
CS 161: Lecture 9

2/28/17

Virtual Memory,
Part IV

I’d love to keep

memory . . . NOT.
talking about virtual



Working Sets

•At any given time, a process’s working set is the set of 
actively-referenced virtual pages
• If a process’s working set is not completely in physical RAM, 

then the process will thrash

• When someone asks “How much memory does Program X 
require?”, they are asking “How big is X’s typical working set?”

• Some schedulers are aware of working sets
• Scheduling a process with an evicted working set will lead to 

a bunch of swapping

• So, scheduler can preferentially run processes that have their 
working sets in RAM



Balance Sets: Working-set-aware Schedulers
• Partition runnable processes into two groups

• Active processes have their working sets in physical RAM
• Inactive processes have swapped-out working sets

• Balance set: the pages in the working sets of the active processes
• If the balance set grows larger than physical RAM, the scheduler forces 

some active processes to become inactive (ideally, the newly inactive 
processes were already in a waiting state, e.g., waiting on user input)

• If the balance set shrinks to be less than physical RAM, the scheduler 
makes some inactive processes active

• Scheduler must avoid starvation—eventually, all inactive processes must 
become active

• RAM is wasted if it’s not being used, so OS should try to use it all!
• If there’s no thrashing, then having extremely high RAM utilization is 

desirable



Swapping in Practice
• Swapping is typically rare on desktops/laptops, since RAM is 

plentiful
• However, on low-cost desktops and laptops with little RAM, swapping can 

be frequent and painful

• Even on machines with a lot of RAM, OS must be prepared for RAM 
oversubscription

• By default, Android and iOS do not swap!
• Mobile devices use flash for storage

• Flash devices only support a limited number of writes

• So, Android and iOS use virtual memory and paging (i.e., a layer of 
indirection between virtual and physical addresses) . . . 

• . . . but Android and iOS do not swap to avoid wearing out the flash



Swapping in Practice
• When memory pressure is high, Android+iOS forcibly evict entire 

apps from memory
• iOS fires the applicationWillTerminate() callback of the about-to-

be-evicted app, allowing the app to serialize app-specific state before 
eviction (this state is typically much smaller than the entire working set of 
the app!); later, when the app is resurrected, it uses the serialized state to 
reinitialize itself
• applicationWillTerminate() only invoked on background apps
• Suspended apps, i.e., apps that aren’t running code but have pages in 

memory, are terminated without notification
• Android invokes onTrimMemory(int urgency) method to inform 

apps that memory pressure is high and apps should deallocate 
unneeded memory (iOS defines similar notifications)
• Android can kill paused apps at any time . . .
• . . . so apps should serialize critical state when they transition to a 

paused state!


