V)

0. —

| —

St o

er

c ..

._Le._ﬂw
o

Y D

o 2 — X

WC,.I_/
D O

D 2

WhS

o o Y

> <

O

BT L WL L LA L L Y ,,p»

LI T
T e




Looking Behind the
~ Curtain of Software

\,\ * The OS sits between hardware and user-level
software, providing:

* [solation (e.g., to give each process a separate
memaory region)

* Fairness (e.qg., via CPU scheduling)

* Higher-level abstractions for low-level resources
like IO devices

. * To really understand how software works, you
have to understand how the hardware works!
* Despite OS abstractions, low-level hardware

behavior is often still visible to user-level
applications

* Ex: Disk thrashing




Compilation‘

add to, t1, t2
lw t3, 16(t0)
slt t0, tl, @x6eb21l

Machine instructions

Letter "'m”  Drawing
of bird™ g
The Weeknd

ANSWERS

B . HARDWARE MAGIC OCCURS



Processors: From the View of a Mediocre
Programmer

Registers

)

PC

Instruction
to execute

:

@ .
(@)

RAM

L] L]

oF

-

. .
» Devices

Program instructions live
in RAM

PC register points to the
memory address of the
instruction to fetch and
execute next

Arithmetic logic unit (ALU)
performs operations on
re%isters, writes new
values 1o registers or
memory, generates
outputs which determine
whether to branches
should be taken

Some instructions cause
devices to perform actions



Processors: From the View of a Mediocre
Programmer

Registers

* Registers versus RAM

)

PC

Instruction
to execute

:

(@)

RAM

—

» Devices

* Registers are orders of

magnitude faster for
ALU to access (0.3ns
versus 120ns)

« RAM is orders of

magnitude larger (a
few dozen 32-bit or
64-bit registers versus
GBs of RAM)



Instruction Set Architectures (ISAs)

*[SA defines the interface which hardware presents to
software

* A compiler translates high-level source code (e.qg., C++, Go)
to the ISA for a target processor

* The processor directly executes ISA instructions

* Example ISAs:
* MIPS (mostly the focus of CS 161)
* ARM (popular on mobile devices)

* X386 (popular on desktops and laptops; known to cause
sadness among programmers and hardware developers)



Instruction Set Architectures (ISAs)

* Three basic types of instructions

* Arithmetic/bitwise logic (ex: addition, left-shitt,
pDItwise negation, xor)
* Data transters to/from/between registers ana
memory

 Control tflow
* Unconditionally jump to an address in memory
 Jump to an address it a register has a value of O
* Invoke a function
 Return from a function




RISC vs CISC: ISA Wars

 CISC (Complex Instruction Set Computer): ISA has a
large number of complex instructions
 "Complex”: a single instruction can do many things
« Instructions are often variable-size to minimize RAM usage

o CISC instructions make life easier for compiler writers, but
much more difficult for hardware designers—complex
instructions are hard to implement and make fast

« X86 is the classic CISC ISA
//Copy %eax register val to %ebx

mov instruction: Operands ~ MOV %eax, %ebx
can both be registers, or

one register/one memory ~ //Copy *(%esp+4) to %ebx
location mov 4(%esp), %ebx

//Copy %ebx register val to *(%esp+4)
mov %ebx, 4(%esp)



RISC vs CISC: ISA Wars

 CISC (Complex Instruction Set Computer): ISA has a
large number of complex instructions
 "Complex”: a single instruction can do many things
« Instructions are often variable-size to minimize RAM usage

o CISC instructions make life easier for compiler writers, but
much more difficult for hardware designers—complex
instructions are hard to implement and make fast

e X806 is the classic CISC ISA

//movsd: Copy 4 bytes from one | if(cpu direction flag == 0){
// string ptr to another *(%edi++) = *(esi++);
//%edi: Destination pointer }telseq

//%esi: Source pointer *(%edi--) = *(%esi--);




A single hardware instruction has to do:
* a branch
* a memory read
* 3 memory write
* two register increments or
~/ decrements

‘ That's a lot!

