
CS 161: Lecture 12

3/23/17

Introduction to File
Systems

Why Do File Systems Exist?
• From the perspective of an OS, a storage device is a big, linear array of bytes

• Sector: Smallest amount of data that the device can read or write in a
single operation

• Most applications want a higher-level storage abstraction that provides:

• String-based naming of application data (e.g., “photos/koala.jpg” instead
of “the bytes between sectors 12,802 and 12,837”)

• Automatic management of free and allocated sectors as files are created
and deleted

• Performance optimizations like:
• Caching of recently read/written data

• Prefetching of preexisting data that is likely to be read in the future

• Some notion of reliability in the presence of application crashes, OS
crashes, and unexpected power failures

Core File System Abstractions:
Files and Directories

• A file is a named, linear region of bytes that can grow and shrink
• Associated with metadata like:

• a user-visible name (e.g., “koala.jpg”)

• a size in bytes

• access permissions (read/write/execute)

• statistics like last modification time

• a seek position if open

• File also has a low-level name (e.g., Linux inode number) that the file system uses to
locate the file data on a storage device

• File systems are typically agnostic about the contents of the file (i.e., applications
decide how to interpret file bytes)

• A directory is a container for other files and directories
• Typically contains pairs of <user-visible-name, low-level-name>

• Nested directories create hierarchical trees (e.g., “/home/todd/photos/koala.jpg”)

Files as Single Extents (1960s File Systems)
• A file’s metadata consists of:

• A starting sector for the file data

• The number of bytes in the file
(note that the last sector may not
be completely full)

• Advantages:
• Simple!
• Metadata is small
• Efficiently supports sequential and

random IO

• Disadvantages:
• For a new file, how much space

should be preallocated?
• What happens if the file needs to

grow beyond its allocation, or
shrink?

• External fragmentation

Metadata

Contiguous

sectors

Files as Collections of Extents (IBM OS360, ext4)
• Advantages:

• If extents are large, sequential IO
almost as fast as with a single extent

• Random IO almost as efficient as with
single extent (offset calculations a little
trickier)

• Metadata is small

• Disadvantages: Most of the single-
extent design challenges are multiplied!
• How large should a file’s initial extents

be?
• What happens if a file needs to grow or

shrink?
• External fragmentation not as bad, but

depending on design, may have
internal fragmentation inside each
extent

Contiguous

sectors. . .

. . .

Files as Linked Lists (FAT: MSDOS, SSD memory cards)

• Advantages

• Easy to shrink and grow files

• Low internal and external
fragmentation

• Calculating sector offsets for
sequential IO is easy

• Disadvantages

• Sequential IO requires a lot of seeks

• Random IO is difficult—where does
the target sector live?

• Must store pointer information at the
end of each data block=

Files as Flat Indices

•Advantages
• Easy to calculate offsets for both

sequential and random IO

• Low internal and external
fragmentation

•Disadvantages
• Maximum file size is fixed by the

number of entries in an index

• Sequential IO requires a lot of seeks

=
=

=

Files as Hybrid Indices (FFS, ext2, ext3)
• Top-level index contains direct

pointers, indirect pointers, doubly-
indirect pointers, etc.

• Advantages:
• Efficient for small files: don’t need to

materialize indirect blocks
• There is still a maximum file size, but it’s

really big
• Low internal and external fragmentation

• Disadvantages:
• Reading or writing a single data block

may require multiple disk accesses to
fetch indirection info

• Even if indirection info is cached,
reading or writing adjacent blocks may
require extra seeks if those blocks are
not physically adjacent on disk

Free Space Management
• Fixed-sized blocks: File systems typically use a bitmap to indicate

which blocks are in use
• Allocation metadata is very compact
• Finding a single free block is straightforward . . .
• . . . but finding a *contiguous* region of N free blocks is tedious without

auxiliary data structures

• Extents: File system can implement “on-disk malloc”
• File system breaks the disk into discrete-sized extents (e.g., 4KB, 8KB,

12KB,…,4MB), or arbitrarily-sized extents sorted by size
• File system maintains a list of unallocated extents
• To allocate an extent for a request of size N bytes, file system uses a

policy (e.g., best-fit, worst-fit, first-fit, etc., each of which has trade-offs
between internal fragmentation, external fragmentation, and speed of
finding a match)

/* On-disk inode */
struct sfs_dinode {

uint32_t sfi_size; /* Size of this file (bytes) */
uint16_t sfi_type; /* One of SFS_TYPE_* above */
uint16_t sfi_linkcount; /* # hard links to this file */
uint32_t sfi_direct[SFS_NDIRECT]; /* Direct blocks */
uint32_t sfi_indirect; /* Indirect block */
uint32_t sfi_dindirect; /* Double indirect block */
uint32_t sfi_tindirect; /* Triple indirect block */
uint32_t sfi_waste[128-5-SFS_NDIRECT]; /* pad to 512 bytes */

