
Direct VLSI Implementation 
of Combinatorial Algorithms 

L.J. Guibas, H.T. Kung, and C.D. Thompson 

Carnegie-Mellon University 

Pillsburgh. Pennsylvania 

Abstract 

We present new algorithms for dynamic programming and transtivc closure which arc appropriate 

for very large-scale integration implementation. 
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0. THE VLSI MODEL OF COMPliTATION 

The purpose of this paper is to give two examples of algorithmic design suitable for direct im­

plementation in VLSI (very large-scale integration). We show new algorithms for two important 

combinatorial problems, dynamic programming and transitive closure. In our design we attempt to 

meet the challenge offered by the new VLSI technology by taking account of its true costs and 

capabilities. The algorithms of this paper meet the goals of modularity and ease of layout, simplicity 

of communication and control, and extensibility. These goals are of paramount importance in all 

VLSI designs. 

Modularity and ease of layout: The design of significant system components using large-scale in­

tegration is notoriously expensive. Two major factors of the design cost are the difficulty of designing 

each chip, and the number of different chips that must be designed. A modular design decreases 

both cost factors, as well as facilitating chip and system layout. An ideal structure for VLSI has 

a large number of identical modules organized in a simple, regular fashion. The resulting ease of 

layout dramatically reduces design costs, accounting for the successful use of VLSI in memory and 

PLA chips. 

We have ~ken a somewhat extreme approach to system modularity by proposing a single simple 

module, called a cell. Cells are laid out in a planar array, with connections only to nearest neighbors. 

The layout of a chip is thus trivial, as is the layout of chips on a board. Our cells combine memory 

and processing in a finer grain than has been customary. A device built from such cells can perform 

a substantial computational task, even though it has a topology much more like that of a passive 

memory than a von Neumann microprocessor. 

We restricted our attention to cells that could be implemented with at most a few thousand active 

elements (gates, transistors). Many modules may thus be laid out on a single VLSI chip, giving 

structure to the chip design problem. Furthermore, our algorithms can make efficient use of ten to 

ten thousand or more cells, so that many identical chips can be used in one installation. 

Communication and control: For a VLSI design to be truly practical, it must not sidestep any 

communication or control issues. A good design minimizes both the complexity of each module as 

well as the number of connecting wires between modules. The latter consideration becomes more 

important as VLSI technology improves. An increase in the number of active clements on a chip 

is of little benefit when the chip's I/0 bandwidth is limited by its pinout 

We considered designs .with eight connections to each cell: power, ground, clock, reset, and four 

data lines to neighboring cells in the planar array (left, right, up, down). We then attempted to 

minimize the solution time for a dynamic programming (or transitive closure) problem, assuming a 

data rate of one bit per clock cycle. 

A VLSI chip has enough pins to implement many of our cells, if the cells form a square region 

of the planar array. For example, 9 cells in a 3 X 3 array need only 16 external connections: 12 

data lines for the cells on the periphery, and 4 common wires for power, ground, clock and reset. 
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Similarly, a 5 X 5 matrix will fit on a 24 pin chip, an 8 X 8 on a 36 pin chip, and a 9 X 9 on a 40 pin 

chip. This is the limit of present technology, though 100 pin chips arc conceivable in the future. 

With a few U1ousand active elements per cell, our designs are of approptiate complexity for VLSI. 

Anomer consideration is ilie balancing of on-chip processing with I/0. Input and output are fun· 

damentally slower than communication on the chip. This suggests that ilie construction of custom 

devices will only be economical for the implementation of "super-linear algorithms", where on-chip 

processing is of sufficient complexity to balance the time required to read in or write out ilie data. 

In other words, our aim is to take an alg01ithm of more than linear complexity in the classical serial 

model (say O(n3)) and speed it up by the use of parallelism and pipclining, so that U1e resulling 

device can process the data at roughly ilie same rate that data can be input or output. 

Extensibility: This paper deals with the design of special purpose hardware to solve two specific 

classes of problems. The utility of such designs is limited by ilieir specificity. We seek extensibility 

in two ways, through size and problem independence. 

