
Direct VLSI Implementation
of Combinatorial Algorithms

L.J. Guibas, H.T. Kung, and C.D. Thompson

Carnegie-Mellon University

Pillsburgh. Pennsylvania

Abstract

We present new algorithms for dynamic programming and transtivc closure which arc appropriate

for very large-scale integration implementation.

509

CALTECH CONFERENCE ON VLSI, J a nuary 1979

510 L.J.Guibas , H. T.Kung, C . D.Thompson

0. THE VLSI MODEL OF COMPliTATION

The purpose of this paper is to give two examples of algorithmic design suitable for direct im­

plementation in VLSI (very large-scale integration). We show new algorithms for two important

combinatorial problems, dynamic programming and transitive closure. In our design we attempt to

meet the challenge offered by the new VLSI technology by taking account of its true costs and

capabilities. The algorithms of this paper meet the goals of modularity and ease of layout, simplicity

of communication and control, and extensibility. These goals are of paramount importance in all

VLSI designs.

Modularity and ease of layout: The design of significant system components using large-scale in­

tegration is notoriously expensive. Two major factors of the design cost are the difficulty of designing

each chip, and the number of different chips that must be designed. A modular design decreases

both cost factors, as well as facilitating chip and system layout. An ideal structure for VLSI has

a large number of identical modules organized in a simple, regular fashion. The resulting ease of

layout dramatically reduces design costs, accounting for the successful use of VLSI in memory and

PLA chips.

We have ~ken a somewhat extreme approach to system modularity by proposing a single simple

module, called a cell. Cells are laid out in a planar array, with connections only to nearest neighbors.

The layout of a chip is thus trivial, as is the layout of chips on a board. Our cells combine memory

and processing in a finer grain than has been customary. A device built from such cells can perform

a substantial computational task, even though it has a topology much more like that of a passive

memory than a von Neumann microprocessor.

We restricted our attention to cells that could be implemented with at most a few thousand active

elements (gates, transistors). Many modules may thus be laid out on a single VLSI chip, giving

structure to the chip design problem. Furthermore, our algorithms can make efficient use of ten to

ten thousand or more cells, so that many identical chips can be used in one installation.

Communication and control: For a VLSI design to be truly practical, it must not sidestep any

communication or control issues. A good design minimizes both the complexity of each module as

well as the number of connecting wires between modules. The latter consideration becomes more

important as VLSI technology improves. An increase in the number of active clements on a chip

is of little benefit when the chip's I/0 bandwidth is limited by its pinout

We considered designs .with eight connections to each cell: power, ground, clock, reset, and four

data lines to neighboring cells in the planar array (left, right, up, down). We then attempted to

minimize the solution time for a dynamic programming (or transitive closure) problem, assuming a

data rate of one bit per clock cycle.

A VLSI chip has enough pins to implement many of our cells, if the cells form a square region

of the planar array. For example, 9 cells in a 3 X 3 array need only 16 external connections: 12

data lines for the cells on the periphery, and 4 common wires for power, ground, clock and reset.

ARCHITECTURE SESSION

Direct VLSI Implementatio n
o f Combinat o rial Algorithms

Similarly, a 5 X 5 matrix will fit on a 24 pin chip, an 8 X 8 on a 36 pin chip, and a 9 X 9 on a 40 pin

chip. This is the limit of present technology, though 100 pin chips arc conceivable in the future.

With a few U1ousand active elements per cell, our designs are of approptiate complexity for VLSI.

Anomer consideration is ilie balancing of on-chip processing with I/0. Input and output are fun·

damentally slower than communication on the chip. This suggests that ilie construction of custom

devices will only be economical for the implementation of "super-linear algorithms", where on-chip

processing is of sufficient complexity to balance the time required to read in or write out ilie data.

In other words, our aim is to take an alg01ithm of more than linear complexity in the classical serial

model (say O(n3)) and speed it up by the use of parallelism and pipclining, so that U1e resulling

device can process the data at roughly ilie same rate that data can be input or output.

Extensibility: This paper deals with the design of special purpose hardware to solve two specific

classes of problems. The utility of such designs is limited by ilieir specificity. We seek extensibility

in two ways, through size and problem independence.

The hardware should be able to solve arbitrarily sized instances of the problem for which it is

intended. Here we suppose that our designs are used to build special purpose devices controlled by

a more conventional processor. In iliis light, it is important iliat ilie devices can be used efficiently

for ilie solution of problems that exceed ilieir (one-pass) capacity. This issue will be further explored

in Section 3, under the rubric of decomposability.

