
A Brief History of Operating Systems 

•  Learning objectives 
•  Develop a framework to think about system functionality and 

how and why it evolved. 
•  Explain how external forces (e.g., technology and human 

capital) shape operating system design and functionality. 
•  Speculate realistically about what changes might lie on the 

horizon for operating systems. 

1/28/2015 CS161 Spring 2016 1 



1/28/2015 CS161 Spring 2016 2 

Phase 0: In the beginning 

•  Phase 0: No operating system: 1940-1955 
•  Computers are exotic experimental equipment. 
•  Program in machine language. 
•  Use plugboards to direct computer. 
•  User sits at the console. 

•  No overlap between computation, I/O, think time, and response time. 
•  Programs manually loaded via card decks. 

•  Goal: churn out tables of numbers. 
•  Progress: 

•  People developed libraries they could share with others. 
•  Theses libraries were the precursor to today’s operating systems. 



1/28/2015 CS161 Spring 2016 3 

Phase 0: In the beginning 

•  Phase 0: No operating system: 1940-1955 
•  Computers are exotic experimental equipment. 
•  Program in machine language. 
•  Use plugboards to direct computer. 
•  User sits at the console. 

•  No overlap between computation, I/O, think time, and response time. 
•  Programs manually loaded via card decks. 

•  Goal: churn out tables of numbers. 
•  Progress: 

•  People developed libraries they could share with others. 
•  Theses libraries were the precursor to today’s operating systems. 



Phase 1: 1955-1970 

•  Computers are expensive; people are cheap 
•  Make more efficient use of the computer: move the person 

away from the machine. 
•  OS becomes a batch monitor: a program that loads a user’s 

job, runs it, and then moves on to the next. 
•  If program failed, the OS record the contents of memory and 

saves it somewhere. 
•  More efficient use of hardware, but increasingly difficult to 

debug! 

1/28/2015 CS161 Spring 2016 4 



Phase 1 Technology 
•  Data channels and interrupts: allow overlap of I/O and 

computation. 
•  Buffering and interrupt handling is done by OS. 
•  Spool jobs onto “high speed” drums (cards are slow) 

•  Problems 
•  Utilization is low (one job at a time). 
•  No protection between different jobs. 
•  Short jobs wait if they get stuck behind longer jobs. 

•  Solutions 
•  Hardware to the rescue: memory protection and relocation 
•  Multiprogramming: Many users can share the system. 
•  Scheduling: Let short jobs finish quickly 
•  OS must manage the interaction between concurrent things. 
•  OS becomes an important science. 
•  OS/360: first OS designed for a family of computers; one operating 

system designed to run from smallest to largest machines. 

1/28/2015 CS161 Spring 2016 5 



Phase 1 Disasters 

•  Operating systems didn’t really work! 
•  OS/360 was introduced in 1963; worked in 1968. 
•  Systems were enormously complicated. 
•  They were written in assembly code. 
•  No structured programming. 
•  Read Fred Brooks: The Mythical Man Month! 

1/28/2015 CS161 Spring 2016 6 



Phase 2: 1970-1980 
•  Computers and people are expensive 

•  Help people be more productive. 
•  Interactive timesharing: let many users use the same machine at once. 
•  Terminals are cheap: give everyone one (e.g., Airline system) 
•  Keep data on line: use fancy (and not so fancy) file systems. 
•  Attempt to provide reasonable response time (avoid thrashing). 
•  Marketplace is driven by vertical applications 

•  CTSS: 
•  Developed at MIT. 
•  One of the first timesharing systems. 
•  Pioneered much of the work in scheduling. 
•  Motivated MULTICS. 

•  MULTICS: 
•  Joint development by MIT, Bell Labs, General Electric. 
•  Envisioned one main computer to support “everyone”. People would buy computing 

services like electricity. 
•  Many, many, many seminal ideas: protected rings, hierarchical file system, devices as 

files 
•  Building it was more difficult than expected. 
•  Technology caught up. 

1/28/2015 CS161 Spring 2016 7 



Phase 2: UNIX 
•  Ken Thompson (former Multician) wanted to use an old PDP-7 lying around 

Bell Labs. 
•  He and Dennis Ritchie built a system designed by programmers for 

programmers. 
•  Originally in assembly language. Rewritten by Ritchie and Thompson in C. 
•  New idea: portable operating system! 
•  Universities obtained code for experimentation. 
•  Berkeley added virtual memory support for the VAX. 
•  DARPA selected UNIX as its networking platform (arpanet). 
•  UNIX becomes a commercial operating system. 
•  Important ideas popularized by UNIX 

•  OS written in a high-level language. 
•  OS is portable across hardware platforms. 
•  Pipes 
•  Mountable file systems. 
•  Many more (take 261 ...) 

1/28/2015 CS161 Spring 2016 8 



Phase 3: 1980-1990 

•  Computers are cheap; people are expensive. 
•  Put a computer in each terminal! 
•  CP/M first personal computer operating system. 
•  IBM needed software for their PC’s, but CP/M was behind 

schedule. 
•  Approached Bill Gates (Microsoft) to see if they could build 

one. 
•  Gates approached Seattle Computer Products, bought 86-

DOS, and created MS-DOS. 
•  Primary goal: finish quickly and run existing CP/M programs. 
•  OS becomes a subroutine library and command executive. 

1/28/2015 CS161 Spring 2016 9 



Phase 3 Technologies 
•  Personal workstations 

•  The PERQ 
•  The Xerox Alto 
•  The SUN Workstation (Stanford University Network) 

•  Personal computers 
•  The Apple II 
•  The IBM PC 
•  The Macintosh 

•  Business applications propel the industry 
•  Word processors 
•  Spreadsheets 
•  Databases 

•  Marketplace is broken into horizontal markets 
•  Hardware 
•  Operating systems 
•  Applications 

1/28/2015 CS161 Spring 2016 10 



Phase 4: Networked Systems (1990-200?) 

•  Connectivity is paramount. 
•  People want to share data not hardware. 
•  Networked applications propel the industry. 

•  The Web 
•  Email 

•  Protection and multiprogramming less important for personal machines. 
•  Protection and multiprogramming more important for server machines. 
•  Market continues horizontal stratification, add: 

•  Internet service providers (service between OS and apps) 
•  Information becomes a commodity. 
•  Advertising becomes a computer marketplace. 

•  New network-based architectures: 
•  Clusters 
•  Grids 
•  Distributed operating systems 
•  Cloud (or is this a new generation?) 

1/28/2015 CS161 Spring 2016 11 



Phase 5: 20??-???? Mobile 

•  We carry devices in our pockets and backpacks that 
are more powerful than nearly all computers that 
have proceeded them. 

•  Applications are frequently split between a handheld 
device and a cloud service. 

•  Sensing is a key component of many applications: 
•  Location 
•  Motion (e.g., FitBit and friends) 

•  The operating systems on these devices evolved 
from desktop systems – is this a good thing? 

1/28/2015 CS161 Spring 2016 12 



1/28/2015 CS161 Spring 2016 13 


