AN EFFICIENT PARALLEL GARBAGE COLLECTION SYSTEM
AND ITS CORRECTNESS PROOF

H. T. Kung and S. W. Song

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

1. Introduction

In this paper we propose an efficient system to perform
garbage collection in parallel wilh list operations, and prove the
correctness of the system.

The system consists of two independent processes sharing a
common memory. One process is performed by the list
processor (LP) for list procesuing and the other process is
performed by the garbage collector (GC) for marking active
nodes and collecting garbage nodes. The system is designed
from both the correctness and efficiency points of view (see
Appendix I). Assuming that memory references are indivisible
(see Section 4.1), the system satisfies the following properties:

P1. No critical sections are needed in the entire system.

P2. The time to perform the marking phase by the GC is
independent of the size of memory, but depends only on the
number of active nodes.

P3. Nodes on the free list need not be marked during the
marking phase by the GC.

P4. Minimum overheads are introduced to the LP.

P5. Only two extra bits for encoding four colors are needed
for each node.

Properties P1, P2, P3, and P4 are important for the
performance of the system. But none of the previous systems
satisfy all the four properties. (The system of Steele[1975]
does not satisfy P1 and the system proposed by Dijkstra[1976]
does not satisfy P2 and P3.)

We have analyzed the performance of the parallel garbage
collection system proposed in this paper. The results show that
the parallel system is usually significantly more efficient in
terms of storage and time than the sequential stack algorithm
(see Appendix II). The complete performance results are
reported in another paper (Kung and Song[1977]). In this
paper we shall be mainly concerned with the correctness of the
system. We must be sure that a system is correct before
studying its performance.

The correctness proof in this paper is not intended to be
formal or completely rigorous. Given the complexity of the
system, we feel that it is more important to have a proof which
is readable and convincing.

This research is supported in part by the National. Science
Foundation under Grant MCS 75 222-55 and the Office of Naval
Research under Contract NOOO14-76-C-0370, NR 044-422. The
second author is supported by Fundacao de Amparo a Pesquisa
do Estado de Sao Paulo under Grant 76/517 and the Institute of
Mathematics and Statistics of the University of Sao Paulo, Brazil.

120

We give a summary of this paper. In Section 2, we define the
data structure shared by the LP and the GC. In Section 3, the
parallel system is proposed, ie., the garbage collector’s
algorithm and the list processor’s operations are defined. Basic
assumptions and correctness criteria are given in Section 4.
The main theorem for proving the correctness of the system is
also stated in this section. In Section 5, an upper bound on the
execution time of a marking phase is derived.  Section 6
contains the proof of the main theorem for an auxiliary parallel
system. In Section 7, by transforming the proof and results for
the auxiliary system we establish the main theorem for the
parallel system defined in Section 3. Some concluding remarks
are stated in Section 8. In Appendix I, we show how the
parallel system is derived, by using correctness and efficiency
arguments. A summary of results on the performance of the
parallel system is given in Appendix II.

2. The Data Structure

The data structure shared by the two processes consists of a
directed graph and an output-restricted deque.

2.1 The Directed Graph

Let the nodes of the graph be labeled by integers 1,.,M, and
the node labeled by n be in memory location n for all n=1,.,M.
Node n (or simply n) is used to refer to either the node labeled
by n or the pointer to it depending upon the context. For the
purpose of this paper, we assure that each node contains thre=
fields: a left pointer field, a right pointer field and a color field.
A pointer field contains the pointer to a node, which is one of
the integers 1,.,M, or the null pointer "A"; but a left pointer
field may sometimes contain a special value "f" which is not A or
any of the integers 1,.,M. The color field contains one of the
following four colors: white, off-white, gray and black.

The pointer contained in the left or right pointer field of node
n is called the left or right pointer of n and is denoted by n.left
or n.right, respectively. The color contained in the color field of
node n is called the color of n and is denoted by n.color.

The topology of the graph is determined by the pointers of
the nodes in the graph. Let m and n be any two nodes. If
m.left (or m.right) = n, we say that there exists a left (or right)
outgoing edge from m to n, and n is the left (or right) son of m.
An existing edge from m to n is often denoted by (m,n), if there
is no need to indicate explicitty whether it is a left or right
outgoing edge from m to n. In this case, we may also simply
say that n is pointed to by m. If m.left (or m.right) = A, then we
say that there does not exist a left (or right) outgoing edge
from m to any node and m does not have a left (or right) son.

The graph is changed as the pointers of its nodes are altered
by the processes. We assume that the left (or right) outgoing
edge from m to n is created at the instant of completion of
writing n on the left (or right) pointer field of m. Hence at any
moment an edge either exists or does not exist, though writing
on a pointer field takes a finite amount of time.



The first R nodes, 1,.., R, are called roots and node R is alsc
called NEW. Node R+1 is called FFEE. FREE.left is the pointer to
the first nnde of a list, called the free list (cf. Fig. 1), which is a
cequence of nodes, Ny Nosy Ny, satisfying the following
properties:

FREE

Fig. 1

F1. FREEleft = ny, n.right = A

F2. for 1 <i <k, n.right =n;, .

F3. for I <i <k, n.left =f.

F4. for 1 i<k, n;.color = off-white.

F5. FREEright is the pointer to the last node or the node
before the last node of the free list. (1he latter case occurs
temporarily eact. time when a nole has just been appended to

the free list, bu’ FREE.right yet remains to be updated.)
Based on the graph, we give tho following definitions:
Definitions

Node n is said to be reachable from node m, if m=n or if
there exists a path on the directed graph from m to n. (In this
paper, a path always refers to a directed path with distinct
nodes.)

A node is said to be free if it is reachable from FREE.
A node is said to be active if it is reachable from a root

A node is said to be a garbage node if it is neither active nor
free.

2.2 An Output-Restricted Deque

Both the GC and the LP use an output-restricted deque which
is implemented outside the mimory space containing the
directed graph. The deque contauns pointers to nodes in the
directed graph. The GC inserts and removes pointers to nodes
from one end of the deque, called the GC-end of the deque, and
the LP only inserts pointers to nodes at the other end, called
the LP-end of the deque.

Before removing a pointer from the deque, the GC tests the
emptiness of the deque. If the deque is empty and the LP is
inserting a pointer into the deque but has not concluded the
insertion, then the test result foi emptiness will be true. The
pointer will be removed from the -eque only if the GC finds that
the deque is nonempty.

3. The Parallel Garbage Collection System

In this section we give a parallel garbage collection system,
which consists of two concurren! processes sharing the data
structure defined in Section 2. One proc~ss is executed by the
LP and the other one by the GC.

We shall assume that the following initial conditions hold
before any of the two processes «tarts:
[1. All the roots are black and have no sons.