The hardware should be able to solve arbitrarily sized instances of the problem for which it is 

intended. Here we suppose that our designs are used to build special purpose devices controlled by 

a more conventional processor. In iliis light, it is important iliat ilie devices can be used efficiently 

for ilie solution of problems that exceed ilieir (one-pass) capacity. This issue will be further explored 

in Section 3, under the rubric of decomposability. 

Problem independence is even more important: special purpose hardware should solve as many 

different problems as possible. Modules could conceivably be microprogrammed as logic density 

increases. This paper indicates the utility of the mesh-style interconnection pattern for modules, as 

well as demonstrating two (perhaps generally useful) patterns for data flow in such systems. 

Systolic algorithms: There is a newly coined word for our style of algorithm design for VLSI: 

"systolic", in the sense of [KL2]. The term is meant to denote arrays of identical cells that circulate 

data in a regular fashion. Kung and Leiserson's cells [KL,KL2] perform but one simple operation; 

we have relaxed this restriction somewhat so iliat a small amount of control information circulates 

with ilie data. 

Data movement is synchronous and bit-serial, to reduce pinout requirements. It is a difficult but hardly 

insurmountable problem to design chips wiili ten to one hundred identical modules synchronized 

with a single clock line. 

Time is measured in terms of data transmission. One "word" may be seqt along a wire in one unit 

of time. This convention avoids extraneous detail in the discussion of our algorithms: ilie choice of 

word length is left to the implementor. It unfortunately obscures one important issue, namely, that 

one bit of control information must be sent with each word of data in the transitive closure and 

dynamic programming algorithms. 

Traditional models and goals: Algorithmic design is dominated by the traditional goals that arise 

naturally from classical machine architectures and technologies. A good serial algorithm minimizes 
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operation counts, while a good parallel algorithm maximizes concurrent processing. Both viewpoints 

are somewhat inappropriate to the evaluation of VLSI designs. The theory of cellular automata is 

more helpful. 

In a typical serial model, o(n3 ) boolean operations are sufficient to compute a transitive closure 

[AHU, Chap. 6]. However, the recursive algorithm employed docs not seem suitable for direct VLSI 

implementation, since too much information is passed across recursive calls. 

A parallel algorithm has optimal speedup if it cuts computation time by a factor proportional to the 

number of processors used. But computation time is measured in most parallel models by counting 

elementary operations, with little consideration of the time necessary to transmit intermediate results. 

The theory of cellular automata [vN] docs offer some insight into VLSI design. Its generality obscures 

some important issues, for example, the cost of building the cells (especially if there is more than 

one type), and the amount of infonnation received by a cell from its neighbors in one unit of time. 

It lacks the notion of the 1!0 bottleneck between chips due to pinout restrictions. And it does not 

address the problem of decomposability. 

Other work: Models of computation similar to ours have been previously considered in the literature. 

This paper was inspired by Kung and Leiserson's [KL] solutions to several matrix problems, and by 

the vision of VLSI expressed in Mead and · Conway's book [MC). Levitt and Kautz [LK] explored 

the hardware implementation of Warshall's [Ws] algorithm for transitive closure. However, their 

designs are not readily decomposable, and they use many more connections per cell. 

Organization of the paper: Algorithms for dynamic programming and transitive closure are developed 

separately in sections 1 and 2. Section 3 concludes the body of the paper with a discussion of 

decomposablity and further topics. 

1. DYNAMIC PROGRAMMING 

Many problems in computer science can be solved by the use of dynamic programming techniques. 

These include shortest path, optimal parenthesization, partition, and matching problems, and many 

others. For a fuller discussion of this spectrum sec the review article by K. Brown [Br] and the 

references mentioned therein. In this paper we will confine our attention to optimal parcnthcsization 

problems. This will allow us to explain the ideas without excess generality, while at the same time 

covering a vast range of significant problems, including the construction of optimal search trees, 

file merging, context free language recognition, computation of order statistics, and various string 

matching problems. 

The optimal parcnthcsization problems can all be put in the form: 

Given a string of n items, find an optimal (in a certain sense) parcnthcsization of 

the string. 

