
Overview of the MIPS
Architecture: Part I

CS 161: Lecture 0

1/24/17

Looking Behind the
Curtain of Software

• The OS sits between hardware and user-level
software, providing:
• Isolation (e.g., to give each process a separate

memory region)

• Fairness (e.g., via CPU scheduling)

• Higher-level abstractions for low-level resources
like IO devices

• To really understand how software works, you
have to understand how the hardware works!
• Despite OS abstractions, low-level hardware

behavior is often still visible to user-level
applications

• Ex: Disk thrashing

Processors: From the View of a Terrible Programmer

Source code

Compilation

add t0, t1, t2
lw t3, 16(t0)
slt t0, t1, 0x6eb21

Machine instructions A HARDWARE MAGIC OCCURS

Letter “m” Drawing
of bird

ANSWERS

Processors: From the View of a Mediocre
Programmer

Devices

RAM
PC

Instruction
to executeALU

Registers
• Program instructions live

in RAM

• PC register points to the
memory address of the
instruction to fetch and
execute next

• Arithmetic logic unit (ALU)
performs operations on
registers, writes new
values to registers or
memory, generates
outputs which determine
whether to branches
should be taken

• Some instructions cause
devices to perform actions

Processors: From the View of a Mediocre
Programmer

Devices

RAM
PC

Instruction
to executeALU

Registers • Registers versus RAM
• Registers are orders of

magnitude faster for
ALU to access (0.3ns
versus 120ns)

• RAM is orders of
magnitude larger (a
few dozen 32-bit or
64-bit registers versus
GBs of RAM)

Instruction Set Architectures (ISAs)

• ISA defines the interface which hardware presents to
software
• A compiler translates high-level source code (e.g., C++, Go)

to the ISA for a target processor

• The processor directly executes ISA instructions

•Example ISAs:
• MIPS (mostly the focus of CS 161)

• ARM (popular on mobile devices)

• x86 (popular on desktops and laptops; known to cause
sadness among programmers and hardware developers)

Instruction Set Architectures (ISAs)

•Three basic types of instructions
•Arithmetic/bitwise logic (ex: addition, left-shift,
bitwise negation, xor)

•Data transfers to/from/between registers and
memory

•Control flow
• Unconditionally jump to an address in memory

• Jump to an address if a register has a value of 0

• Invoke a function

• Return from a function

RISC vs CISC: ISA Wars
• CISC (Complex Instruction Set Computer): ISA has a

large number of complex instructions
• “Complex”: a single instruction can do many things
• Instructions are often variable-size to minimize RAM usage
• CISC instructions make life easier for compiler writers, but

much more difficult for hardware designers—complex
instructions are hard to implement and make fast

• X86 is the classic CISC ISA
//Copy %eax register val to %ebx
mov %eax, %ebx

//Copy *(%esp+4) to %ebx
mov 4(%esp), %ebx

//Copy %ebx register val to *(%esp+4)
mov %ebx, 4(%esp)

mov instruction: Operands

can both be registers, or

one register/one memory

location

RISC vs CISC: ISA Wars
• CISC (Complex Instruction Set Computer): ISA has a

large number of complex instructions
• “Complex”: a single instruction can do many things
• Instructions are often variable-size to minimize RAM usage
• CISC instructions make life easier for compiler writers, but

much more difficult for hardware designers—complex
instructions are hard to implement and make fast

• X86 is the classic CISC ISA

//movsd: Copy 4 bytes from one
// string ptr to another
//%edi: Destination pointer
//%esi: Source pointer

if(cpu_direction_flag == 0){
*(%edi++) = *(esi++);

}else{
*(%edi--) = *(%esi--);

}

RISC vs CISC: ISA Wars
• CISC (Complex Instruction Set Computer): ISA has a

large number of complex instructions
• “Complex”: a single instruction can do many things
• Instructions are often variable-size to minimize RAM usage
• CISC instructions make life easier for compiler writers, but

much more difficult for hardware designers—complex
instructions are hard to implement and make fast