12. The color of FREE is off-white.

121

I3. Nodes on the free list are nodes R+2, R+3, .., M.

I4. The free list satisfies properties F1, .., F4 of Section 2.1
with FREE.right being the pointe:r to the last node of the tree
list.

Note that I3 and 14 imply that at the beginning of the
computation, free nodes are FREE and nodes on the free list.

3.1 Garbage Collector’s Algorithm

The GC executes repeatedly the following cycle, which is
composed of three phases, the root insertion phase, the marking
phase, and the collecting phase. In the algorithm, MARKING is a
Boolean variable initialized to false. We say that a marking
phase starts at the time when MARKING is set to true, and ends
at the time when MARKING is el to false.

GC1. [Root insertion phase]
for i « 1 until R-1
do insert node i into the GC-end of the deque od;

GC2. [Marking phase]
MARKING « true;

s « NEW.left;
if s # A then
if s.left # f and s nonblack then
blacken s;
insert s into the GC-end of the deque
fi
fi;
while the deque is not empty
do
n « the node at the GC-end of the deque;
blacken n;
remove n from the deque;
s « n.left;
if s # A and s is nonblack then
blacken s;
insert s into the GC-end of the deque
fi;
s « n.right;
if s # A and s is nonblack then
blacken s;
insert s into the GC-end of the deque
fi;
od;

MARKING « false;

GC3. [Collecting phase]
for i « R+2 until M
do
if node i is white
then APPEND(i)
else
if i.left # f then color node i white fi
fi
od

The procedure APPEND(n) is defined as follows:

n.color « off-white;
nleft « f;

n.right « A;
[FREE.right]lright « n;
FREE.right « n

3.2 List Processor’s Operations

The LP may perform operations only on active nodes and may

perform the operation LPC defined below.



The LP can perform many kinds of operations, such as
traversing a certain list structur> through its pointers, testing if
the left or right pointer of a node is A, etc. But for the
purpose of this paper it suffices to consider only those
operations which change the data structure. The process
executed by the LP is contrglled by ‘any program in which
operations of the latter kind are defined as follows:

Operation LPp: Add a left (or right) outgoing edge from an
active node m to an active node n.

1. set the left (or right) pointer of m to n;
2. if MARKING and n is white or off-white then
gray nj
insert n into the LP-end of the deque
fi

Operation LP,: Delete a left (or right) outgoing edge from an
active node m.

set the left (or right) pointer of m to A.
Operation LP: Make a free node active and pointed to by NEW.

1. CREATE;
2. n « NEW.left;
if MARKING then
blacken n;
insert n into the LP-end of the dequec
ti

The procedure CREATE is defined as follows:

while FREE.left = FREE.right
do nothing od;
NEW.left « FREE.left;
FREE.left « [FREE.left].right;
[NEW.left]right « A;
[NEW.left)left « A

To simplify the correctness proof, we assume that the right
pointer field of NEW always contains A, and the left pointer field
of NEW can be altered only through an operation LPs or LPA.
(Note that this assumption is rot a restriction for a real list
processing system.)

3.3 Remarks on the Parallel System

1. The parallel system is evolved from the well known
sequential garbage collection system which uses a stack for
marking nodes. In Appendix 1 of this paper, we show how both
the correctness and efficiency arguments were used to guide
the derivation of the parallel system, starting from the
sequential system. In particular, we will show why it is
necessary to color nodes with four colors, and argue that the
proposed system is essentially the only parallel system which
satisfies all the five properties stated in Section 1 of this paper.
It is instructive to note that the ordering of the operations
appearing in the parallel system is in general crucial to the
correctness and efficiency of the system. For example, if the
ordering of step 1 and step 2 in LPp, or the coloring and
insertion operations in step 2 of LPy, is interchanged, then
examples can'be found to show that the resulting system would
be incorrect.

2. In the sequential system, the stack is accessed only by the
GC. In the parallel system, a deque is used instead of the stack
to avoid possible access conflicte of the stack, since both the GC
and the LP may manipulate it at the same time.

3. Step 2 of operation LPc is included only for efficiency
reasons, which we explain as follows. It is usually the case that

after performing an operation LPc, the LP will perform an
operation LPj to make some node point to the newly created
node. Thus, during the marking phase, it is better to blacken
the newly created node (and in-ert it into the deque) once for
all, so that there is little chancr that the node will be colored
and inserted into the deque by both the LP and the GC. For
similar efficieny reasons, node s is blackened in GC2 before it is
inserted into the deque; this blackening would not be necessary
if only the correctness of the system were concerned.

4, The Correctness of the Parallel Garbage Collection
System

4.1 Assumptions

Al. The LP and the GC can read and write on individual
fields of a node, and the following operations are indivisible:

"Read or write a field" of a node by the LP or the GC.
“Gray or blacken a node" by the LP.
"Blacken, whiten or off-whiten a node" by the GC.

A2. The initial conditions 11, 12, 13 and 14 stated in Section 3
are satisfied at the beginning of the computation.

A3. ("The procedures operated on the free list are correct:”)
If the free list, i.e., the list pointed to by the left outgoing edge
of FREE, is updated only by the procedures APPEND and
CREATE, then the properties F1, F2, F3, F4 and F5 of Section
2.1 are preserved all the time. (We choose to assume A3 rather
than to prove it, for it is similar to the traditional
producer /consumer problem.)

A4, ("The deque will not overflow and operations on it are
correct:") There is always some extra temporary space
available for storing the deque and the GC does not find the
deque empty until all the nodes which were inserted into the
deque have been removed from it. (An upper bound on the
number of elements the deaue may have is derived in Section
5.)

4.2 Definition of Correctness

We say that the parallel garbage collection system is correct,
if the following conditions are all satisfied:

Cl. Only garbage nodes are appended to the free list by the
GC.

C2. The GC never changes pointers of active nodes.

C3. A garbage node will always be appended to the free list
within a certain time, which can be estimated a priori.

Conditions Cl1 and C2 guarantee that the GC does not
interfere with the LP operations. Condition C3 ensures that the
GC indeed collects garbage effectively.

By Cl and the fact that no active nodes are on the free list
at the beginning of the computation, we see that the free list
can be modified only by the procedures APPEND and CREATE.
Hence by assumption A3, we know that the free list is
manipulated "correctly”, i.e,, the free list always satisfies all the
properties F1 to F5.

4.3 The Correctness Proof and Statement of the Main Theorem

In Sections 6 and 7, we shall prove the following theorem:



Main Theorem:

For the parallel system defined in Section 3, the following
properties hold:

(i) During a marking phase at each time when the GC checks the
emptiness of the deque, a white active node is always
reachable from some node in the deque.

(ii) A free node is always off-white.