Problem independence is even more important: special purpose hardware should solve as many

different problems as possible. Modules could conceivably be microprogrammed as logic density

increases. This paper indicates the utility of the mesh-style interconnection pattern for modules, as

well as demonstrating two (perhaps generally useful) patterns for data flow in such systems.

Systolic algorithms: There is a newly coined word for our style of algorithm design for VLSI:

"systolic", in the sense of [KL2]. The term is meant to denote arrays of identical cells that circulate

data in a regular fashion. Kung and Leiserson's cells [KL,KL2] perform but one simple operation;

we have relaxed this restriction somewhat so iliat a small amount of control information circulates

with ilie data.

Data movement is synchronous and bit-serial, to reduce pinout requirements. It is a difficult but hardly

insurmountable problem to design chips wiili ten to one hundred identical modules synchronized

with a single clock line.

Time is measured in terms of data transmission. One "word" may be seqt along a wire in one unit

of time. This convention avoids extraneous detail in the discussion of our algorithms: ilie choice of

word length is left to the implementor. It unfortunately obscures one important issue, namely, that

one bit of control information must be sent with each word of data in the transitive closure and

dynamic programming algorithms.

Traditional models and goals: Algorithmic design is dominated by the traditional goals that arise

naturally from classical machine architectures and technologies. A good serial algorithm minimizes

bl l

CALTECH CONFERENCE ON VLSI, January 1979

512 L.J.Gu i bas , H.T.Kung, C. D.Thompso n

operation counts, while a good parallel algorithm maximizes concurrent processing. Both viewpoints

are somewhat inappropriate to the evaluation of VLSI designs. The theory of cellular automata is

more helpful.

In a typical serial model, o(n3) boolean operations are sufficient to compute a transitive closure

[AHU, Chap. 6]. However, the recursive algorithm employed docs not seem suitable for direct VLSI

implementation, since too much information is passed across recursive calls.

A parallel algorithm has optimal speedup if it cuts computation time by a factor proportional to the

number of processors used. But computation time is measured in most parallel models by counting

elementary operations, with little consideration of the time necessary to transmit intermediate results.

The theory of cellular automata [vN] docs offer some insight into VLSI design. Its generality obscures

some important issues, for example, the cost of building the cells (especially if there is more than

one type), and the amount of infonnation received by a cell from its neighbors in one unit of time.

It lacks the notion of the 1!0 bottleneck between chips due to pinout restrictions. And it does not

address the problem of decomposability.

Other work: Models of computation similar to ours have been previously considered in the literature.

This paper was inspired by Kung and Leiserson's [KL] solutions to several matrix problems, and by

the vision of VLSI expressed in Mead and · Conway's book [MC). Levitt and Kautz [LK] explored

the hardware implementation of Warshall's [Ws] algorithm for transitive closure. However, their

designs are not readily decomposable, and they use many more connections per cell.

Organization of the paper: Algorithms for dynamic programming and transitive closure are developed

separately in sections 1 and 2. Section 3 concludes the body of the paper with a discussion of

decomposablity and further topics.

1. DYNAMIC PROGRAMMING

Many problems in computer science can be solved by the use of dynamic programming techniques.

These include shortest path, optimal parenthesization, partition, and matching problems, and many

others. For a fuller discussion of this spectrum sec the review article by K. Brown [Br] and the

references mentioned therein. In this paper we will confine our attention to optimal parcnthcsization

problems. This will allow us to explain the ideas without excess generality, while at the same time

covering a vast range of significant problems, including the construction of optimal search trees,

file merging, context free language recognition, computation of order statistics, and various string

matching problems.

The optimal parcnthcsization problems can all be put in the form:

Given a string of n items, find an optimal (in a certain sense) parcnthcsization of

the string.

As an example, there arc five distinct parenthcsizations of the string (1 2 3 4):

(((1 2) 3) 4)

ARCHITECTURE SESSION

(1..1)

Direct VLSI Implementation
of Combinatorial Algorithms

(((1 {2 3)) 4)

{{1 2) {3 4))

{1 {(2 3) 4))

{1 {2 {3 4)))

{1.2)

{1.3)

{1.4)

(1.5)

Note that a parenthesization of n items has n - 1 pairs of parentheses. Also, each parenthesis

pair encloses two elements, each of which is either an item or another parenthesis pair. These

five parenthesizations correspond to the five ways of performing the addition l + 2 + 3 +4 without

rearranging the terms.

The optimality of a parenthesization is defined with respect to a cost for each parenthesis pair; the

total cost is some function (usually the sum) of the individual costs. The optimal parenthesization

is the one with minimum total cost.