• X86 is the classic CISC ISA
//Copy %eax register val to %ebx
mov %eax, %ebx

//Copy *(%esp+4) to %ebx
mov 4(%esp), %ebx

//Copy %ebx register val to *(%esp+4)
mov %ebx, 4(%esp)

mov instruction: Operands

can both be registers, or

one register/one memory

location

//movsd: Copy 4 bytes from one
// string ptr to another
//%edi: Destination pointer
//%esi: Source pointer

if(cpu_direction_flag == 0){
*(%edi++) = *(esi++);

}else{
*(%edi--) = *(%esi--);

}

A single hardware instruction has to do:

• a branch

• a memory read

• a memory write

• two register increments or

decrements

That’s a lot!

if(cpu_direction_flag == 0){
*(%edi++) = *(esi++);

}else{
*(%edi--) = *(%esi--);

}

RISC vs CISC: ISA Wars
• RISC (Reduced Instruction Set Computer):

ISA w/smaller number of simple instructions
• RISC hardware only needs to do a few, simple

things well—thus, RISC ISAs make it easier to
design fast, power-efficient hardware

• RISC ISAs usually have fixed-sized instructions
and a load/store architecture

• Ex: MIPS, ARM
//On MIPS, operands for mov instr
//can only be registers!
mov a0, a1 //Copy a1 register val to a0

//In fact, mov is a pseudoinstruction
//that isn’t in the ISA! Assembler
//translates the above to:
addi a0, a1, 0 //a0 = a1 + 0

RAM is cheap, and RISC makes

it easier to design fast CPUs, so

who cares if compilers have to

work a little harder to translate

programs?

MIPS R3000 ISA†
• MIPS R3000 is a 32-bit architecture

• Registers are 32-bits wide

• Arithmetic logical unit (ALU) accepts 32-bit inputs, generates 32-
bit outputs

• All instruction types are 32-bits long

• MIPS R3000 has:

• 32 general-purpose registers (for use by integer operations like
subtraction, address calculation, etc)

• 32 floating point registers (for use by floating point addition,
multiplication, etc) <--Not supported on sys161

• A few special-purpose registers (e.g., the program counter pc
which represents the currently-executing instruction)

†As represented by the sys161 hardware emulator. For more details on the emulator, see here:
http://os161.eecs.harvard.edu/documentation/sys161/mips.html
http://os161.eecs.harvard.edu/documentation/sys161/system.html

http://os161.eecs.harvard.edu/documentation/sys161/mips.html
http://os161.eecs.harvard.edu/documentation/sys161/system.html

MIPS R3000: Registers

MIPS R3000: A Load/Store Architecture
• With the exception of load and store instructions, all other

instructions require register or constant (“immediate”) operands

• Load: Read a value from a memory address into a register

• Store: Write a value from a register into a memory location

• So, to manipulate memory values, a MIPS program must

• Load the memory values into registers

• Use register-manipulating instructions on the values

• Store those values in memory

• Load/store architectures are easier to implement in hardware

• Don’t have to worry about how each instruction will interact with
complicated memory hardware!

MIPS R3000 ISA

• MIPS defines three basic instruction formats (all 32 bits wide)

opcode (6) srcReg0 (5)srcReg0 (5) srcReg1 (5) dstReg1 (5) shiftAmt (5) func (6)R-type

add $17, $2, $5

000000 00010 00101 10001 00000 100000

unused

Example

Register indices Used by shift

instructions to

indicate shift

amount

Determine operation

to perform

MIPS R3000 ISA

• MIPS defines three basic instruction formats (all 32 bits wide)

I-type srcReg0 (5)opcode (6) srcReg0 (5) src/dst(5) immediate (16)

Example 001000 00010 10001 0000000000000001

addi $17, $2, 1

Example 100011 00010 10001 0000000000000100

lw $17, 4($2)

MIPS R3000 ISA

• MIPS defines three basic instruction formats (all 32 bits wide)

J-type opcode (6) Jump address (26)

Example 000010 00000000000000000001000000

j 64

• To form the full 32-bit jump target:
• Pad the end with two 0 bits (since instruction addresses must be 32-bit aligned)

• Pad the beginning with the first four bits of the PC

How Do We Build A Processor To Execute
MIPS Instructions?