Hence during a marking phase, if the GC finds the deque to be
empty, then by (i) there is no white active node. This implies
that when a collecting phase starts all white nodes are not
active and by (i) they are garbage. Note that the LP never
colors a node white and, during a collecting phase, the GC
examines each node only once. Hence we have shown that the
system satisfies condition C1.

Because the algorithm satisfies condition C1, it also satisfies
condition C2, since the GC only changes pointers of free nodes
or garbage nodes (through procedure APPEND).

It is not difficult to see that a garbage node can always be
appended to the free list within time 2T, where T is an upper
bound on the time taken by one garbage collection cycle. 1t is
clear that the execution times of the root insertion phase and
collecting phase can be estimated a priori. In the next section,
we shall give an upper bound on the time taken by the marking
phase of any garbage collection cycle. These imply that the
system satisfies condition C3.

5. An Upper Bound on the Marking Phase Time

Consider the marking phase of any garbage collection cycle.
Let
the

A = number of active nodcs, besides the roots, at

beginning of the marking phase,

1/k = time to insert a node into or remove a node from the
deque,

r = rate that new active nodes are created (i.e., removed from
the free list) in the sequential system, when the LP is running,

Ty = time taken by the marking phase.

With respect to a given computer, we assume that quantities
A, k and r can be estimated from a given list processing
program. In the following we derive an upper bound on Tab
under the reasonable assumption that k > r.

During the marking phase, the GC is busy inserting nodes into
and deleting nodes from the deque, and also doing some minor
operations (such as blackening # node or testing the color of a
node). Assuming that these latler operations are incorporated
in the insertion and deletion operations, we can write the
following:

TM = T[ + TD
where

T[ = total time in the marking phase during wnich the GC is
making insertions. and

Tp = total time in the marking phase during which the GC is
making deletions.

Note that nodes inserted into the deque by the GC are among

123

those nodes which are active at the beginning of the marking
phase We have the following incquality:
T s Ak

Let D be the total number of nodes deleted from the deque
during the marking phase. Then

Note that nodes inserted into the deque must be either tree
or active at the beginning of the marking phase. Nodes in the
first category, after being removed from the free list, are
blackened and inserted into the deque once for all by the LP.
The number of such nodes is’ < rTy since r certainly is an
upper bound on the rate that new active nodes are created in
the parallel system for which there are overheads for the LP.
Consider now those nodes which are active at the beginning of
the marking phase. Fach of them, except the roots, can be
inserted into the deque at most three times, since the black
color of a node may be overwritten by the gray color at most
once and the gray color by the black color at most once (cf. the
counter-example given in Section 7.1). But a root can be
inserted into the deque at mo:t once. Since the number of
nodes deleted from the deque is no greater than that inserted
into the deque, we have therefore shown that

D < rTy+3A+R

Note that the above inequality might be inexact to 2 small
number of nodes owing to the fact that no synchronization is
assumed in the manipulation of the Boolean variable MARKING.
(For instance, there could be a large gap between the time
when the LP finds MARKING to bhe true and the time when the
LP inserts the corresponding node into the deque.) Here we
ignore this possible unimportant discrepancy. Thus,

Tp < (rTy+3A+R) [k

and we have established the following theorem:

Theorem 1:
T & (BA+R)/ (k=r)

The theorem gives upper bound on Ty which is proportional
to A and independent of the size M of the memory space. This
property turns out to be extrewcly crucial to the performance
of a parallel garbage collection system, but is not satisfied by
any previous system which does not use critical sections. Note
that the time for the GC to execute a root insertion phase or a
collecting phase is more or less a constant. Hence to minimize
the time to execute each garbage collection cycle, it is
necessary to minimize the time lo execute each marking phase.
This is an intuitive explanation on why we want to minimize Ty,

An obviaus upper bound on [ is M. Theorem 1 and the fact
that D < rTy, + 3A + R give another upper bound on D:

DskT'r—mA+R)+3A+R

- _3k+r
——k—_—r——A+O(l)

6. The Proof ot the Main Theorem for an Auxiliary
Parallel System

In this section we introduce an auxiliary parallel garbage
collection system and prove a stronger version of the main
theorem for this auxiliary system. In the next section, with a
small effort we will be able to prove the main theorem for the
parallel system in Section 3 by transforming the proofs and the
results obtained for the auxiliary system in this section.

We now define the auxiliary <ystem. The garbage collector’s
algorithm is defined as follows:



GC1. [Root insertion phase]
for i « 1 until R-1

do insert node i into the GC-end of the deque od;
insert NEW into the GC-end of the deque;

GC2. [Marking phase]
MARKING « true;
s « NEW.left;
if s#A then
if s.left # f and s nonblack then
insert s into the GC-end of the deque;
blacken s
fi
fi;
remove NEW from the deque;
while the deque is not empty
do
n « the node at the GC-end of the deque;
blacken n;
s « n.left;
if s # A and s is nonblack then
insert s into the GC-end of the deque;
blacken s
fi;
s « nright;
if s # A and s is nonblack then
insert s into the GC-end of the deque;
blacken s
fi;
remove n from the deque
od;
MARKING « false;

GC3. [Collecting phase]
for i « R+2 until M
do
if node i is white
then APPEND()
else
if i.left # f then color node i white fi
f

od

The list processor operations used in the auxiliary system are
the same as those used in the otiginal parallel system in Section
3, except that the "gray n" operation in LPp is now replaced by
"shade n". The operation "shade” makes a white or off-white
node into gray and leaves a black or gray node unchanged, and
is assumed to be indivisible. (As a matter of fact, in the
auxiliary system it turns out that the operation "shade" will
never have to be performed on a gray node.) Under the
assumptions stated in Section 4.1, the following theorem can be
proven:

Theorem 2:

For the auxiliary parellel system defined in Section 6, the
following properties hold:

(i) During a marking phase, a white active node is always
reachable from some node in the deque.

{ii) The left pointer field of a free node (except FREE) always
contains the value f, and a node whose left pointer field
contains the value f is always off-white.

We shall prove the theorem by induction on successive garbage
collection cycles. Note that if Theorem 2 holds through the end
of the marking phase of the ith parbage collection cycle then (ii)
holds through the end of the marking phase of the (i+1)st cycle.
This follows from the following argument at the end of the
marking phase of the (i+1)st cycle: Since at the beginning the

124

free list contains no active nodes and since only garbage nodes
have been appended to the froe list (cf. the proof of Cl in
Section 4.3), free nodes have been accessed only by the
procedures APPEND and CRCATE and, consequently, by
assumption A3 the properties in (ii) are preserved.