As an example, there arc five distinct parenthcsizations of the string (1 2 3 4): 

(((1 2) 3) 4) 
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((( 1 {2 3)) 4) 

{{1 2) {3 4)) 

{1 {(2 3) 4)) 

{1 {2 {3 4))) 

{1.2) 

{1.3) 

{1.4) 

(1.5) 

Note that a parenthesization of n items has n - 1 pairs of parentheses. Also, each parenthesis 

pair encloses two elements, each of which is either an item or another parenthesis pair. These 

five parenthesizations correspond to the five ways of performing the addition l + 2 + 3 +4 without 

rearranging the terms. 

The optimality of a parenthesization is defined with respect to a cost for each parenthesis pair; the 

total cost is some function (usually the sum) of the individual costs. The optimal parenthesization 

is the one with minimum total cost. 

In the previous example, if the cost of a parenthesis pair is defined as the sum of the enclosed 

items, then the optimal parenthesization is the first one, with total cost 19. 

The obvious way of solving an optimal parenthesization problem involves examining all possible 

parenthesizations of the string, then picking the one with the smallest cost. This algorithm is clearly 

exponential in n, as the number of distinct parenthesizations is itself exponential. A dynamic 

programming strategy for this problem is derived from the following observations. If we have an 

optimal parcnll:lesization of the whole string, then we also have an optimal parenthesization of each 

of its substrings. (If we could improve a substring, then we could improve the whole). This suggests 

that we calculate the optimal parenthesizations of successively larger substrings of the original string, 

starting from the singleton items. Further, we note that the solution for a given substring will arise 

as a subproblem for several larger problems, and thus it will pay to remember the optimal solution 

in order to avoid recomputation. 

To simplify· matters suppose that we are only interested in the cost of the minimum cost paren­

thesization, not its structure. Let the original string items be numbered by the integers 1 through n 

from left to right, and let c(i, j) denote the minimum cost of parenthesizing the substring consisting 

of items i through j - 1 (here we assume 1 < i < j < n + 1). Then, according to the above 

discussion, the c{ i, j) can be computed using a recurrence of the form 

c{ i, j) min F,,.:;(c( i, k), c(k, j)). 
i<k<i 

(1.6) 

Here, the c{ i, k) and c(k, j) arc the optimal costs for parenthcsi7.ing two substrings. The range of 

the minimization varjablc, k, ensures consideration of all pairs of substrings that can be formed 

from items i through j- 1. The function Fikj computes the total cost of parenthesizing lhc items 
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i lhrough i- 1, and it is nonnally of lhe fonn 

Fikj(c(i 1 k)~ c(k~i)) c( i I k) + c( k1 i) + !( i 1 kl i) . {1. 7) 

The total cost of parenthesizing Hems i through i - 1 is in this case lhe sum of the optimal 

parenlhesization of a pair of substrings, plus some additional cost for the outennost pair of parentheses. 

In our toy example delineated in lhe text above, 

and 

c(11 2) = c(21 3) = c{31 4) = c(41 5) = 0 1 

F;ki( c( i1 k)1 c(k1 j)) c(i1 k) + c(k,j) + L: h. 
·~h<j 

{1.8) 

{1.9) 

The desired value is c{1 1 5), lhe cost of parenthesizing items 1 through 4. The dynamic programming 

approach to evaluating c{l, 5) is to solve all "subproblems" first Thus, 

c(11 3) = c{11 2) + c{2, 3) + {1 + 2) = 3 1 {1.10) 

c{21 4) = 5, {1.11) 

c(31 5) = 7 . {1.12) 

With lhese values known, the following may be computed: 

c{1 1 4) = min{3 + 61 5 + 6) = 9, {1.13) 

c{21 5) = 14. {1.14) 

Finally, 

c(1, 5) = min(9 + 101 14 + 10) = 19, (1.15) 

as asserted previously. The optimal parenthesization is that of (1.1), as identified by the optimal 

values of k found in applications of (1.6). 

In general, one may compute the c( i 1 j) in order of increasing value of j - i, ending with the 

computation of c(1, n + 1). 

Note that since there arc S{n2) substrings of the original, and for each substring we arc minimizing 

over e(n) values of k on the average, the computation takes a total of S(n:1) steps. Thus dynamic 

programming has given us a low order polynomial algorithm for an apparently exponential problem. 