In the previous example, if the cost of a parenthesis pair is defined as the sum of the enclosed

items, then the optimal parenthesization is the first one, with total cost 19.

The obvious way of solving an optimal parenthesization problem involves examining all possible

parenthesizations of the string, then picking the one with the smallest cost. This algorithm is clearly

exponential in n, as the number of distinct parenthesizations is itself exponential. A dynamic

programming strategy for this problem is derived from the following observations. If we have an

optimal parcnll:lesization of the whole string, then we also have an optimal parenthesization of each

of its substrings. (If we could improve a substring, then we could improve the whole). This suggests

that we calculate the optimal parenthesizations of successively larger substrings of the original string,

starting from the singleton items. Further, we note that the solution for a given substring will arise

as a subproblem for several larger problems, and thus it will pay to remember the optimal solution

in order to avoid recomputation.

To simplify· matters suppose that we are only interested in the cost of the minimum cost paren­

thesization, not its structure. Let the original string items be numbered by the integers 1 through n

from left to right, and let c(i, j) denote the minimum cost of parenthesizing the substring consisting

of items i through j - 1 (here we assume 1 < i < j < n + 1). Then, according to the above

discussion, the c{ i, j) can be computed using a recurrence of the form

c{ i, j) min F,,.:;(c(i, k), c(k, j)).
i<k<i

(1.6)

Here, the c{ i, k) and c(k, j) arc the optimal costs for parenthcsi7.ing two substrings. The range of

the minimization varjablc, k, ensures consideration of all pairs of substrings that can be formed

from items i through j- 1. The function Fikj computes the total cost of parenthesizing lhc items

513

CALTECH CONFERENCE ON VLSI, January 1979

514 L.J.Guibas , H.T.Kung, C.D.Thompson

i lhrough i- 1, and it is nonnally of lhe fonn

Fikj(c(i 1 k)~ c(k~i)) c(i I k) + c(k1 i) + !(i 1 kl i) . {1. 7)

The total cost of parenthesizing Hems i through i - 1 is in this case lhe sum of the optimal

parenlhesization of a pair of substrings, plus some additional cost for the outennost pair of parentheses.

In our toy example delineated in lhe text above,

and

c(11 2) = c(21 3) = c{31 4) = c(41 5) = 0 1

F;ki(c(i1 k)1 c(k1 j)) c(i1 k) + c(k,j) + L: h.
·~h<j

{1.8)

{1.9)

The desired value is c{1 1 5), lhe cost of parenthesizing items 1 through 4. The dynamic programming

approach to evaluating c{l, 5) is to solve all "subproblems" first Thus,

c(11 3) = c{11 2) + c{2, 3) + {1 + 2) = 3 1 {1.10)

c{21 4) = 5, {1.11)

c(31 5) = 7 . {1.12)

With lhese values known, the following may be computed:

c{1 1 4) = min{3 + 61 5 + 6) = 9, {1.13)

c{21 5) = 14. {1.14)

Finally,

c(1, 5) = min(9 + 101 14 + 10) = 19, (1.15)

as asserted previously. The optimal parenthesization is that of (1.1), as identified by the optimal

values of k found in applications of (1.6).

In general, one may compute the c(i 1 j) in order of increasing value of j - i, ending with the

computation of c(1, n + 1).

Note that since there arc S{n2) substrings of the original, and for each substring we arc minimizing

over e(n) values of k on the average, the computation takes a total of S(n:1) steps. Thus dynamic

programming has given us a low order polynomial algorithm for an apparently exponential problem.

We visualize a more general computation by using lhe triangle depicted below for the case n = 6.

[Figure 1.1]

Denote by (ij) the solution to the parenthesi1.ation problem for the substring from i to j - 1.

Wc start out wilh (12), (23), .. . , (67), U1e singleton substrings, whose solution we assume is given.

ARCHITECTURE SESSION

Direct VLSI Impleme nt ation
of Combinatorial Algorithms

{12)

Figure 1.1

The dynamic programming computation.

515

{67)

CALTECH CONFERENCE ON VLSI, January 1979

~.~.uu~ua~ , tt.l.~ung, c.u.~nompso n

Using these we can then compute the solutions for substrings of length 2. namely (13). (24)•

(57). Next we can get (14). (25) (47). then (15), (26). (37). then (16). (27). and finally the

desired result (17).