Since there are no white nodes before the collecting phase of
the first garbage collection cycle starts, (i) holds automatically
for the first cycle. This together with the fact that the free list
contains no active nodes at the beginning of the computation
imply that free nodes can only be accessed by the procedures
APPEND and CREATE during the first cycle. Hence by
assumption A3 (ii) also holds for the first cycle. In the rest ot
Section 6 we assume that Theorem 2 holds for the ith cycle and
want to prove that it holds for the (i+l)st cycle. As noted in last
p'aragraph, in the proof we may use the fact that (ii) holds
through the end of the marking phase of:the (i+1)st cycle.

6.1 Notation

In order to present our correctness proof for the auxiliary
parallel system more easily, we introduce some ‘“ghost
operations” in the list processor operations LPp and LPp. The
new definitions of LPj and LP: are given in the following,
where ghost operations are indicated between square brackets
in steps Gl and G2. Note that these ghost operations.are not
intended to be part of the real algorithm, but serve merely for
proof purposes. We assume that step Gl or G2 is executed at
the instant of completion of step | or 2 of LPy, respectively, (or
of step 2 or 6 of LPg), and the execution takes no time.

Operation LPp: Add a left (or right) outgoing edge from an
active node m to an active node n.

1. set the left (or right) pointer of m to n;
Gl. [mark the edge (m,n) crealed at step 1;]
2. if MARKING and n is white or off-white then
shade n;
insert n into the LP-end of the deque
fi;
G2. [unmark the edge (m,n) marked at step G1]

Operation LP: Make a free node active and pointed to by NEW.

1. while FREE.left = FREE.right
do nothing od;
2. NEW.left « FREE.left;
Gl. [mark the left outgoing edge from NEW;]
3. FREE.left « [FREE.left]right;
4. [NEW.left]right « A;
5. [NEW.left]left « A:
6. n « NEW.left;
if MARKING then
blacken n;
insert n into the LP-end of the deque
ti;

G2. [unmark the edge marked at step G1]

We say an edge is marked if it has been marked by the LP at
step Gl, but step G2 which unmarks the edge has not been
executed by the LP. Hence an edge is marked if and only if i)
the operation LPp which created the edge has finished its step
1 but not step 2 or ii) the operation LPc which created the
edge has finished its step 2 but not step 6. Since there is only
one list processor, at any time there is at most one marked
edge. If an edge is marked at time t, it is called the marked
edge at time t.

A path is called a marked path, if the marked edge is on the
path. A path is called an unmarked path, if no edge on the path
is marked.




We shall assume that we are at some time t during the marking
phase of the (isl)st garbage collection cycle, and that ty, is the
starting time of the marking phase. As noted earlier, statement
(ii) of Theorem 2 holds through the end of the marking phase of
the (i+1)st cycle, and hence through time t.

6.2 Preliminary Lemmas
Lemma 1:

If at time t a hlack node m has a son, then m was ir the deque
at some time ir 1t)),t].

Proof:

If m is a root then the lemma is obvious, since roots are all in
the deque at time t), Suppose that m is not a root. We first
show that m was white or off-white at some time during the
collecting phase of the previoys cycle.. During that phase the
color of m was tested by the GC. The test outcome was either
white or nonwhite. In the latter case, if mleft = f then m was
off-white and on the other hand, if mleft # f then m was
colored white afterwards by the GC.

Since m is black at time t, it was blackened either bv the GC
at some time in [t\4t], or by the LP through an operation LP.
If m was blackened by the GC, then at the time when m was
blackened m was in the deque (the GC only olackens a node
which is already in the deque). If m was blackened by an
operation LPg, then since m has a son at time t the operation
LPC must have been completed and consequently, m was
inserted into the deque before time t. We conclude that m was
in the deque at some time in [ty4t]

Lemma 2:

At time t, if edge (m,n) is unmarked with m black and n
nonblack, then at least one of the two nodes m and n is in the
deque.

Proof:

Note first that n must be nonblack throughout the interval
[tpmptl since a black node remains black during the marking
phase.

Let t_ p be the time instant when edge (m,n) was created, with
tp st (t p is the instant of completion of step 1 of LPp or
step 2 of LPG.)

a) t p < tyy: Edge (mpn) has been existing since time ty\;. By
Lemma 1, m was in the deque at some time in [ty4t]
Suppose that m is not in the deque at time t. If m # NEW,
then before m was removed from the deque, n would have
been blackened. This is a contradiction. If m = NEW, then
before NEW was removed from the deque, the GC examined
the left pointer field of n. If it did not contain f, then n
would be blackened, which is a contradiction. If it
contained f, then at the time when the GC was examining
n.left, step 6 of the operation LPc which created (m,n) had
not started yet. Clearly from that tile through time t, the
Bonlean variable MARKING was true. Since (m,n) is
unmarked at time t, the operation LPg has beer completed
by time t, and thus n would have been blackened by the
LP. This again is a contradiction.

b) tg < ‘LP’ Since tyy < tp < t, edge (mn) was created
during the interval(tM,t). Suppose that the operation which
created (m,n) was an operation LPs.  Since (mn) is
unmarked at time t, the operation LP has been completed
by time t and thus n would have been blackened. This
contradiction shows that the operation which created (m,n)

125

must be an operation LPp. Since (m,n) 1s unmarked at time
t, the operation LPy has been completed by time t. During
the time interval (t_pst), the LP tested the color of n. The
outcome of the test must have been white, oft-white or
gray.

i) Tne test outcome was white or off-white. Then n was
inserted into the deque by the LF at some time in

(t pit]

i) The test outcome was gray. Note that as shown in
the proof of Lemma 1, node n was white or off-white
at some time t’ during the collecting phase of the
previous garbage collection cycle. The operation LPp
which colored n gray must have inserted n into the
deque at some time in [t"t). This implies that n was in
the deque at some time in [ty,t], since no nodes were
removed-from the deque during [’ty,].

Both cases imply that n is in the deque at time t, because if
n were removed from the deque, it would have been
blackened by the GC.

6.3 Proof of Theorem 2

Suppose that w is a white active node al time t. We shall
prove that w is reachable from some node in the deque. Since
w is white and active, w is not a root and is reachable from
some root through at least one path. There are two cases.

Case 1 w is reachable from some root through an unmarked
path.

Let m be the first black node that is encountered on the path
by traversing backwards from w to the root. Clearly such a
black node exists, since the root is black. By Lemma 2, m or it=
son on the path is in the deque.

Case 2: The marked edge at time t is on every path from a
root to w.

