexor (decoding a 4-bit address to one of 16 lines). All of

the arithmetic-logical operations arc accomplished by putting a single-bit function

box between the RA and RB registers, and then shifting the pair through it (all

operations require at most one bit of memory). Notice that we have assumed that

the squares have 32 minor cycles during each major cycle of the machine. The bit

operations are straightforward to implement if the Flag array is just a small RAM.

Estimates by experienced VLSI designers indicate that the chip area for the

functiob.a|i,tyJn

)

„\hc.,.s

;

.r4uare is about equal to the chip area required for the 512-bit

memory,. Using current technology, it is easy to imagine putting 16 squares on a

single chip.

Now that we know how we will implement the individual processing elements

(circles, squares and triangles), we must describe how to place them on a chip. The

first simplification we will make is to consider them as standard binary trees rather

than the "mirrored" binary tree of Figure 2; the unmirroring process is illustrated in

Figure' 6. We now face the problem of laying out a binary tree on a chip. This

problem has been studied by Mead and Rem [1979], who suggest the

space-economical layout illustrated in Figure 7. The amount of space used in that

layout is proportional to the number of processors on the chip. Note that each edge

in that layout is realized by two "wires" on the chip -- one for data going to the

squares, and one for data coming from the squares.

Since only some fixed number of the processors in a tree machine will fit on a

single chip, it is important that we discuss the packaging of the chips. The

packaging strategy we propose is illustrated in Figure 8. There are two kinds of

chips in that figure: the leaf chips and the internal chips. The leaf chips contain
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Figure 7. Tree layout on a chip.

(say) 16 square nodes and 15 circle and triangle nodes. All the communication to a
leaf chip is through two wires, so the chip needs only two communications pins

(besides power, ground and timing synchronization pins). Notice that this implies

that with technological advances in VLSI, we will be able to place many more
processors on a square chip; we are not bound by pin limitations. The internal chips

would probably be constructed with seven circles and triangles on them; this implies
that there is one input-output pair of wires at the top of the chip and eight pairs at
the bottom. The total number of pins for this chip is therefore eighteen (plus

miscellaneous pins). This chip is therefore pinbound even in today's fabrication
technology; unless there are unexpected advances in packaging technology, the
internal chips will probably continue to have seven or at most fifteen pairs of circles

and triangles.

To get a better feeling for the size of the tree machine, we will briefly consider
how one might be built today. Suppose that we put sixteen square nodes on each

leaf chip, and seven circle-triangle pairs on each internal chip (both of these are

Figure 6. "Unmirroring" the tree machine
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Figure a. Two kinds of chips.

easily accomplished in today's technology). We will now put 64 leaf chips and nine
internal chips on a board; this gives us 1024 square nodes. We can then put
sixteen of these boards m a small cabinet, giving a tree machine of more than
sixteen thousand square nodes, each holding a 512-bit record. If we assume that
technology continues to double the number of components on a chip every two
years, this implies that we can expect a tree machine of one million records to fit in
about a cubic foot of space by the end ofthe 1 9So's.

These rough (but fairly conservative) estimates indicate that the tree machine
might be one reasonable way to exploit the processing power that VLSI will give us.
Before we can assert this with confidence, however, we must show that the tree
machine is a wiser way to invest resources than other structures for searching. For
example, might it be better to put the same resources into a large RAM memory
rather than a tree machine? The authors' preliminary investigations strongly
suggest that the excess cost of the tree machine compared to a RAM is very small
compared to the functionality purchased, but the detailed comparison of this
architecture to the RAM and its other competitors remains an open problem.

5. Conclusions

In this paper we have investigated the tree machine for searching problems on
several levels. In Section 2 we studied it in an abstract setting and showed that it
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can rapidly solve many searching problems, as well as some other problems that do
not immediately appear to be searching problems. in Section 3 we saw an
architecture (that is, a user's view) of the machine, and in Section 4 we saw that
that architecture can be efficiently implemented in VLSI technology. Having studied
the machine at these various levels, we will now spend a few moments summarizing
the contributions of this work.

This machine can be compared with many other architectures. It is similar to an
associative memory in many aspects, but it can perform many more operations than
even the most powerful associative memories considered to date (see, for example,

Lamb and Vandersiice [1978]). One might consider the square processors as
forming a Single-Instruction, Multiple-Data stream (SIMD) computer, but each square
is considerably simpler than most SIMD machines proposed to date. The tree
machine is also superficially similar to the CASSM computer of Su et ai [1979], but
there are fundamental differences in the two machines at both the architectural and
implementation levels. Two other machines to which it might be compared are the
tree-structured machines of Mago [1979] and Sequin, Despain and Patterson
[1978]. Both of these machines, however, are put forward as general-purpose
computing devices, while our machine is much more specialized to the particular
problem of searching.

Although we explored only one design path in this paper, it is important to
remember that there are many variants of the tree machine. For example, in the
unmirrored tree machine of Figure 6, the circle-triangle nodes could be made more
powerful so that they could interact with passing data in more sophisticated ways,
thereby substantially enhancing the machine's capability. So far we have
investigated only binary trees; in certain applications, other branching factors may
prove superior. Other Interesting variants of the machine come from changing the
amount of memory In a square processor; might it be reasonable, for instance, to
have thousands of memory words in each square? Many other design paths remain
unexplored — in this paper he have only attempted to describe the fundamental
concepts of the machine.
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An interesting aspect of the tree machine is what we might call its "computational
structure", which is illustrated in Figure 9. That diagram has three interpretations.
First, it illustrates the tree machine itself: very small input and output channels, with
massive computation poing on in between. Second, it describes the searching
problem: a small question is asked about a large set, giving a small answer. And
finally, the figure illustrates the constraints of working with pinbound VLSI: the
number of pins on a chip is very small compared to the number of functional
components. The fact that the abstract structure of both the searching problem
and the tree machine's solution to it closely model the medium of VLSI indicates that
this approach might be very successful.

To summarize the tree machine, the authors feel that this work has three
contributions. The first is the abstract tree machine: it gives a number of nice
"theoretical" solutions to a large set of problems. The second contribution is the
architecture and implementationwe have proposed; they indicate that this machine
might be a reasonable device to build as further advances in VLSI technology occur.
Finally, we feel that the "computational structure" we just investigated provides an
example of the kind of argument that will justify special-purpose architectures
proposed for implementation in VLSI.
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