We visualize a more general computation by using lhe triangle depicted below for the case n = 6. 

[Figure 1.1] 

Denote by (ij) the solution to the parenthesi1.ation problem for the substring from i to j - 1. 

Wc start out wilh (12), (23), .. . , (67), U1e singleton substrings, whose solution we assume is given. 
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{12) 

Figure 1.1 

The dynamic programming computation. 
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Using these we can then compute the solutions for substrings of length 2. namely (13). (24) ....• 

(57). Next we can get (14). (25) ..... (47). then (15), (26). (37). then (16). (27). and finally the 

desired result (17). 

The above serial algorithm is amenable to certain obvious parallelism. If all (ij) with j - i < s 

arc available. then the (ij) with j - i = s can be computed in parallel. Thus if we had e(n) 
cells. and ignored the cost of data movement. we could finish the computation in e(n2) steps. This 

decomposition is. of course, much closer to classical parallel models than to the VLSI model we are 

advocating. Note that each cell is working in isolation on a complete sub-problem. Previous results 

must be made available to several cells and thus, unless we design the data movement carefully, 

contention problems may arise. By contrast, we are seeking an algorithm with simple and regular 

data flow which offers maximal pipelining. For us cells are inexpensive, as long as they are of a 

simple and uniform kind. We are happy to provide 9( n 2) cells, if we can then solve the problem 

in e( n) steps. 

We now drop the toy example for a more realistic problem, for the remainder of this section. The 

problem we wish to tackle is that of the construction of an optimum binary search tree [Kn, p.433], 

for which the above recurrence becomes 

c(i, j) w(i,j) + min (c(i,k) + c(k,j)), 
i<k<j 

(1.16) 

where w( i, j) is the sum of the probabilities that each of the items i through j will be accessed. 

We will try to solve this problem on a network of cells suggested by Figure 1.1, that is, a triangle 

of n(n + 1)/2 celts connected along a rectangular mesh. Cell (ij) will compute one number, the 

value of c(i, j). Then, it will send its result to the cells that need it to compute their own value. 

Note that this structure satisfies many of the a priori requirements for efficient VLSI implementation. 

We have a simple and regular interconnection pattern that corresponds well to the geometrical 

layout. Furthermore only the cells along the diagonal, and the cell at the upper right hand comer 

need communicate data to or from the outside world, thus guaranteeing a reasonable pin count. 

However, much remains to be worked out with respect to data flow. According to our recurrence, 

for example, cell (17) will need to combine the result of (16) (one of its neighbors) with the result 

of (67) (a cell far away). The art in the design of this algorithm lies in arranging for the right data 

to arrive at the right time at each cell, without overloading the communication paths. 

As noted in the introduction, time in our systems is defined by data transfers. One unit of time 

is sufficient for the communication of the value of a c(i, j) between neighboring cells. (Eventually, 

it will be seen that two c(i, j) values and one bit of control information must pass in unit time 

over the single wire connecting neighboring cells. If additional pinout is available, this bit-serial 

transmission may be parallelized in the normal fashion.) 

We now explain our algorithm. For simplicity of exposition we assume that cell (ij) has been 

prcloaded wiU1 w( i,-j). (In fact U1is loading operation can be merged with the computation described 
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below). Let us say that cell (ij) is at distance j- i away from the boundary (e.g., the diagonal (11), 

.. . , (77)). An infmmal description of the algorithm can then be given as follows: 

If a cell is at distance t away from the boundary, then its result is ready at time 

2t. At that moment the cell starts transmitting its result upwards and to the right. 

The result travels along both directions by moving by one cell per time unit, 

for t additional time units. From that moment until eternity the result slows its 

movement by a factor of 2. (That is, it now moves to the next cell every two time 

units). 

Before we descend into the details of how to implement this data flow pattern, let us see that it 

causes all the right data to arrive at a cell at the right time. A proof of this can be given formally, 

but is best illustrated by an example: cell (17). The first pair that this cell can hope to combine is 

(14) and (47) (every other pair has some member that will be generated later than these two). Both 

(14) and (47) will be ready at time 2•3 = 6, as they are a dist(!nce of 3 away from the boundary. 