Let the marked edge be (m,n). Since nodes on a path are all
distinct, we must have m # n. Without loss of generality, we
assume that (m,n) is the left outgoing edge from m to n.
Consider any one of the paths from roots to w, and call it path
P. Let b be the first black node that is encountered on path P
by traversing backwards from w to the corresponding root.
Suppose that b is a descendent or ancestor of m with respect
to path P (see Fig. 2 and Fig. 3). Then the outgoing edge from b
on path P is unmarked. By Lemma 2, we conclude that b or its
son on path P is in the deque.

path P path P
b
m m
n n
b,
w w
Fig. 2 Fig. 3

In the following we assume that b = m. By Lemma 1, m was in
deque at time t. We shall show that w is reachable from some
node in the deque through a path, called the "m*-w path" below.
Let tae be the time instant when the GC started reading the left
pointer field of m before m was removed from the deque for the
last time. Let t p be the time instant when edge (m,n) was
created. We have the following two cases:



A) tp $ige. If (mn) was created by an operation LPp, then
m # NEW and consequently node n would have been
blackened before m was removed from the deque. This is
a contradiction. Suppose that (m,n) was created by an
operation LPc. Then m = NEW. Moreover, since (m,n) is
marked at time t, the descendents of n are all off-white
and, consequently, n = w. Before NEW was removed from
the deque, the GC examines! the left pointer field of w. If
it did not contain f, then w would be blackened, which is a
contradiction. If it contaired f, then at that time w was
off-white. This implies that w would not be white at time t,
since the white color is sel only during a collecting phase.
Again we have a contradiction.

B) ‘GC < tLP (See Fig. 4). Since fGC < tLp < t, edge (m, n)
was created during the interval (ty,t] Suppose that the
operation which created (m,n) is an operation LPC. Then,
as in A, m = NEW, n = w, and hence at time tLp w was off-
white. This is a contradiclion since w is white at time t.
Therefore the operation which created (m,n) is an
operation LPy. Choose t* <o that tgo < t¥ < t| p and that
step 1 of the operation LP, started before time t*. (Recall
that tLP is the time instant of completion of step 1.) Clearly
at time t* there was no marked edge.

path P path P*  pathP  path P
m m ém m
n m* On n
w ‘W S w w
F—t—t + + -t I - +
tmtec t* ttp vty oo tp t

Fig. 4 Fig. 5

Node w was active at time t¥, since it is active at time t
and no new active nodes were created during the interval
[t*t] Let path P* be any one of the paths from roots to w
at time t*. (See Fig. 5.) Let m* be the son of m on path P¥
at time t*. Consider the path from m* to w on path P* at
time t*, and call it the "m™-w path™. Note that the m*-w
path was not affected by the change of the left pointer of
m at time t; p and remains unchanged throughout the time
interval [t*f]. Also note that the m¥-w path at time t is
unmarked. Hence by Lemma 2 we have the following
result:

If there is a black node on the m*-w path at time t, then
some node on the m*-w path is in the deque at time t.

Thus if m* is black at time t, then our proof is complete. In
the following we assume that m* is nonblack throughout
the time interval [t ,t]. Note that m was black at time tgo
and hence at time t*. By Lcmma 2, at least one of the two
nodes m and m* is in the deque at time t*.

a) m* was in the deque at time t*. Then m* is in the
deque at time t, for otherwise m* would have been
blackened by the GC before it was removed from the
deque.

b) m was in the deque but m* was not at time t*. Let
tLp* be the time irstant whén edge (mm*) was
created. Then from the proof of Lemma 2, it is easy
to see that we must have the case tLP* < ty4 Hence
the GC found m.left to be m* at time tge. This implies
that m* was blackened by the GC at some time in
(tgest) before m was removed from the deque. This is
a contradiction.

126

We have shown that statement (i) of Theorem 2 holds for the
(i+1)st garbage collection cycle. This together with the fact that
statement (ii) holds through the =nd of the marking phase of the
(i+1)st cycle imply that only garbage nodes have been appended
to the free list through the end of the (i+1)st cycle. Therefore
through the end of the (i+1)st cycle free nodes can be accessed
only by the procedures APPEND and CREATE and, consequently,
by assumption A3 statement (ii) holds. The proof of Theorem 2
by induction is complete.

7. The Proof of the Main Theorem for the Parallel
System

In this section, the auxiliary system introduced in the
preceding section is transformed to the parallel system
proposed in Section 3. We will examine how the transformation
will affect the proofs and results in the preceding section. The
transformation is done in two steps.

7.1 Transformation 1

This transformation replaces the "shade n" operation in LPp
by the simpler indivisible operation "gray n".

After this transformation, Lemma 2 is no longer valid, as the
following counter-example shows: Assume that (m,n) is an edge
such that m is a black node at the GC-end of the deque and n is
white. Consider the while loop of GC2 in which m is removed
from the deque. Suppose that after the GC finds the color of n
to be white and before the GC inserts n into the deque, the LP
performs an operation LPp to make some node (# m) point to n
and also finds node n to be white, and then the LP pauses for a
while. Now the GC inserts node n into the deque and blackens
n. Suppose that after m and n are both removed from the
deque by the GC, the LP resumes its previous operation LPp
and grays n. We have an unmarked edge (m,n) with m black and
n gray, and neither of them is in the deque!

However, the results in the preceding section are still valid
with respect to the following interpretation. We say that a
node is once-black at time t during a marking phase if it is black
at some time in the interval [tM,t], where tM is the starting time
of the marking phase. Then one can see that the lemmas,
Theorem 2 and their proofs are still correct if we substitute all
the occurences of the word "black" by "once-black” and
"nonblack” by "non-once-black”. (The substitution should be
done only in the statements and proofs of the lemmas and
Theorem 2. The substitution does not affect the parallel system
and is used only for proof purposes.) Therefore, Theorem 2
holds for the auxiliary system after Transformation 1.

7.2 Transformation 2

The second transformation optimizes the garbage collector’s
algorithm. The root insertion and marking phases of the
garbage collector’s algorithm are redefined as follows (where
operations inside square brackets are ghost operations used
merely for proot purposes).

GC1. [Root insertion phase]
for i « 1 until R-1
do
[insert node i into the GC-end of the ghost-deque;]
insert node i into the GC-end of the deque
od;
[insert NEW into the GC-end of the ghost-deque;)]

GC2. [Marking phase]
MARKING « true;
s « NEW.left;
if s #A then
if s.left # f and s nonblack then



[insert s into the GC-end of the ghost-deque;]
blacken s;
insert s into the GC-end of the deque
fi
fi;
[remove NEW from the ghost-deque;]
while the deque is not empty
do
n « the node at the GC-end of the deque;
blacken n;
remove n from the deque;
s « n.left;
if s # A and s is nonblack then
[insert s into the GC-end of the ghost-deque;)
blacken s;
insert s into the GC-end of the deque
fi;
s « n.right;
if s # A and s is nonblack then
[insert s into the GC-end of the ghost-deque;]
blacken s;
insert s into the GC-end of the deque
fi;
[remove n from the ghost- deque]
od;
MARKING « false;

We also redefine the operations LPp and LPg by adding the
ghost operation
[insert n into the LP-erd of the ghost-deque;]

before the insertion of node n into the deque. Observe that the
updates of the ghost-deque in the transformed system occur in
the same positions as those of the deque in the auxiliary
system. Hence our proofs in Section 6 apply to the ghost-
deque in the transformed system. Therefore Theorem 2 holds
for the transformed system with deque replaced by ghost-
deque. Observe also that at each time when the GC checks the
emptiness of the deque, the deque and the ghost-deque contain
the same set of elements. Hence statement (i) of Theorem 2
holds for the transformed systcm at each time when the GC
checks the emptiness of the deqrie

Since after the two transformations the auxiliary system
becomes the parallel system defined in Section 3, we have
shown that the Main Theorem holds for the parallel system.