The above serial algorithm is amenable to certain obvious parallelism. If all (ij) with j - i < s

arc available. then the (ij) with j - i = s can be computed in parallel. Thus if we had e(n)
cells. and ignored the cost of data movement. we could finish the computation in e(n2) steps. This

decomposition is. of course, much closer to classical parallel models than to the VLSI model we are

advocating. Note that each cell is working in isolation on a complete sub-problem. Previous results

must be made available to several cells and thus, unless we design the data movement carefully,

contention problems may arise. By contrast, we are seeking an algorithm with simple and regular

data flow which offers maximal pipelining. For us cells are inexpensive, as long as they are of a

simple and uniform kind. We are happy to provide 9(n 2) cells, if we can then solve the problem

in e(n) steps.

We now drop the toy example for a more realistic problem, for the remainder of this section. The

problem we wish to tackle is that of the construction of an optimum binary search tree [Kn, p.433],

for which the above recurrence becomes

c(i, j) w(i,j) + min (c(i,k) + c(k,j)),
i<k<j

(1.16)

where w(i, j) is the sum of the probabilities that each of the items i through j will be accessed.

We will try to solve this problem on a network of cells suggested by Figure 1.1, that is, a triangle

of n(n + 1)/2 celts connected along a rectangular mesh. Cell (ij) will compute one number, the

value of c(i, j). Then, it will send its result to the cells that need it to compute their own value.

Note that this structure satisfies many of the a priori requirements for efficient VLSI implementation.

We have a simple and regular interconnection pattern that corresponds well to the geometrical

layout. Furthermore only the cells along the diagonal, and the cell at the upper right hand comer

need communicate data to or from the outside world, thus guaranteeing a reasonable pin count.

However, much remains to be worked out with respect to data flow. According to our recurrence,

for example, cell (17) will need to combine the result of (16) (one of its neighbors) with the result

of (67) (a cell far away). The art in the design of this algorithm lies in arranging for the right data

to arrive at the right time at each cell, without overloading the communication paths.

As noted in the introduction, time in our systems is defined by data transfers. One unit of time

is sufficient for the communication of the value of a c(i, j) between neighboring cells. (Eventually,

it will be seen that two c(i, j) values and one bit of control information must pass in unit time

over the single wire connecting neighboring cells. If additional pinout is available, this bit-serial

transmission may be parallelized in the normal fashion.)

We now explain our algorithm. For simplicity of exposition we assume that cell (ij) has been

prcloaded wiU1 w(i,-j). (In fact U1is loading operation can be merged with the computation described

ARCHITECTURE SESSION

Direct VL~l 1mp1emen~a~1on
of Combinatorial Algorithms

below). Let us say that cell (ij) is at distance j- i away from the boundary (e.g., the diagonal (11),

.. . , (77)). An infmmal description of the algorithm can then be given as follows:

If a cell is at distance t away from the boundary, then its result is ready at time

2t. At that moment the cell starts transmitting its result upwards and to the right.

The result travels along both directions by moving by one cell per time unit,

for t additional time units. From that moment until eternity the result slows its

movement by a factor of 2. (That is, it now moves to the next cell every two time

units).

Before we descend into the details of how to implement this data flow pattern, let us see that it

causes all the right data to arrive at a cell at the right time. A proof of this can be given formally,

but is best illustrated by an example: cell (17). The first pair that this cell can hope to combine is

(14) and (47) (every other pair has some member that will be generated later than these two). Both

(14) and (47) will be ready at time 2•3 = 6, as they are a dist(!nce of 3 away from the boundary.

They will travel at full speed for 3 more time units along the paths towards (17), arriving there at

time 9. Now we claim the at lime 10 cell (17) will be able to combine the two additional pairs (15)

with (57), and (13) with (37). We may check just the first one, as the other is clearly symmetric.

The result of (15) is available (by our assumption) at time 8, and thus will arrive at (17) at time 10.

But (57) is more interesting. It will be ready at time 4, will travel towards (17) at full speed for 2

more lime units, arriving at (37) at time 6. But now it will slow down by a factor of 2, and thus it

will need 4 more time units to get to (17), arriving there at time 10! Similarly, at time 11, our cell

will be able to combine (16) with (67), and (12) with (27). This is all for the good, because thus at

time 12 cell (17) is ready to start transmitting its result, exactly as our scheme would require, since

it is a cell at distance 6 away from the boundary. For a network of size n, 2n time units will be

required before the final result is available.

After this overview of the algorithm, we must now examine the implementation at greater depth

and check that the available communication paths are adequate to carry the data flow required.

It is simplest to divide the capacity of the wire connecting adjacent cells into three channels. We

call these the Just belt, the slow bell, and the control line. The first two channels carry one c(i, j)
value per unit time, whereas the control line transmits one bit per unit time. (We defer discussion

of the control line until the action of the cells has been completely described.)