“““‘J%

/

if(cpu direction flag == 0){
*(%edi++) = *(esi++);
}telseq

‘, *(%edi--) = *(%esi--);
}




RISC vs CISC: ISA Wars

* RISC (Reduced Instruction Set Computer):
[SA w/smaller number of simple instructions

* RISC hardware only needs to do a few, simple
things well—thus, RISC ISAs make it easier to
design fast, power-efficient hardware

 RISC ISAs usually have fixed-sized instructions
and a load/store architecture
e Ex: MIPS, ARM

//0n MIPS, operands for mov instr
//can only be registers!
mov a@, al //Copy al register val to a@

RAM is cheap, and RISC makes

iteasmwtfﬁdeggnjéstCPLB,SO //In fact, mov is a pseudoinstruction
who cares it compilers have to //that isn’t in the ISA! Assembler
work a little harder to translate //translates the above to:

programs? addi a9, al, @ //a@ = al + ©



MIPS R3000 ISA"

« MIPS R3000 is a 32-bit architecture
* Registers are 32-bits wide

* Arithmetic logical unit (ALU) accepts 32-bit inputs, generates 32-
bit outputs

* All instruction types are 32-bits long

 MIPS R3000 has:

32 general-purpose registers (for use by integer operations like
subtraction, address calculation, etc)

* A Tew special-purpose registers (e.g., the program counter pc
which represents the currently-executing instruction)

tAs represented by the sys161 hardware emulator. For more details on the emulator, see here:
http://os161.eecs.harvard.edu/documentation/sys161/mips.html
http://os161.eecs.harvard.edu/documentation/sys161/system.html



http://os161.eecs.harvard.edu/documentation/sys161/mips.html
http://os161.eecs.harvard.edu/documentation/sys161/system.html

MIPS R3000: Registers

Szero SO Constant 0 value
Sat S1 Assembler temporary
Sv0-Sv1 $2-S3 Procedure return values or expression
evaluation
Sa0-Sa3 S4-S7 Arguments/parameters
St0-St7 $8-515 Temporaries
S$s0-Ss7 $16-523 Saved Temporaries
St8-St9 §24-S25 Temporaries
SkO-Sk1 $26-S27 Reserved for OS kernel
Sgp $28 Global Pointer (Global and static
variables/data)
Ssp S29 Stack Pointer
Sfp S30 Frame Pointer

Sra S31 Return address for current procedure



MIPS R3000: A Load/Store Architecture

 With the exception of load and store instructions, all other
instructions require register or constant (“immediate”) operands

* Load: Read a value from a memory address into a register
* Store: Write a value from a register into a memory location

* SO, to manipulate memory values, a MIPS program must
* Load the memory values into registers
* Use register-manipulating instructions on the values
e Store those values in memory

* Load/store architectures are easier to implement in hardware

» Don't have to worry about how each instruction will interact with
complicated memory hardware!



MIPS RBOOO ISA Determine operation

to perform

« MIPS defines three basic instruction formats (all 32 bits wide)

v v

R-type | opcode (6) | srcRegO (5) | srcRegl (5) | dstRegl (5) | shiftAmt (5) func (6)

! ! ! !

Register indices Used by shift
instructions to

indicate shift

amount
Example 000000 00010 00101 10001 00000 100000
T \\/' unused T

=
add $17, $2, $5



MIPS R3000 ISA

« MIPS defines three basic instruction formats (all 32 bits wide)

I-type

Example

Example

opcode (6) srcRegO (5) | src/dst(5) immediate (16)

001000 00010 10001 0000000000000001

T

addi $17, $2, 1

100011 00010 10001 0000000000000100

T N

lw $17, 4($2)




MIPS R3000 ISA

« MIPS defines three basic instruction formats (all 32 bits wide)

J-type | opcode (6) Jump address (26)
Example 000010 00000000000000000001000000
] 64

e To form the full 32-bit jump target:
 Pad the end with two O bits (since instruction addresses must be 32-bit aligned)
« Pad the beginning with the first four bits of the PC



How Do We Build A Processor To Execute
MIPS Instructions?