They will travel at full speed for 3 more time units along the paths towards (17), arriving there at 

time 9. Now we claim the at lime 10 cell (17) will be able to combine the two additional pairs (15) 

with (57), and (13) with (37). We may check just the first one, as the other is clearly symmetric. 

The result of (15) is available (by our assumption) at time 8, and thus will arrive at (17) at time 10. 

But (57) is more interesting. It will be ready at time 4, will travel towards (17) at full speed for 2 

more lime units, arriving at (37) at time 6. But now it will slow down by a factor of 2, and thus it 

will need 4 more time units to get to (17), arriving there at time 10! Similarly, at time 11, our cell 

will be able to combine (16) with (67), and (12) with (27). This is all for the good, because thus at 

time 12 cell (17) is ready to start transmitting its result, exactly as our scheme would require, since 

it is a cell at distance 6 away from the boundary. For a network of size n, 2n time units will be 

required before the final result is available. 

After this overview of the algorithm, we must now examine the implementation at greater depth 

and check that the available communication paths are adequate to carry the data flow required. 

It is simplest to divide the capacity of the wire connecting adjacent cells into three channels. We 

call these the Just belt, the slow bell, and the control line. The first two channels carry one c( i, j) 
value per unit time, whereas the control line transmits one bit per unit time. (We defer discussion 

of the control line until the action of the cells has been completely described.) 

The cells make usc of their communication channels in the following manner. Each cell has five 

registers: the accumulator where the current minimum is maintained, the horizontal fast and horizontal 

slow registers. and similarly the vertical fast and vertical slow registers. On its horizontal fast belt 

connection, a cell normally receives the contents of its left neighbor's horiwntal fast register (storing 

it into its own horizontal fast register), while passing the old contents of that register to its right 

neighbor. 1l1e horizontal slow belts behave in exactly the same way. except that the horizontal slow 

registers consist of two stages. The data coming in enters the first stage, moves to the next st.1ge at 

the next time unit, and finally exits the cell at the following time unit. 1l1c nomenclature should 
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now be clear: data in the fast belt moves one cell to the right every time unit, while data in the 

slow belt only moves by half to the right every time unit. Completely analogous comments apply 

to the movement of data upwards in columns of vertical registers. 

The operation of a cell is then the following. During every unit of lime a cell partakes in the belt 

motion and also updates its accumulator. The new value is the minimum of the old accumulator 

contents, the sum of the new contents of its horizontal fast and vertical slow registers, and the sum 

of its horizontal slow and vertical fast registers. In addition. if this cell is at distance t away from 

the boundary, then at time 2t it will copy the contents of its accumulator into its fast horizontal 

and vertical registers. And finally, if it is at an even distance t = 2s from the boundary, then at 

time 3t /2 it will load the first stage of its horizontal (and vertical) slow register from the horizontal 

(resp. vertical) fast belt, ignoring its slow belts entirely. 

We see that our algorithm uses only a bounded number of registers per cell, thus meeting another 

of the desired attributes of a solution. In order to prove that this works we must show that for 

every belt no data gets overwritten which still needs to be used. Figure 1.2 below illustrates the 

contents of the fast and slow horizontal belts for the first row of cells in the example discussed earlier. 

[Figure 1.2] 

Notice that when a new value is stored on a belt, it is never on top of a previously written value. In 

addition the fast belt, in a sense, "reverses" in space the results the cells write on it. In other words, 

the results occur on this belt in the opposite direction from the direction that the corresponding 

cells are laid out in space. In contrast, the slow belt maintains the ordering of the results the same 

as that of the cells. This sheds some light as to why the two speed scheme succeeds in allowing a 

cell to combine results generated "close by" with results generated "far away". 

At last we need to address the timing issue: does a cell need to know its distance from the boundary 

and count accordingly? The answer is no, the signals on the control lines are sufficient to determine 

the action of each cell in a uniform fashion . These lines have a capacity of one bit per time unit. 