The cells make usc of their communication channels in the following manner. Each cell has five

registers: the accumulator where the current minimum is maintained, the horizontal fast and horizontal

slow registers. and similarly the vertical fast and vertical slow registers. On its horizontal fast belt

connection, a cell normally receives the contents of its left neighbor's horiwntal fast register (storing

it into its own horizontal fast register), while passing the old contents of that register to its right

neighbor. 1l1e horizontal slow belts behave in exactly the same way. except that the horizontal slow

registers consist of two stages. The data coming in enters the first stage, moves to the next st.1ge at

the next time unit, and finally exits the cell at the following time unit. 1l1c nomenclature should

~l.f

CALTECH CONFERENCE ON VLSI, January 1979

.... v . u u .1.ua.;:,, n . L.l\ u u g, 1..-. U. l nompson

now be clear: data in the fast belt moves one cell to the right every time unit, while data in the

slow belt only moves by half to the right every time unit. Completely analogous comments apply

to the movement of data upwards in columns of vertical registers.

The operation of a cell is then the following. During every unit of lime a cell partakes in the belt

motion and also updates its accumulator. The new value is the minimum of the old accumulator

contents, the sum of the new contents of its horizontal fast and vertical slow registers, and the sum

of its horizontal slow and vertical fast registers. In addition. if this cell is at distance t away from

the boundary, then at time 2t it will copy the contents of its accumulator into its fast horizontal

and vertical registers. And finally, if it is at an even distance t = 2s from the boundary, then at

time 3t /2 it will load the first stage of its horizontal (and vertical) slow register from the horizontal

(resp. vertical) fast belt, ignoring its slow belts entirely.

We see that our algorithm uses only a bounded number of registers per cell, thus meeting another

of the desired attributes of a solution. In order to prove that this works we must show that for

every belt no data gets overwritten which still needs to be used. Figure 1.2 below illustrates the

contents of the fast and slow horizontal belts for the first row of cells in the example discussed earlier.

[Figure 1.2]

Notice that when a new value is stored on a belt, it is never on top of a previously written value. In

addition the fast belt, in a sense, "reverses" in space the results the cells write on it. In other words,

the results occur on this belt in the opposite direction from the direction that the corresponding

cells are laid out in space. In contrast, the slow belt maintains the ordering of the results the same

as that of the cells. This sheds some light as to why the two speed scheme succeeds in allowing a

cell to combine results generated "close by" with results generated "far away".

At last we need to address the timing issue: does a cell need to know its distance from the boundary

and count accordingly? The answer is no, the signals on the control lines are sufficient to determine

the action of each cell in a uniform fashion . These lines have a capacity of one bit per time unit.

During each time unit, a cell receives one control bit from the left and one from below. and transmits

one bit to the right and one bit to its upward-adjacent neighbor.

The control signals "How" through the system, much as the data docs, although at a d ifferent rate.

The accumulator to fast belt transfer that occurs in cell (ij) at time j- i is controlled by a rightward

moving signal that moves at a rate of one cell every two time units. The fast to slow belt transfer

that occurs at time 3(j - i)/2 is controlled by an upward moving signal that moves at a rate of

two cells every three time units.

We end this section by summarizing again the important attributes of our cell. First of all, there

is only one kind. It has a small number of registers and small number of data and control paths

connecting it to its immediate geomctlic neighbors. And finally, bolh the architecture of lhe cell

and the algorithm it executes arc independent of the network size.

ARCHITECTURE SESSION

Direct VLSI Implementation
of Combinator ial Algorithms

519

Time

1

2

3

4

5

6

7

8

9

10

11

12

13

Processor

(12) (13) (14) (15) (16) (17)

Figure 1 .2

The fast & slow b e lts

= fast

= slow

= resultofprocessor(1j)

--2--

-2-
---2 ---

--3---- 2--

--3----2--
---2 ---

--4 3----2--
- - -2 - - - 3 - - -

--4 3---- 2--
---2---3---

--5 4 3----
---2---3---

--s---- 4----

--6 5----
---2-- -3---4---

--6----
--- 2 -- -3 ---

The second stage of each processor·s slow bell
register is draw11 to t11e right of t11at processor --7

---2---

CALTECH CONFERENCE ON VLSI , January 1979

520 L.J.Guibas, H.T.Kung, C. D.Thompson

2. TRANSITIVE CLOSURE

The transitive closure problem is the following. Consider an n X n matlix A of O's and l's. We

interpret A as defining a directed graph on the n vertices 1, 2, ... , n. The (ij) entry of A is 1, if

and only if there is a directed arc in the graph from vertex i to vertex i The transitive closure of

A, to be denoted by A •, is also an n X n 0-1 matlix, whose (ij) entry is a 1 iff there is a directed

path from vertex i to vertex j in the graph. Formally speaking, there is a directed path from i to

J. iff 1) there is a directed arc from i to j, or 2) there is a vertex k for which there are directed

paths from i to k and from k to j, or 3) if i = J·.

