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1 INTRODUCTION

A database consists of enriries which relate 1o cach other
in certain wavs. i they satisty cerwain consistency con-
straints. Many dmes. when a user updates the databasce.
he mayv have to update temporarily these constraints in
order to cventually transform the database into a new.
consistent state.  For this reason. atomic actions by the
same user are grouped together into units of consistency
called rransactions. In practice. a transaction may he ¢i-
ther an interactive session, or the execution of a user up-
date program. When, however, many transactions access
and update the same database concurrently, there must be
some kind of coordination to ensure that the resulting se-
quence of interfeaved atomic actions (or  schedule) is
correct. This means that all transactions have a consistent
view of the data, and furthermore the database is left at
the end in some consistent state.

This required coordination is achieved via the con-
currency control mechanisin of the database. Considerable
rescarch effort has been devoted recently to the theoreti-
cal aspects of the design of such a svstem {EGLTIE. SLR.
SK., KS., Pa. PBR. KP|. The theory of database con-
curreney  control bears a superficial similarity 1o the
operating systems-inspired concurrency theory [KM, CDJ.
The difference is thot in operating sysiems we have
cooperating, monitoring. and monitored. processes, and
the goal is (o prevent bad cooperation or management
{e.g. indeterminacy. deadlocks)  In databases. we have a
population of users that arc unaware of cach other’s pres-
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ence: the goal is to protect them from the dangers of this
ignorance (e.g., creation of bad data because of an unfor-
tunate sequence of accesses and updates originated from
two uscrs). Deadlocks are important only in conjunction
with correctness, as possible defects of the concurrency
control mechanism.

A concurrency control mechanism is evaluated basically
in terms of the parallelism that it supports — roughly. the
class of all schedules that are possible responses of ihe
system o incoming user requests. The goal is therefore
to design a concurrency control mechanism that has as
rich such class as possible. while at the same time allow-
ing only correct schedules.

The right notion of correctness in this context is not
immediately obvious. Virtually all researchers in the arca
[c.g. FGLTI. SK. Pa. PBR] have adopted the notion of
serializabilitv. A scquence of alomic steps is serializable if
it is cquivalent (in a schema-theoretic sense) o a serial
schedule, one in which the users execute their programs
sequentially, one at a time. In fact. in [KP] it was shown
that this is indeed the right notion of correctness when
only syntactic information on the transactions is available
— as is usually the case. It some semantic information is
also available. then more relaxed definitions are possible.
In this paper we focus on serializability.

With the notable exception of the SDDI system
[BGRPI, all solutions to the concurrency control problem
proposcd thus far are based on locking, 1.¢., binary sena-
phores controlling the access to data.  Each transaction
locks entities according to some locking policy in such a
way that when the transaction runs concurrently with any
possible set of transactions that follow the same locking
policy. any schedule that may result is guaranteed to he
correct. (that is. scrializable).  Such a locking policy is
called safe. The paradigm of safe locking policies is the
mo-phase locking (2PL) policy proposed in [EGLTI]. In



2PL a transaction must lock any entity that it needs be-
fore its access. and may unlock it at any time after its ac-
cess. However, after some entity is unlocked, the tran-
saction cannol lock any more entities. Thus a transaction
has two phases: the locking phase, during which the tran-
saction may request, but does not release, locks, and the
unlocking phase. 1t is shown in [EGLTI] that 2PL is a
safe locking policy, and furthermore that it is necessary
for safety, in the sense that if transaction 7T, is not two-
phase locked, then there is another transaction, 7>, such
that the pair | 71,7} is unsafe.

However, in [SK] another safe policy. the tree policy
(TP), was proposed. Here the entities are arranged in a
rooted tree, and transactions access whole subtrees of en-
tities. A transaction I' may access unconditionally the
root of its subtree by first locking it. Subsequently, T
may lock an entity only if its father in the tree is presently
locked. Notice that TP is a family of policies (one for
each underlying tree) rather than a single locking policy.
It may result in transactions that are not (wo-phase
locked. and still it is provably safe.

In this paper we embark on a theoretical examination
of locking policies and safety in general. In Section 2 we
describe our model and formally define our terminology.
Section 3 is devoted to the following question: Is locking
a good concurrency control primitive? We present an
answer (very simple analytically). which we interpret as
negative. In particular, we show that the set of schedules.
that are possible responses of any concurrency control
mechanism based on locking must satisfy a very rigid
“‘obliviousness™ condition. which appears 1o forbid the
use of any sophisticated methodology of increasing paral-
lelism.

In Sections 4 and 5 we characterize safe locking poli-
cies. We first give a characterization of safety for the case
of two transactions. In doing so, we employ a geomelric
methodology reminiscent of that used by Dijkstra for
studying deadlocks [CESI.