8. Concluding Remarks

The idea of performing garbage collection in parallel with list
operations has been around for some time. (Knuth[1968,
exercise 2.35-12] credits this idea to M. Minsky.) Though il is
an appealing idea for real time list processing applications, no
papers on parallel systems were published until two years ago.
Steele[1975] is probably the first one who investigated such a
system. Because of the necessily of performing semaphore-
type operations so frequently, his system is not efficient on
standard, general purpose compulers. Both our system.and the
one proposed by Dijkstra, et al, called system D below, do not
use any semaphore-type operations. However, there are some
essential differences between syslem D and our system:

(i) During the marking phase in system D, free nodes are
marked by the GC; this is nol required in our system.

(i) During the marking phase, system D may step through the
whole memory, i.e. M nodes, as many as N times, where N
is the number of nodes to be marked. Our system uses a
deque and the system is <o designed that the marking
phase has the execution time proportional to the number
of active nodes and indepencent of the size of the memory.

127

On the other hand, system D has smaller list processor
overheads (for example, its only overhead in the operation
LPp is the "shading” of the target node). Also, system D
does not require any extra space.

(iii) System D assumes an indivisible "shade" operation. No
special indivisible operations are assumed in our system.
We understand that Dijkstra [1976], Gries [1976] and

Lamport[1976] (the latter two papers also consider system D or
similar ones) deal mainly with the correctness issue and regard
efficiency as a separate issue. Bt it is precisely for efficiency
reason that we wanted to consider parallel garbage collection
systems in the first place. The point of this research was to
handle these two important issues at the same time.

For efficiency reasons, we propose using a deque for the
marking phase. The inclusion of the deque in our system has
significantly  increased the complexity of proving the
correctness of the system. (For example, step 2 of operation
LPp would be an indivisible action in system D.) In spite of this,
we believe that we have given a correctness proof of our
system which is still relatively short and readable. We achieve
this mainly by making the "right" assertions for the system
through the use of so called "ghost variables”. Our "stepwise
refinement” proof technique is al<o crucial. We first introduce
an auxiliary system and prove it correctness. The proof and
results are then transformed step by step as the auxiliary
system is transformed to the parallel system for which we want
to prove the correctness. If one does not use this stepwise
refinement technique and attempts to prove directly the
correctness of the final system, one would almost surely end up
with an unreadable and complicated proof. (It is unlikely that
one would come up with, say, assertions involving concepts such
as "once-black" directly from the final system.) Note that we
are not proposing a methodology for the correctness proof of
such parallel systems. Qur main concern was to make the proof
clear and convincing.

The really restrictive assumption is A4 in which we assumed
that there is always some exira temporary space available for
storing the deque. Although there are methods which use
reversed pointers in the nodes themselves as a stack, these
methods are not suitable for the parallel system since pointer
fields are modified by the garbage collector.

There are a number of possible extensions which can be
made based on the system described in this paper. Our
intention here was to describe the hasic ideas of the system
rather than explore several variations.

References
Dijkstra[1976] Dijkstra, E. W. et. al. "On-the-fly Garbage
Collection: An Exercise in Cooperation”, in Language

Hierarchies and Interfaces, edited by F. L. Bauer and K.
Samalson, Springer-Verlag, New York, 43-56.

Gries[1976] Gries, D. "An Exercise in Proving Parallel Programs
Correct"”, in Language Hierarchis and Interfaces, edited by F.

L. Bauer and K. Samalson, Sprinazer-Verlag, New York, 57-81.

Gries[1977] Gries, D. "On Believing Programs To Be Correct",
Comm. ACM 20, 49-50.

Kung and Song[1977] Kung, H. T. and Song, S. W., "Performance
Analysis of a Parallel Garbage Collection System", Department
of Computer Science Report, Carnegie-Mellon University,
August 1977.

Knuth[1968] Knuth, D. E. The Art of Computer Programming,




vol.l: Fundamental

Mass..

Algorithms. Addison-Wesley, Reading,

Lamport[1976] Lamport, L. "Garbage Collection with Multiple
Processes: an Exercise in Parallelism", in Proc. 1976
International Conference on Farallel Processing, edited by P.
H. Enslow Jr., IEEE Computer Society, Long Beach, California,
50-54.

Steele[1975] Steele, G. L. Jr. "Multiprocessing Compactifying
Garbage Collection", Comm. ACM 18, 495-508.

Wadler[1976] Wadler, P. L. “Aralysis of an Algorithm for Real
Time Garbage Collection”, Corm. ACM 19, 491-500.

Appendix I

The Derivation of the
Parallel Garbage Collection System

The parallel system proposed in this paper is evolved from
the well known sequential garbase collection system which uses
a stack for marking nodes, assuming that extra space is
available for storing the stack. In this Appendix 1 we show
informally how both the correclness and efficiency arguments
were used to guide the derivation of the parallel system,
starting from the sequential system. For briefness in the
examples below, we write "insett n" and "remove n" for "insert
n into the stack (or deque)" and "remove n from the stack (or
deque)", respectively.

In the following we first pre-ent the sequential system and
then transform it into the parallel system in four major steps, A,
B, C and D. The sequential garbage collection algorithm
blackens all active nodes by using a stack, and then appends all
white nodes to the free list and turns all black nodes into white
ones. It is assumed that all the R roots are initially bfack and
have no sons, and that all other nodes are initially white and on
the free list (see Fig. 6). Node R is called NEW and node R+1 is
called FREE.

Fig. 6

The garbage collection algorithm is given as follows:

GCl. [Root insertion phase]
for i« 1 until R
do push node i onto the stack od;

GC2. [Marking phase])
while the stack is not empty
do
n « the node at the top of the stack;
remove n from the stack;
s « nleft;
if s # A and s is white then
blacken s;
push s onto the stack

fi;
s « nright;
if s # A and s is white then
blacken s;
push s onto the stack
fi
od;

GC3. [Collecting phase]
fori« R+ 2 untitM

128

do
if node i is white then
APPEND(i)
else
color node i white
fi
od

The procedure APPEND(n) is defined as:

[FREE.right)right « n;
FREE.right « n

The list processor’s operations which change pointer fields of
nodes are given as follows:

Operation LPp: Add a left (or right) outgoing edge from an
active node m to an active node n.

set the left (or right) pointer of m to n.