Pipelining: The Need for Speed
• Vin Diesel needs more cars because VIN DIESEL

• A single car must be constructed in stages
• Build the floorboard

• Build the frame

• Attach floorboard to frame

• Install engine

• I DON’T KNOW HOW CARS ARE MADE BUT
YOU GET THE POINT

• Q: How do you design the car factory?

Factory Design #1
• Suppose that building a car requires three tasks that must be

performed in serial (i.e., the tasks cannot be overlapped)

• Further suppose that each task takes the same amount of time

• We can design a single, complex robot that can perform all of
the tasks

• The factory will build one car every three time units

t=0 t=1 t=2

Factory Design #2
• Alternatively, we can build three simple robots, each of which

performs one task

• The robots can work in parallel, performing their tasks on
different cars simultaneously

• Once the factory ramps up, it can make one car every time unit!

t=1 Car 1 Car 0

t=0 Car 0

t=3 Car 3 Car 2 Car 1

t=2 Car 2 Car 1 Car 0
The factory has

ramped up: the

pipeline is now

full!

Pipelining a MIPS Processor
• Executing an instruction requires five steps to be performed

• Fetch: Pull the instruction from RAM into the processor
• Decode: Determine the type of the instruction and extract the

operands (e.g., the register indices, the immediate value, etc.)
• Execute: If necessary, perform the arithmetic operation that is

associated with the instruction
• Memory: If necessary, read or write a value from/to RAM
• Writeback: If necessary, update a register with the result of an

arithmetic operation or a RAM read

• Place each step in its own hardware stage
• This increases the number of instructions finished per time unit, as in

the car example

• A processor’s clock frequency is the rate at which its pipeline
completes instructions

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Opcode

Processors: From the View

of a Master Programmer

//PC=addr of add instr
//Fetch add instr and
//increment PC by 4

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Fetch:add t0, t1, t2

Opcode

//Read reg0=t1 Read reg1=t2
//Write reg=t0
//opcode=add

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Decode:add t0, t1, t2

Opcode

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Execute:add t0, t1, t2
//Calculate read data 0 +
// read data 1

Opcode

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Memory:add t0, t1, t2
//Nothing to do here; all
//operands are registers

Opcode

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+
Sign-extended imm

Writeback:add t0, t1, t2
//Update t2 with the
//result of the add

Opcode

Reg0==0?

//PC=addr of lw instr
//Fetch lw instr and
//increment PC by 4

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Fetch:lw t0, 16(t1)

Opcode

//Read reg0=t1 Write reg=t0
//imm=16
//opcode=lw

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Decode:lw t0, 16(t1)

Opcode

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Execute:lw t0, 16(t1)
//Calculate the mem addr
// (value of t1) + 16

Opcode

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Memory:lw t0, 16(t1)
//Ask the memory hardware
//to fetch data at addr

Opcode

ID
/E

X

E
X

/M
E
M

M
E
M

/W
B

+
4

MemoryPC

Addr

Instr

Registers

Read reg0 idx

Read reg1 idx

Write reg idx

Write reg data

Read data 0

Read data 1

Sign extend

16-bit imm to 32-bit

C
u
rr

e
n
t

in
st

ru
ct

io
n
 r

e
g

is
te

r

Next sequential PC

A
LU

? Memory
Addr

WrData

RdData

?
Write reg idx

+ Reg0==0?

Sign-extended imm

Writeback:lw t0, 16(t1)
//Update t0 with the
//value from memory

Opcode