};

kern/include/kern/sfs.h

/* File types for sfi_type */
#define SFS_TYPE_INVAL 0 /* Should not appear on disk */
#define SFS_TYPE_FILE 1
#define SFS_TYPE_DIR 2

SFS: Managing Free Space
• In SFS, the block size is 512 bytes

• In SFS, sizeof(struct sfs_dinode) is 512 bytes, which is the block size!
• So, SFS allows blocks to live anywhere on disk—to allocate/deallocate an inode,

SFS manipulates the block bitmap
• The struct sfs_direntry::sfd_ino field contains a block number (the root directory is

always inode 1)
• SFS differs from most file systems, which place inodes in specific regions of the

disk (e.g., inodes blocks should be close to the corresponding file data blocks)

/* In-memory info for a file system */
struct sfs_fs {

struct bitmap *sfs_freemap; /* blocks in use are marked 1 */
bool sfs_freemapdirty; /* true if freemap modified */
struct lock *sfs_freemaplock; /* lock for freemap/superblock */
/* Other fields . . . */

};

Walking A Directory Path /p0/p1/p2/…
• The inode for the root directory has a

fixed, known value

• So, to traverse a directory path, we first set:
• curr_inode to the root directory’s inode

• pathIndex to 0

• curr_path to path_components[pathIndex]

• Then, we iteratively:
• Read the data associated with curr_inode

• Find the directory entry (i.e., the <path,
inode> pair) for which dir_entry.path =
curr_path

• Set curr_inode to dir_entry.inode, and set
curr_path to path_components[++i]

More Fun With Directories

• Using full path names can be tedious, so most file systems associate
a “current working directory” with each process
• The current working directory is stored in the struct proc

• When a process requires the OS to resolve a path, the OS checks whether
the first character in the path is “/”
• If so, start resolving at the root directory

• If not, start resolving at the current working directory

• Most file systems support the special directory entries ”.” and “..”
• “.” refers to the directory itself (e.g., “./foo.txt” refers to a file in the

directory)

• “..” refers to the parent directory (e.g., “../foo.txt” refers to a file in the
parent directory)

Multiple Directory Entries Can Point To The Same File!

• A “soft link” or “symbolic link” is a file that contains
the name of another file

• When the OS encounters a symbolic link, it
continues pathname resolution using the path
name in the link

$ echo “hello” > /target/file
$ ln –s /target/file /path/of/symlink
$ ls –l /target/file /path/of/symlink
-rw-rw-r-- 1 jane admins 6 Mar 22 22:01 /target/file
lrwxrwxrwx 1 jane admins 6 Mar 22 22:01 /path/of/symlink -> /target/file

Multiple Directory Entries Can Point To The Same File!

• A “hard link” directly references an
inode number
• The file system maintains a reference

count for each file
• When you hard link to a file, you

increment the ref count
• When you delete a hard link, you

remove the link from its directory, and
decrement the ref count for the file

• A file’s data is only deleted when its ref
count drops to zero

$ echo “hello” > /target/file
$ ln /target/file /path/of/hardlink
$ ls –l /target/file /path/of/hardlink
-rw-rw-r-- 2 jane admins 6 Mar 22 22:01 /target/file
-rw-rw-r-- 2 jane admins 6 Mar 22 22:01 /path/of/hardlink

The Virtual File System (VFS) Interface

• In The Olden Days, a particular OS could only use a single,
baked-in file system

• A VFS defines an abstract, generic interface that a file system
should present to the OS
• A particular file system implements the abstract VFS methods, and the

OS only interacts with the file system through those VFS methods

• In principle, the core OS doesn’t need to know anything about the
internal implementation of the file system!

• A VFS makes it easy for a single OS to run one (or more!) file
systems of the user’s choice
• Ex: A Linux machine might simultaneously use ext3 for locally storing

files, and NFS for storing files on remote servers

OS161’s VFS: kern/include/vfs.h
/* Abstract low-level file. */
struct vnode {

int vn_refcount; /* Reference count */
struct spinlock vn_countlock; /* Lock for vn_refcount */
struct fs *vn_fs; /* Filesystem vnode belongs to */
void *vn_data; /* Filesystem-specific data */
const struct vnode_ops *vn_ops; /* Functions on this vnode */

};

struct vnode_ops {
int (*vop_read)(struct vnode *file, struct uio *uio);
int (*vop_write)(struct vnode *file, struct uio *uio);
int (*vop_stat)(struct vnode *object, struct stat *statbuf);
//...other vops...

};