Operation LP,: Delete a left (or right) outgoing edge from an
active node m.

set the left (or right) pointer of m to A.
Operation LPC: Make a free node active and pointed to by NEW.

if FREE.left = FREE.right then
perform garbage collection fi;

NEW.left « FREE.left;

FREE.left « [FREE.left]right

A. The sequential system must be modified.

Suppose that the sequential system is not modified. Consider
Example 1.

GC
remove m
read m.left
read m.right

Lp

create(m,n)
delete all edges to n but (m,n)

Obhwne-

Example 1

Assume that the following initial conditions hold before step
1: m is a black active node on the stack and has no sons; n is a
white active node not on the stack. Then after step 5 is
executed, n is a white active node and will not be blackened by
the GC before the next collectin: phase starts since m, the only
immediate predecessor of n, is black and not on the stack. The
system is therefore incorrect.

Example 1 suggests that n should be pushed onto the stack
by the LP before step 5. To avoid access conflicts, we use a
deque instead of a stack, so that the GC can access one end of
the deque and the LP the other end. An example similar to
Example 1 was first given by Dijkstra[1976] for illustrating that
"no overhead for the LP" is unattainable in a parallel system.

B. The operation LPp must be modified.

Suppose that before an edge is deleted the LP always inserts
the target node into the deque if it is white. Then the
correctness problem illustrated by Example 1 seems to be
solved. But with this solution, every garbage node will be
blackened and inserted into the deque. This is clearly
undesirable from the efficiency point of view. A better solution
is that when an edge is created the LP always inserts the target
node into the deque if it is white. That is, the operation LPp



should be modified. In the following, we assume that the edge
created during the operation LPy is (m,n) and n is white.

B.1 The LP should insert n into the deque after (m,n) is
created.

Suppose that n is inserted into the deque before (m,n) is
created. Consider Example 2

GC Le
1. insert n
2. remove n
Cycle i
. remove m
. read m.left
. read m.right
Cycle i+l
6. create(m,n)
7. delete all edges to n but (m,n)
Example 2

We see that the insertion at step 1 is cancelled by the
removal at step 2. Consequently, the same correctness problem
illustrated in Example 1 occurs in cycle i+1. This shows that the
system is incorrect.

B.2 The LP should color n.
Suppose that the LP does not color (or mark) n. Consider
Example 3.
LP
create (ml,n)
insert n

create(mp,n)
insert n

Example 3

This example shows that the same node n can be inserted
into the deque arbitrary number of times. Consequently, the
deque is unbounded and hence the marking phase time is also
unbounded. The solution to this problem is to color n when it is
inserted into the deque so that the LP will know that n need not
be inserted again by testing the color of n.

B.3 The LP should color n before n is inserted into the deque.

Suppose that the LP colors n after n is inserted into the
deque. Consider Example 4.

GC Lp

1. create(r,n)

2. insert n
Cycle i

3. remove n

4. remove m

5. read m.left

6. read m.right
Cycle i+l

7. color n
8. croate (myn)
9 delete all edges to n but (m,n)

Example 4

129

Notice that after step 8 the LP does not insert n into the
deque since n has already been colored by the LP at step 7 (cf.
Section B.2). By the argument used in Example 1, any white
active node which is reachable from a root only via n at that
time will not be blackened by the GC during cycle i+1. This
shows that the system is incorrect.

B.4 The LP should color n gray (or any color different from
black).

Suppose that the LP colors n black. Consider the case in
which at the very beginning of a marking phase, n is not in the
deque, and the LP blackens n and then stops for the rest of the
phase. Then those white active nodes which are reachable from
roots only via node n will not be blackened by the GC during
the marking phase since n is black at the beginning of the
phase. The system is therefore incorrect.

B.5 The LP should color n gray and insert n into the deque
only during a marking phase.

Note that the collecting phase time is proportional to M.
Hence if the LP inserts nodes during a collecting phase then the
number of nodes inserted to the deque would be proportional to
M and, consequently, so would the marking phase time. This
violates our requirement that the marking phase time be O(A).
It can also be observed that as a matter of fact there is no
need for the LP to gray n or insert n during the root insertion
and collecting phases for solving the correctness problems
illustrated by all the previous examples.

C. Free list and operations on it should be modified.

C.1 The color of a free node should be off-white (or any color
different from white, gray or black).

A newly created node must be nonwhite, for otherwise it can
be regarded as a garbage node and appended to the free list
incorrectly by the GC. Let n be such a newly created node.
Suppose that n is gray. Note first that during a collecting phase
nodes should not be inserted into the deque (cf. Section B.5).
Consider Example 5, which uses the same principle as Example
4.

GC LP
1. APPEND(n)
Cycle i
2. create n
3. create (n,s)
4. whiten s
5. remove m
6. read m.left
7. read m.rigt
Cycle i+l
8. create (m,n)
9 delete all edges to n hut (m,n)
Example 5

After step 8 n is not inserted into the deque by the LP for n
has been gray since step 2. We see that the white active node
s will not be blackened in cycle i+1. This shows that the system
is incorrect. Similarly, one can see that n must be nonblack.

It turns out that the best way to ensure that a newly created
node is off-white is by letting all the free nodes be always off-
white. This can be achieved by assuming that the procedure
APPEND(n) will off-whiten n and the procedure CREATE will not
ghange the color of nodes being created. In the operation LPp
an off-white node is treated in the same way as a white node.



C.2 Nodes on the free list should be readily identifiable.

During a collecting phase the GC should turn an off-white
node into a white node. If the GC does not do so, then a
released off-white node which does not happen to have an
ancestor in the deque will never be appended to the free list.
But the GC does not want to whiten nodes on the free list,
which are supposed to be always off-white (cf. Section C.1).
Hence, it is necessary to put a value "f" on the left pointer field
of nodes on the free list so that they are identifiable to the GC.
(Note that the left pointer field of nodes on the free list are
originally not used anyway.) The procedures APPEND and
CREATE should, of course, be modified accordingly for inserting
and deleting f.

D. The garbage collector’s algorithm must be modified.

Modifications to the collecting phase algorithm are essentially
discussed in Section C.2. Apprecpriate modifications should also
be done to the marking phase algorithm. Since the left son of
NEW can temporarily lead to th> free list during the middle of
the execution of CREATE, caution must be taken to avoid the
possibility that nodes on the free list are blackened by the GC.
Hence the left son of NEW should be treated as a special case
during the marking phase. Furthermore, minor changes on the
marking phase algorithm can be made to improve the
performance of the whole parallel system. This has been
addressed in remark 3 of Section 3.3.