The transitive closure problem arises in many contexts in computer science. In implementing process

synchronization, when a resource becomes available, we must trace down chains of processes each

suspended on a resource held by another in order to discover which may run next. In updating a

computer display containing objects partially obsculing other objects, we again must compute the

closure of the "in front of' relation. In the data-flow analysis of computer programs we often need

the closure of the "call" relation. Tree or graph traversal (such as garbage collection) can also be

viewed as transitive closure problems. Dijkstra [D] has argued that transitive closure should be one of

the fundamental building blocks in any programming system. He pointed out several other problems

in the solution of which the computation of a transitive closure naturally arises. Furthermore, as

became clear in the last section, what really defines our algorithms is data movement and not data

operations. This implies that any network we construct for transitive closure is likely to be also

applicable to any other problem with the same data flow. A large class of such problems, called

shortest path problems, is discussed in [AHU, Sect. 5.6-5.9].

There is a well-known serial algolithm for the transitive closure problem due to Warshall [Ws].

Subsequently Warren [Wn] published an interesting "row-oriented" algorithm. Both of these algo­

rithms compute the transitive closure of an n X n matrix in time e(n 3). It is also well known

that the serial complexity of transitive closure and matrix multiplication are the same. Thus, at

the expense of much more complicated code, the asymptotic compleltity of the problem can be

further reduced, using the techniques of Strassen or Pan. In this section we will seck a simple O(n)

algorithm implemcntable on a square mesh of n2 cells. The transitive closure problem has in fact

been previously considered by cellular automata theorists and two solutions arc known to the authors,

one by Christopher [Ch], and one by van Scoy [vS]. Doth of these operate in O(n) time. However,

they lack certain essential ingredients of an algorithm appropriate for VLSI implementation. First,

the complexity of the program executed by a cell is high. In both papers the code eltpressed in

pseudo-ALGOL is over four pages long. Second, and more important, these algorithms have bi­

directional data flow along both the horizontal and vertical connections. As we will see in the next

section. this makes it quite difficult to decompose the algorithm, that is to implement it when only

a k X k array of cells is available, with k less than n.

A useful device for the correctness proof for many of the above algorithms is the notion of "versions".

This is especially appropriate when we imagine that we arc updating each entry aij of A in place.

ARCHITECTURE SESSION

Direct VLSI Implementation
of Combinatorial Algorithms

We introduce versions 1, 2, ... , n for each clement aij. where version 1 is the original aii· and

version n + 1 the (ij) entry of ·the transitive closure. In terms of the graph model, we interpret

the t-th version of aij. written as aw. to denote the existence of a path from vertex i to vertex j

which, aside from its starting and ending vertices, only visits vertices in the set { 1, 2, ... , t - 1 }.

This interpretation makes clear that the a~9 can be computed from the recurrence

a<1:+1) = a<1) + a<t)a(t) {2.1)
,, ') Jt l; '

where we use "+" to denote logical or and product to denote logical and. The above recurrence

indicates a partial order according to which versions of different elements must be computed. Both

Warshall's and Warren's algorithms can be viewed as certain natural "topological sorts" of this partial

order. The same machinery will be useful for justifying the algorithm suggested below. As a final

point, note that the values of a~9 are monotonic increasing in t, and thus wherever version t is

required in the right-hand side of the above recurrence, it is always safe to use version s, if s > t.
We now describe our solution. We use an n X n array of cells with the rectangular mesh connec­

tions. End-around (toroidal) connections are useful but not essential. Each cell has an accumulator

initialized to 0 (false). We also use some external memory that can hold a copy of A. We visualize

two copies of the array A flowing past this processor array, one copy horizontally and the other

copy vertically, as suggested in Figure 2.1.