During each time unit, a cell receives one control bit from the left and one from below. and transmits 

one bit to the right and one bit to its upward-adjacent neighbor. 

The control signals "How" through the system, much as the data docs, although at a d ifferent rate. 

The accumulator to fast belt transfer that occurs in cell (ij) at time j- i is controlled by a rightward 

moving signal that moves at a rate of one cell every two time units. The fast to slow belt transfer 

that occurs at time 3(j - i)/2 is controlled by an upward moving signal that moves at a rate of 

two cells every three time units. 

We end this section by summarizing again the important attributes of our cell. First of all, there 

is only one kind. It has a small number of registers and small number of data and control paths 

connecting it to its immediate geomctlic neighbors. And finally, bolh the architecture of lhe cell 

and the algorithm it executes arc independent of the network size. 
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Figure 1 .2 

The fast & slow b e lts 

= fast 

= slow 

= resultofprocessor(1j) 
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-2-
---2 ---

--3---- 2--

--3----2--
---2 ---

--4 3----2--
- - -2 - - - 3 - - -

--4 3---- 2--
---2---3---

--5 4 3----
---2---3---

--s---- 4----

--6 5----
---2-- -3---4---

--6----
--- 2 -- -3 ---

The second stage of each processor·s slow bell 
register is draw11 to t11e right of t11at processor --7 

---2---
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2. TRANSITIVE CLOSURE 

The transitive closure problem is the following. Consider an n X n matlix A of O's and l's. We 

interpret A as defining a directed graph on the n vertices 1, 2, ... , n. The (ij) entry of A is 1, if 

and only if there is a directed arc in the graph from vertex i to vertex i The transitive closure of 

A, to be denoted by A •, is also an n X n 0-1 matlix, whose (ij) entry is a 1 iff there is a directed 

path from vertex i to vertex j in the graph. Formally speaking, there is a directed path from i to 

J. iff 1) there is a directed arc from i to j, or 2) there is a vertex k for which there are directed 

paths from i to k and from k to j, or 3) if i = J·. 

The transitive closure problem arises in many contexts in computer science. In implementing process 

synchronization, when a resource becomes available, we must trace down chains of processes each 

suspended on a resource held by another in order to discover which may run next. In updating a 

computer display containing objects partially obsculing other objects, we again must compute the 

closure of the "in front of' relation. In the data-flow analysis of computer programs we often need 

the closure of the "call" relation. Tree or graph traversal (such as garbage collection) can also be 

viewed as transitive closure problems. Dijkstra [D] has argued that transitive closure should be one of 

the fundamental building blocks in any programming system. He pointed out several other problems 

in the solution of which the computation of a transitive closure naturally arises. Furthermore, as 

became clear in the last section, what really defines our algorithms is data movement and not data 

operations. This implies that any network we construct for transitive closure is likely to be also 

applicable to any other problem with the same data flow. A large class of such problems, called 

shortest path problems, is discussed in [AHU, Sect. 5.6-5.9]. 

There is a well-known serial algolithm for the transitive closure problem due to Warshall [Ws]. 

Subsequently Warren [Wn] published an interesting "row-oriented" algorithm. Both of these algo­

rithms compute the transitive closure of an n X n matrix in time e( n 3). It is also well known 

that the serial complexity of transitive closure and matrix multiplication are the same. Thus, at 

the expense of much more complicated code, the asymptotic compleltity of the problem can be 

further reduced, using the techniques of Strassen or Pan. In this section we will seck a simple O(n) 

algorithm implemcntable on a square mesh of n2 cells. The transitive closure problem has in fact 

been previously considered by cellular automata theorists and two solutions arc known to the authors, 

one by Christopher [Ch], and one by van Scoy [vS]. Doth of these operate in O(n) time. However, 

they lack certain essential ingredients of an algorithm appropriate for VLSI implementation. First, 

the complexity of the program executed by a cell is high. In both papers the code eltpressed in 

pseudo-ALGOL is over four pages long. Second, and more important, these algorithms have bi­

directional data flow along both the horizontal and vertical connections. As we will see in the next 

section. this makes it quite difficult to decompose the algorithm, that is to implement it when only 

a k X k array of cells is available, with k less than n. 