We see that after all the modifications indicated above have
been made the sequential systery has been transformed into the
parallel system proposed in this paper.

Appendix II
The Performance of the Parallal System

In Appendix I, we briefly summarize part of the results in
Kung and Song[1977), where the performance of the parallel
system proposed in the present paper is analyzed. The analytic
model we use takes account of the overheads introduced to the
LP and the GC for the parallel system.- We believe that the
results derived from the model can be used successfully to
predict the actual performance of the system.

Notation

M

"

Memory size.

A

f

Number of active nodes.

4

M/ A

r = rate nodes are released (that is, become garbage) in the
sequential system, when the LP is running
is

)

u = rate nodes are used (that removed from the free list)
in the sequential system, when the LP is running.

a = rate operations LPp which may have a white target node
are performed.

R=a/u

m rate nodes are marked by the GC during the marking
phase in the sequential system.

s = rate nodes are scanned during the collecting phase, if no
nodes are appended to the free list.

r’ = rate nodes are released during the marking phase of the
parallel system.

130

U’ = rate nodes are used during the marking phase of the
parallel system

?

m’ = rate nodes are marked by the GC during the marking
phase of the parallel system.

Assumptions

1. The system (sequential or parallel) is in equilibrium, that is,
the number of active nodes A is constant.

Thus from
We will use r or r’

2. R and the release and use rates are constant.
assumption 1 we must have r=u and r’=u’.
for both use and release rates.

3. Quantities A, m/r, s/m and 8 are known.

4, When the LP makes a node to point to some other node, it is
equally likely that any active node can be the target node.

5. Active nodes are released by the LP and become garbage at
random. Thus the probability that an active node is released is
independent of its color.

6. The GC marks all nodes which are active at the beginning of
a marking phase. Clearly with this assumption we overestimate
the marking phase time, the number of "floating nodes” (see
Wadler[1976]), etc. in our analysis. Our results thus are likely
to give lower bounds on the actual performance of the system.

7. We ignore the cost of minor operations such as testing or
coloring a node; but we do include in the analysis the cost of
any deque or free list access.

8. Two physical processors are always available for the parallel
system, one for the LP and the other for the GC.

Results

We first consider the sequent:al system. Suppose that during
the entire computation of a list processing program, a total
amount of N nodes are to be removed from the free list. Before
the LP starts M - A = A («-1) nodes are available. The LP runs
until it uses up all the available nodes and then the garbage
collector takes over. Let the length of the time period when the
LP runs be T and let the length of the garbage collection time
be TG. If Ty is the total time taken by the computation, then

TN = N/(rTL) ) (TL+TG)

Therefore the average time to use a node in the sequential
system is

(TN/N)Seq = 1/( (1 + TG/TL)
Clearly, we are interested in minimizing Tn/N. 1t can be
minimized by increasing «, that is, by increasing M and thus T|.

Clearly there is a trade-off between time and space.

We now consider the parallel system. Qur goal is to derive
formulas for computing the following quantities:

Ql. The minimum o such that the LP will not run out of
space if M is chosen to be o«A.

Q2. The average time to use a node in the parallel system,
(TN/N)par'

The following useful result is first proved:

m’/r’ = mfr,



by which we are able to compute m’ and r® in terms of m, r and
3. (Note that for the parallel system in general r’ < r due to
the overheads introduced to the LP and m’ < m because a node
may be inserted into the deque more than once.) The following
result is obtained:

Theorem A:
If «=M/A 2 (2m/r+3-r/m)/(2m/r-1-2m/[s)

then the LP never runs out of space.

Values of « for which the LP will not run out of space when
M is chosen to be «A are plotted in Fig. 7.

16- o
- os/m=10
141
1.24
Lo T T T T T T T T T T
2 4 6 8 10 12 14 16 18 2
m/fr

fig. 7. The minimum < such that the
LP will not run out of space if M is
chosen to be «A.

After M is chosen so that the I.P will not run out of space, we
are interested in knowing whether or not the paralle!l system
actually executes the program faster than the sequential
system, and if so, how much fasler. (To answer these questions
is trivial, since overheads have been introduced to the LP for
the parallel system.) For this purpose, we have to know the
average time to use a node. It is obvious that in any sequential
or parallel system, the averaze time to use a node is 2
(TN/N)opt = 1/r. A closed formula for computing (TN/N)par in
terms of m/r, s/m, B and « has been obtained. In Fig. 8, we
compare the values of TN/N in the sequential and parallel
systems to the optimal value of 1/r, assuming that r=1 and that
the value of « is given by Fig. 7.

o sequential system, s/m=10
+ parallel system, s/m=10, 8=6

18- x parallel system, s/m=10, B=4
Tn/N o parallel system, s/m=10, =2
& optimal time

164 M
144
L2

104 D i

-Sjl_‘r T T T T T T T T T

2 4 6 8 10 12 14 16 18 2

mir

Fig. 8 The average time to use a
node, assuming that r=1 and that the
value of « is given by fig. 7.

A useful measure for studying the performance of a parallel
system is its speed-up, which is defined as

131

Speed-up = (Tn/N)geq / (Tn/N)pap-

Clearly, speed-up is always < 2, since two processes are
used. Another more useful upper bound can be derived as
follows. Since (TN/N)par > 1/r,

Speed-up < 1+ Tg/Ty
for any parallel system. Corresponding to Fig. 8, the value of
the speed-up of the parallel system is compared to the optimal
speed-up 1 + Tg/T| in Fig. 9. We see that the parallel system
performs nearly optimally for large m/r.

B s/m=10, optimal speed-up

+ s/m=1Q, =2
18, Speed-up x s/m=10, 3=4
o s/m=10, B=6
164 M
14 W
1.24
10 T T — T T T T T T
2 4 6 8 10 12 14 16 18 2
mfr

Fig. 9. Comparing the speed-up of
the parallel system with the optimal
speed-up, assuming that r=1 and
that the value of « is given by fig.
7.

The analytic results sketched above are mainly obtained by
solving differential equations describing the various transitions
in the parallel system. It is assumed implicitly that all the
solutions are differentiable. It is also assumed that the system
is in the perfect equilibrium state, ie, A, B, r and u are all
constant in time. These restrictions might lead one to question
the validity of the model. Because of this consideration, we
have tested the model by simulation in which the time intervals
between consecutive removals from the free list and
consecutive releasing of active , nodes are exponentially
distributed independent random variables with the same mean.
The simulation results are found to be nearly the same as the
results obtained from the analytic model.