[Figure 2.1)

Note that the horizontal copy is a vertical mirror image of A and that it is tilted backwards by 45

degrees. Analogous comments apply to the vertical copy. The tilting of the copies is used so ~at

element ait from the horizontal copy and element a,i from the vertical copy arrive at the cell in

location (ij) at the same time. The algorithm now proceeds as follows (for simplicity we assume

here the existence of the end-around connections):

During each time unit, the horizontal and vertical copies advance by one to the

right and down respectively. Each cell ands the data coming to it from the left and

above and ors it into its accumulator. Normally a cell passes the data coming from

the left to its right, and that from above, downwards. However, when an element of

the horizontal copy passes its home location in the cell array, it updates itself to the

value of the accumulator at thatlocalion. Thus when clement (32) of the horizontal

copy enters cell (32) on the left, the contents of that cell's accumulator eltit on the

right. As the horizontal copy starts coming out at the right end of the cell array, it

is immediately fed back in at the left using the end-around connections. Entirely

analogous comments apply to the vertical copy. After the two copies have cycled

thus three times through, the accumulators of the cell array contain the transitive

closure A • of A (stored in the standard row-major order). The result can now be

unloaded by a fourth pass like the above, or by a separate mechanism.

The correctness of the algorithm can be proven by using the idea of versions discussed earlier.

Observe that over each cell. during every time unit, the column index of the clement currently there

541

CALTECH CONFERENCE ON VLSI, January 1979

522 L.J.Guibas, H.T.Kung, C . D.Thompson

31 22 '13

21 '12
The vertical copy

11

l
-11 -12 --13 _, 4-

I I I I
-21-22--23-24--

1 I I I
-31-32--33-34-

1 I I I
-41-42--43-44-

1 I I I

The horizontal conv The processor ::array

Figure 2.1

Transitive closure

ARCHITECTURE SESSION

Direct VLS I Implement a t1o n
of Combinat ori a l Al gorithms

from the horizontal copy equals the row index of the clement from the vertical copy. Inductively

U1is implies that the contents of accumulator (ij) arc always majorizcd by transitive closure entry

aiJ (they cannot ever become 1 if the corresponding transitive closure entry is 0). So it is necessary

to show only that the accumulator of cell (ij) is brought up to version n + 1 of element ai;·

We claim that, after the first pass of the two copies over the cell array, e lement aii is brought up

to version p = min(i, i) in both copies. To see this note that equation (2.1) implies that

(2.2)

If we inductively assume that our claim is true for elements in either copy of the form aiJ' with

i' < i. or elements of the form a i'J with i' < i, then we can conclude that cell (ij) will perform

the inner product in (2.2) above, before the (ii) entry of either copy has passed over it. Thus by

induction and the monotonicity of the or operation our claim is proved. A slight modification of

the same argument proves that, after the second pass, element ai; is brought up to version j in the

horizontal copy and version i in the vertical one. Finally, if we use (2.2) with p = n + 1 then we

can conclude that, after the third pass, the accumulator of cell (ij) will contain the ii-th entry of

the transitive closure.

As in the case of dynamic programming, it remains to discuss the implementation of timing. How

does a cell know when one of its "mates" is passing over it? Once again, this problem can be solved

by including one bit of control information with each datum transmitted in the array of cells.

Let's confine our attention to the horizontal mates, as the situation for vertical mates is entirely dual.

Note that the horizontal mate arrives at cell (ij) exactly when the diagonal clement (j j) of that column

in the vertical copy arrives there also. This suggests an extremely. simple timing implementation.

We start enabling signals at the top edge of the cell array which propagate downwards. The signals

move by one cell during each unit of time. Furthermore, we start the signal at cell (1)) at time

2 * U- 1). It is easy to check that these signals coincide with the diagonal elements of the vertical

copy. Thus here also our cells execute code independent of the network size.

The overall time required to complete the computation (including unloading of the cell array) is

easily seen to be 5 • (n- 1), the same as the best previously known solution for cellular automata

[Ch]. However, a direct implementation of that solution in VLSI would be inferior to our algorithm,

as the units of time are different: more control information flows between cells during each time

unit in Christopher's solution.

3. ALGORlTIIM DECOMPOSITION AND FURTHER TOPICS

We now take up some additional issues. First is the problem of algorithm decomposition. We

explore here this issue in the context of the transitive closure problem. Similar comments apply to

dynamic programming. If we are given a k X k array of cells and want to compute the transitive

closure of an n X n matrix, with k < n, how <.lo we <.lo il? For simplicity we suppose that k divides

CALTECH CONFERENCE ON VLSI, January 1979

524 L.J.~u1oas, H.l.~ung, L .u.~nompson

n . Thus we can evenly divide our n X n matrix into k X k blocks. To process a block we will

cycle through it a horizontal and a vertical section of the array, using the algorithm of the previous

section. From the horizontal copy of the full array we extract the k X n slice corresponding to the

block rows and feed that into the device h01izontally. Similarly, from the vertical copy we extract

the n X k vertical slice correspoding to the columns of the block. As the slices flow out of the

device, they update the memory in which the corresponding array copies are stored. The k X k

blocks can then be processed in this fashion in any order consistent with both the left-right and

the top-down ordering of the blocks (the Young tableau order). Many variations on this basic idea

arc possible, including interleaving the processing of the blocks with the three passes, regenerating

one of the slices on the fly so it need not be stored, and others. Recent work of Mead and Rem

[MRJ on LSI implementations of arrays so they can be accessed either by row or by column has

applications here.