Here we use it in a very different way to study incorrect
completions, ignoring deadlocks. Besides its independent
interest and elegance, the two-transactions solution is the
building block for solving the general case (Section 5). It
turns out that a locking policy defined on d>2 transac-
tions is safe iff all of its restrictions to two transactions
are safe, plus a combinatorial condition. This combina-
torial condition is shown to be NP-hard [Ka. GJ], but it is
simple enough to have interesting corollaries. For exam-
ple. the safety of 2PL and TP follows very easily. Furth-
ermore a generalization of TP called digraph policy (DP, in
which the entities are arranged on a directed acyclic graph
instead of a tree) is also shown safe.

It can be trivially shown that if no structure is to be im-
posed on the entities — i.e., a policy must remain safe
under any arbitrary renaming of the entities — then 2PL
is essentially necessary for safety. Now. locking policies
like TP and DP get around this by imposing a structure (
a tree and a DAG respectively) on the entities. In prac-
tice, such structures may reflect either a physical (e.g.
trees or DAG’s of pointers) or a logical (e.g. flow of con-
sistency constraints) organization of the entities. The
idea in TP and DP is to take advantage of this structure
so as 1o gain parallelism. Are all safe locking policies,
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then, expressible as policics operating on appropriately
general, “‘nice’” (in some intuitive sense) structures?
The answer for the general case is most likely “‘no™, (un-
less NP = ¢o-NP) since safety was shown to be NP-hard.
Therefore in Section 6 we restrict our attention 10 a na-
tural subclass of locking policies called L -policies. L-
policies are those that can be stated in terms of conditions
that determine whether a given entity can be locked or
not. based on the portion of the transaction up to this
point. We show that safe L-policies can be modeled by a
certain policy HP that operates on appropriately defined
hypergraphs.

We also examine the issue of deadlocks (Section 7). It
was known that TP is deadlock-free [SK]. Here we ex-
tend this to show that DP is deadlock-free. and that, in
fact, it is the most general safe and deadlock-free policy
for a pair of transactions. However, we show that decid-
ing whether a set of transactions is not deadlock-free is
NP-complete. even when the transactions are restricted to
be two-phase locked. We show that for safe L-policies
freedom from deadlock depends only on the order in
which entities are locked (and not on where they are un-
locked, i.e. how safety is enforced), and describe some
ways for achieving freedom from deadlock.

2 DEFINITIONS

A transaction system v = \T,.....T,| is a set of transac-
tions. A transaction T, = (T,,,,,..T,,,,l) is a sequence of ac-
tions. Each action T, has associated with it an entity,
x; € E. where E is a set of entities. The x;’s need not
be distinct.

Each action T, is thought of as the indivisible execu-
tion of the following

T;:t;:=Xx;
x; = f, )

The first instruction stores the current value of x, to a lo-
cal variable 1;, not in E. and the second changes x; in
the most general possible way based on all available local
(to the transaction) information. The ;s are all distinct.
We let R(T)) be the set {x;j=1....m}. A schedule s of +
is a permutation of all steps of 7 such that j <k <m, im-
plies s(T,)<s(T,). The set of all schedules in S. s is
called serial if, for all i and j<m, s(T;)+1 = s(T, ).
Two schedules are equivalent if they are equivalent as
parallel program schemata with uninterpreted f,;’s. s is
serializable (notation: s€SR) if it is equivalent 10 some
serial schedule.

Deciding serializability of a schedule s is known to be
NP-complete if we distinguish between reading and writ-
ing steps [Pa. PBR], but can be easilv done in our mode!
as follows [EGLTI1]: Construct a digraph D(s) by
corresponding a node v, 1o each transaction T,. and draw-
ing an arc (7,.T;) whenever, in the schedule s, 7, up-
dates an entity before T, does. Then s is serializable iff
D(s) is acyclic. A locked transaction system L(7) is a spe-
cial augmented version of the (ordinary) transaction sys-
tem 7. The operator L performing this augmentation is



called locking. The entities of L(7) are EULV. where
LV is a set of special entities called locking variables — in-
tuitively, the locking bits of the entities. L transforms
each transaction T, in 7 to L(T,) by inserting pairs of
“lock X ... unlock X'" steps. where X€LV. The step
“lock X' has the fixed interpretation X = if X =0
then 1 else error’’; similarly for ““unlock X™'. The set of all
schedules of L(7) is denoted by L(S).

The set L(S) of schedules is entrusted to a special
scheduler M. called the lock manager; the output set of
schedules from M is M(L(S)): formally, M(L(S)) is the
set of all schedules in L (S) that leave invariant the predi-
cate

A X=0 .

NeLb
Now. if R is a set of schedules from L(S). let L '(R) be
the same set with the ““lock™ — “‘unlock™ steps removed.
Then the class of schedules L "(M(L(S))) abbreviated
O(L), is the outpur set of the locked transaction system
L(T) and is a measure of the parallelism supported by
L(T). L(T) is called safeif O(L) € SR.

3 A CHARACTERIZATION OF LOCKING

How general output sets O (L) can be produced by in-
creasingly sophisticated lockings L”? To study this, let us
generalize locking to d-locking. In d-locking the locking
variables may assume d values 0.1..., d—1. and the
locked state is d—1. In other words, any proper subset of
the d transactions may share a variable. Trivially, ordi-
nary locks can be simulated by d-locks in that the same
output set may be achieved (ignoring deadlocks for the
time being).