Pipelining: The Need for Speed

* \/in Diesel needs more cars because VIN DIESEL -

* A single car must be constructed in stages
 Build the floorboard
 Build the frame
 Attach floorboard to frame

* Install engine

« | DON'T KNOW HOW CARS ARE MADE BUT
YOU GET THE POINT

» Q: How do you design the car factory? 7('

J'\
AN



Factory Design #1
* Suppose that building a car requires three tasks that must be
performed in serial (i.e., the tasks cannot be overlapped)

e Further suppose that each task takes the same amount of time

* We can design a single, complex robot that can perform all of
the tasks

/e

&/

[ / S>>
RIS

N

* The factory will build one car every three time units



Factor%/ Design #2
* Alternatively, we can build three simple robots, each of which
performs one task

* The robots can work in parallel, performing their tasks on
different cars simultaneously

QmL=="3
I \
t=0| Car0
t=1] Carl Car 0
The factory has
ramped up: the Ipt=2 Car Z Carl Car 0O
pipeline is now
full! t=3 | Car3 Car 2 Car 1




Pipelining a MIPS Processor

* Executing an instruction requires five steps to be performed
* Fetch: Pull the instruction from RAM into the processor

» Decode: Determine the type of the instruction and extract the
operands (e.qg., the register indices, the immediate value, etc.)

* Execute: If necessary, perform the arithmetic operation that is
associated with the instruction

* Memory: If necessary, read or write a value from/to RAM
« Writeback: If necessary, update a register with the result of an
arithmetic operation or a RAM read
» Place each step in its own hardware stage
* This increases the number of instructions finished per time unit, as in
the car example

* A processor’s clock frequency is the rate at which its pipeline
completes instructions



Next sequential PC
—

Processors: From the View

—> Addr
PC| |Memory

Instr Ly

Current instruction register

b

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

Read data 0 >
Read datal
Registers
Sign extend
LO-bit imm to 32-bj
1 Write reg idx ':

I

ID/EX

Opcode

L)

ALU

A A 4

_>
@*@ of a Master Programmer
Sign-extended imm

EX/MEM

RdData

Memory

Addr
WrData

MEM/WB




Next sequential PC

—p

_>
Reg0==07
Sign-extended imm

Fetch:add to, t1, t2

//PC=addr of add instr
//Fetch add instr and
//increment PC by 4

- Addr
PC| [Memory

Instr

Current instruction register

b

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

Read data O
Read data 1

Registers

i

Sign extend
|6-bit imm to 32-bj

Write reg idx

vV

\ A 7

L

Opcode
z M
>< LL] > ;
Ll ~.
~ v z z
= X =
B =\, ] >
@ < RdData >
Memory 1
—4 > Addr @
> . WrData
g




Decode:add to, t1, t2

—p>
Next sequential PC Reg0==07 //Read reg@=tl Read regl=t2
N //Write reg=to
Sign-extended imm

//opcode=add
4 & [—*Read reg0 idx
%—> Read regl idx
L : , Opcode
— | p{Write reg idx .
O | 1”1 Write reg data >
PC| [Memory| | 3 Read data 0 v 2 >
Instr 1») G Read data 1 >< L
= B AN | S
4_, Registers @ < RdData b 1
-
L Sign extend 4 Memory
5 [6-bit imm to 32-bi | Addr ?
U |} Write reg idx -: : - »(WrData

[C ]




Next sequential PC
—

_>
Reg0==07
Sign-extended imm

E

xecute:add to, t1, t2

//Calculate read data 0 +

—> Addr
PC| |Memory

Instr Ly

Current instruction register

b

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

ID/EX

Read data O
Read data 1 [T
Registers
Sign extend
L6-bit imm to 32-bj
1 Write reg idx ':