A useful device for the correctness proof for many of the above algorithms is the notion of "versions". 

This is especially appropriate when we imagine that we arc updating each entry aij of A in place. 
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We introduce versions 1, 2, ... , n for each clement aij. where version 1 is the original aii· and 

version n + 1 the (ij) entry of ·the transitive closure. In terms of the graph model, we interpret 

the t-th version of aij. written as aw. to denote the existence of a path from vertex i to vertex j 

which, aside from its starting and ending vertices, only visits vertices in the set { 1, 2, ... , t - 1 }. 

This interpretation makes clear that the a~9 can be computed from the recurrence 

a<1:+1) = a<1) + a<t)a(t) {2.1) 
,, ') Jt l; ' 

where we use "+" to denote logical or and product to denote logical and. The above recurrence 

indicates a partial order according to which versions of different elements must be computed. Both 

Warshall's and Warren's algorithms can be viewed as certain natural "topological sorts" of this partial 

order. The same machinery will be useful for justifying the algorithm suggested below. As a final 

point, note that the values of a~9 are monotonic increasing in t, and thus wherever version t is 

required in the right-hand side of the above recurrence, it is always safe to use version s, if s > t. 
We now describe our solution. We use an n X n array of cells with the rectangular mesh connec­

tions. End-around (toroidal) connections are useful but not essential. Each cell has an accumulator 

initialized to 0 (false). We also use some external memory that can hold a copy of A. We visualize 

two copies of the array A flowing past this processor array, one copy horizontally and the other 

copy vertically, as suggested in Figure 2.1. 

[Figure 2.1) 

Note that the horizontal copy is a vertical mirror image of A and that it is tilted backwards by 45 

degrees. Analogous comments apply to the vertical copy. The tilting of the copies is used so ~at 

element ait from the horizontal copy and element a,i from the vertical copy arrive at the cell in 

location (ij) at the same time. The algorithm now proceeds as follows (for simplicity we assume 

here the existence of the end-around connections): 

During each time unit, the horizontal and vertical copies advance by one to the 

right and down respectively. Each cell ands the data coming to it from the left and 

above and ors it into its accumulator. Normally a cell passes the data coming from 

the left to its right, and that from above, downwards. However, when an element of 

the horizontal copy passes its home location in the cell array, it updates itself to the 

value of the accumulator at thatlocalion. Thus when clement (32) of the horizontal 

copy enters cell (32) on the left, the contents of that cell's accumulator eltit on the 

right. As the horizontal copy starts coming out at the right end of the cell array, it 

is immediately fed back in at the left using the end-around connections. Entirely 

analogous comments apply to the vertical copy. After the two copies have cycled 

thus three times through, the accumulators of the cell array contain the transitive 

closure A • of A (stored in the standard row-major order). The result can now be 

unloaded by a fourth pass like the above, or by a separate mechanism. 

The correctness of the algorithm can be proven by using the idea of versions discussed earlier. 

Observe that over each cell. during every time unit, the column index of the clement currently there 
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from the horizontal copy equals the row index of the clement from the vertical copy. Inductively 

U1is implies that the contents of accumulator (ij) arc always majorizcd by transitive closure entry 

aiJ (they cannot ever become 1 if the corresponding transitive closure entry is 0). So it is necessary 

to show only that the accumulator of cell (ij) is brought up to version n + 1 of element ai;· 

We claim that, after the first pass of the two copies over the cell array, e lement aii is brought up 

to version p = min( i, i) in both copies. To see this note that equation (2.1) implies that 

(2.2) 

If we inductively assume that our claim is true for elements in either copy of the form aiJ' with 

i' < i. or elements of the form a i'J with i' < i, then we can conclude that cell (ij) will perform 

the inner product in (2.2) above, before the (ii) entry of either copy has passed over it. Thus by 

induction and the monotonicity of the or operation our claim is proved. A slight modification of 

the same argument proves that, after the second pass, element ai; is brought up to version j in the 

horizontal copy and version i in the vertical one. Finally, if we use (2.2) with p = n + 1 then we 

can conclude that, after the third pass, the accumulator of cell (ij) will contain the ii-th entry of 

the transitive closure. 