The correctness of the decomposition can be proved by using the "monotonicity of versions" remark

in the previous section. The case k = 1 gives an interesting serial algorithm, which can be viewed

as the next logical step in the sequence whose first two terms are Warshall's and Warren's algorithms

(in this order). Note that the computation time is now O(n3 / k2). and thus we still have optimal

speed-up to within a constant factor. Finally we remark that a decomposition such as the above is

possible precisely because we have signals flowing only downwards and to the right. This leads to

an acyclic dependency graph, since there is an order in which to process the blocks such that each

computation depends only on previous computations. If we had bi-directional signals along some

dimension, so that there exist two blocks along that dimension each depending on signals from

the other, then we could not complete the processing of either block without starting the other.

Although it is still possible to run the two blocks as coroutines, the complications of saving state

and loading and unloading the device would make such a solution prohibitively expensive.

We now conclude with some more general remarks. There is substantial similarity between the

dynamic programming and transitive closure cell. Even stronger is the similarity between the transitive

closure cell and that used in Kung and Leiserson's work on matrix algolithms. Both arc "inner

product step" cells. The possibility of mapping all these algolithms onto one type of module needs

further exploration.

From a mathematical point of view, perhaps the most interesting question is to ask for a charac­

terization of the computations which can be carried out in this style within certain performance

bounds. If we start from a recurrence describing a serial algorithm for the solution to a problem,

is there a theory to help us in designing a network like those described here, which would execute

exactly the same computation steps, only in a highly parallel and pipelined fashion? Can we describe

what processor topologies can be used for what kind of recurrences? The number of open questions

is vast.

4. R EFI.:RENCES

[AHU] Aho, A.V .• Hopcrofl., J.E., and Ullman, J.D. The Design and Analysis ofComputer Algorithms,

Addison-Wesley, 1974

ARCHITECTURE SESSION

Direct VlSI Implementation
of Combinatorial Algorithms

[Br) Brown, K.Q., Dynamic programming in computer science, CMU tech. rep., June 1978

[D] Dijkstra, E.W., Determin.ism and recursion versus non-determinism and the transitive closure,

EWD456, October 1974, Burroughs Corp.

[Ch] Christopher, T.W., An implementation of Warshal/'s algorithm for transitive closure on a

cellular computer, rep. no. 36, Inst. for Comp. Res., Univ. of Chicago, February 1973

[KL] Kung, H.T., and Leiserson, C.E., Algorithms for VLS! processor arrays, Symp. on Sparse

Matrix Computations, Knoxville, Tn., November 1978

[KL2] Kung, H.T., and Leiscrson, C.E., Systolic Arrays for VLSI, Cal Tech Conference on VLSI,

Pasadena, Ca., January 1979

[Kn] Kunth, D.E., The Art of Computer Programming, vol. 3, Sorting and Searching, Addison­

Wesley, 1973

[LK] Levitt, K.N., and Kautz, W.H., Cellular arrays for the solution of graph problems, Comm.

ACM, Vol. 15, No. 9, (1972), pp. 789-801

[MC] Mead, C.A., and Conway, L.A., Introduction to VLS! Systems, textbook in preparation

[MR] Mead, C.A., and Rem, M., Cost and performance of VLSI computing structures, Calif. Inst

of Tech. tech. rep., June 1978

[vS] van Scoy, F.L., A parallel transitive closure algorithm requiring linear time, unpublished

manuscript, May 1977

[vN] von Neumann, J., The theory of self-reproducing automata, (Burks, A.W., editor), Univ. of

Illinois, 1966

[Wn] Warren, S.W., Jr., A modification of Warhsal/'s algorithm for the transitive closure of binary

relations, Comm. ACM, vol. 18, no. 4, April 1975, pp.218-220

[Ws] Warshall, S., A theorem on boolean matrices, Journ. ACM, vol. 9, no. 1, Jan. 1972, pp.ll-12

525

CALTECH CONFERENCE ON VLSI, January 1979