I

Opcode

L&)

//

ALU

A A 4

EX/MEM

read data 1
M
=
>
L]
>
RdData
Memory 1
Addr @
WrData




Next sequential PC

—p

_>
Reg0==07
Sign-extended imm

Memory:add to, tl1, t2

//Nothing to do here; all
//operands are registers

—> Addr
PC| |Memory

Instr Ly

Current instruction register

b

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

Read data O
Read data 1

Registers

i

Sign extend
|6-bit imm to 32-bj

Write reg idx

vV

\ A 7

rL

ID/EX

Opcode

L)

ALU

\ A 4

EX/MEM

RdData

Memory

Addr
WrData

MEM/WB




Next sequential PC
—

_>
Reg0==07
Sign-extended imm

—> Addr
PC| |Memory

Instr Ly

Current instruction register

b4

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

Read data O
Read data 1 [T
Registers
Sign extend
L6-bit imm to 32-bj
1 Write reg idx ':

I

ID/EX

Opcode

L)

ALU

Writeback:add to, t1, t2

//Update t2 with the
//result of the add

EX/MEM

A A 4

RdData

Memory

Addr
WrData

MEM/WB




Next sequential PC

—p

_>
Reg0==07
Sign-extended imm

Fetch:1w tO, 16(tl)

—> Addr
PC| |Memory

Instr

Current instruction register

b

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

Read data O
Read data 1 [T
Registers
Sign extend
L6-bit imm to 32-bj
1 Write reg idx ':

I

ID/EX

Opcode

L)

//PC=addr of 1lw instr
//Fetch 1lw instr and
//increment PC by 4

EX/MEM

MEM/WB

RdData

Memory
> Addr

ALU

> L3 WrData
>




Next sequential PC
—

_>
Reg0==07
Sign-extended imm

Decode:1lw tO, 16(tl)

Write reg=to

//Read rego=t1l

//imm=16
//opcode=1w

—> Addr
PC| |Memory

Instr Ly

Current instruction register

b4

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

Read data 0
Read datal >
Registers
Sign extend
LO-bit imm to 32-bj
1 Write reg idx ':

rL

ID/EX

Opcode

L)

ALU

A A 4

EX/MEM

RdData

Memory

Addr
WrData

MEM/WB




Next sequential PC
—

_>
Reg0==07
Sign-extended imm

Execute:1lw tO, 16(t1)

//Calculate the mem addr

—> Addr
PC| |Memory

Instr Ly

Current instruction register

b

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

Read data O
Read data 1 [T
Registers
Sign extend
L6-bit imm to 32-bj
1 Write reg idx ':

I

ID/EX

Opcode

L&)

//

ALU

(value of t1) + 16

A A 4

EX/MEM

RdData

Memory

Addr
WrData

MEM/WB




Next sequential PC

—p

_>
Reg0==07
Sign-extended imm

Memory:lw tO, 16(tl)

//Ask the memory hardware
//to fetch data at addr

—> Addr
PC| |Memory

Instr Ly

Current instruction register

b

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

Read data O
Read data 1

Registers

i

Sign extend
|6-bit imm to 32-bj

Write reg idx

vV

\ A 7

rL

ID/EX

Opcode

L)

ALU

\ A 4

EX/MEM

RdData

Memory

Addr
WrData

MEM/WB




Next sequential PC
—

—p I
Reg0==07
Sign-extended imm

—> Addr
PC| |Memory

Instr Ly

Current instruction register

b4

R

Read reg0 idx

ead regl idx

> Write reg idx
™ Write reg data

Read data O
Read data 1 [T
Registers
Sign extend
L6-bit imm to 32-bj
1 Write reg idx ':

I

ID/EX

Opcode

L)

ALU

Writeback:1lw tO, 16(tl)

//Update t0 with the
//value from memory

EX/MEM

A A 4

RdData

Memory

Addr
WrData

MEM/WB