As in the case of dynamic programming, it remains to discuss the implementation of timing. How 

does a cell know when one of its "mates" is passing over it? Once again, this problem can be solved 

by including one bit of control information with each datum transmitted in the array of cells. 

Let's confine our attention to the horizontal mates, as the situation for vertical mates is entirely dual. 

Note that the horizontal mate arrives at cell ( ij) exactly when the diagonal clement (j j) of that column 

in the vertical copy arrives there also. This suggests an extremely. simple timing implementation. 

We start enabling signals at the top edge of the cell array which propagate downwards. The signals 

move by one cell during each unit of time. Furthermore, we start the signal at cell (1)) at time 

2 * U- 1). It is easy to check that these signals coincide with the diagonal elements of the vertical 

copy. Thus here also our cells execute code independent of the network size. 

The overall time required to complete the computation (including unloading of the cell array) is 

easily seen to be 5 • (n- 1), the same as the best previously known solution for cellular automata 

[Ch]. However, a direct implementation of that solution in VLSI would be inferior to our algorithm, 

as the units of time are different: more control information flows between cells during each time 

unit in Christopher's solution. 

3. ALGORlTIIM DECOMPOSITION AND FURTHER TOPICS 

We now take up some additional issues. First is the problem of algorithm decomposition. We 

explore here this issue in the context of the transitive closure problem. Similar comments apply to 

dynamic programming. If we are given a k X k array of cells and want to compute the transitive 

closure of an n X n matrix, with k < n, how <.lo we <.lo il? For simplicity we suppose that k divides 
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n . Thus we can evenly divide our n X n matrix into k X k blocks. To process a block we will 

cycle through it a horizontal and a vertical section of the array, using the algorithm of the previous 

section. From the horizontal copy of the full array we extract the k X n slice corresponding to the 

block rows and feed that into the device h01izontally. Similarly, from the vertical copy we extract 

the n X k vertical slice correspoding to the columns of the block. As the slices flow out of the 

device, they update the memory in which the corresponding array copies are stored. The k X k 

blocks can then be processed in this fashion in any order consistent with both the left-right and 

the top-down ordering of the blocks (the Young tableau order). Many variations on this basic idea 

arc possible, including interleaving the processing of the blocks with the three passes, regenerating 

one of the slices on the fly so it need not be stored, and others. Recent work of Mead and Rem 

[MRJ on LSI implementations of arrays so they can be accessed either by row or by column has 

applications here. 

The correctness of the decomposition can be proved by using the "monotonicity of versions" remark 

in the previous section. The case k = 1 gives an interesting serial algorithm, which can be viewed 

as the next logical step in the sequence whose first two terms are Warshall's and Warren's algorithms 

(in this order). Note that the computation time is now O(n3 / k2). and thus we still have optimal 

speed-up to within a constant factor. Finally we remark that a decomposition such as the above is 

possible precisely because we have signals flowing only downwards and to the right. This leads to 

an acyclic dependency graph, since there is an order in which to process the blocks such that each 

computation depends only on previous computations. If we had bi-directional signals along some 

dimension, so that there exist two blocks along that dimension each depending on signals from 

the other, then we could not complete the processing of either block without starting the other. 

Although it is still possible to run the two blocks as coroutines, the complications of saving state 

and loading and unloading the device would make such a solution prohibitively expensive. 

We now conclude with some more general remarks. There is substantial similarity between the 

dynamic programming and transitive closure cell. Even stronger is the similarity between the transitive 

closure cell and that used in Kung and Leiserson's work on matrix algolithms. Both arc "inner 

product step" cells. The possibility of mapping all these algolithms onto one type of module needs 

further exploration. 

From a mathematical point of view, perhaps the most interesting question is to ask for a charac­

terization of the computations which can be carried out in this style within certain performance 

bounds. If we start from a recurrence describing a serial algorithm for the solution to a problem, 

is there a theory to help us in designing a network like those described here, which would execute 

exactly the same computation steps, only in a highly parallel and pipelined fashion? Can we describe 

what processor topologies can be used for what kind of recurrences? The number of open questions 

is vast. 
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