For a prefix p of a schedule s. let steps(p) be the set of
transaction steps involved in p. We call a class C of
schedules order oblivious if whenever s;s» € C. s3s3 € C,
and steps(s;) = steps(sz) then also 5,54 € C. This condi-
tion states that once a history has executed several steps.
it has “‘forgotten’ the exact order. as far as membership
in C is concerned.

Theorem 1. C=0O(L") for some d-locking L iff C is
order-oblivious.

Corollary 1. If C=0(L) for some (ordinary) locking
L. then C is order-oblivious.

In fact, an exact characterization is immediate.

Corollary 2. C=01(L) for some locking L iff all projec-
tions of C to pairs of transactions are order-oblivious.

4 THE GEOMETRY OF LOCKING

For the subsequent Sections we shall assume that all
locked transaction systems are well-formed, in that

1) There is a natural isomorphism between £ and
LV via the mapping x—X., y—VY. ctc. Then
“lock X" will be abbreviated as Lx. and ““unlock

X" as Ux.

All variables are locked at most once in each tran-
saction.

2)
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3 If T, is not a Lx or Ux step. then it is included in
a Lx,-Ux, pair of steps.
We will assume also that

4)  Any Lx-Ux pair of steps contains a step T, with
X,;=X.

These assumptions are made invariably throughout the
literature on locking. By “‘transaction system’ we shall
henceforth understand “‘well-formed locked transaction
system’” with 4) satisfied.

Consider a transaction system 7 = {7, 75!

A point p in the coordinated plane (Figure 1)
represents a possible state of progress made towards exe-
cuting 7y and T,. The lock-unlock instructions of the
system 7 have the effect of creating a forbidden region
(possibly disconnected) which is the union of rectangular
blocks (Figure 1). The region D is one of deadlock,
whereas U is unreachable, yet not in any block. A
schedule S corresponds to an increasing curve from O to
F that avoids all blocks (still Figure 1). (For the sake of
informality we will disregard the point that all such
“curves’’ must be staircase). The two serial histories are
the curves OT | F and OT,F. At this point we need a
lemma:

Lemma Two schedules are equivalent iff they can be
transformed to one another by a sequence of ‘‘switch-
ings” of adjacent steps not involving the same entity.

A “switching™ is shown in Figure 2. If such a switch-
ing is illegal in that x;, = x,,. then it cannot be performed
because of a forbidden block. [t turns out that schedule
equivalence is the same with curve homotopy, \wo curves
are homotopic if they can be transformed to one another

by continuous transformations within the rectangle
OT,FT, avoiding all blocks. Hence we have (see Figure
3):

Theorem 2. t is unsafe iff there exisls an increasing
block-avoiding curve from O to F that separales two
blocks.

Let R be any region (possibly disconnected). Call two
points (xy.vp) and (x>.vy) incomparable if
(x,—x3) (y;—y,) <0 (Figure 4, points p and ¢g). Then R
is closed if, for any two connected incomparable points
(x;.v)) and (x5.y5) in R. the points (x;.v)) and (x5.1))
are also in R. The closure of R is the (well-defined)
smallest closed region containing R (Figure 5). We have

Theorem 3. 7 is safe iff the closure of the forbidden re-
gion is connected.

Corollary 3. = can be checked for safety in O (n) time.

In fact. this can be done in O (nlognloglogn) time [Li].
Notice how intuitive 2PL becomes now. 2PL says that all
blocks must contain the point P whose projections P, and
P, are the phase-shift points of the transactions T} and T,
(see Figure 6). Thus the blocks are connected. and 2PL
correct.

5 THE d>2 CASE

Consider now a set of d>2 locked transactions
'T.....T,}. and define the graph G(7) = (¢ E) where
[7..T;] € E iff the transactions T, and 7, have an entity
in common. If the restriction of 7 to any pair of transac-
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tions is incorrect (i.e., it violates Theorem 3). then the
overall system is incorrect. So. let us assume that for all
[T,.T,] € E the closure of the forbidden region in the
T,— T, plane is either equivalent to OT,F (s in Figure 7)
or to OT,F (s" in Figure 7). In the former case we write
T, <,T;.in the latter T, < T,.

Lemma s is serializable iff the < relation is acyclic.

Therefore for 7 to be safe, for each directed cycle that
corresponds to an undirected cycle in G(7) there must be
a reason why no s exists that has this same cycle in the
graph of <,. Intuitively, the reason is that there is a con-
tradiction in the order in which the curve of s intersects
the prisms with bases marked Py,Ps,....Q3.Q4 in Figure 6.
This is captured as follows: with each pair ([T,.T;],
[T,. T, of edges in E we associate a digraph B,. The
vertices of this digraph are the vertices of the P, and Q,
regions (see Figure 7). There is an arc from u to v iff
(a) either w is a p, or v is a g, (or both), and (b) the
T;-coordinate of u is smaller than the T;-coordinate of v.
The construction is illustrated in Figure 7. Finally, if C is
a directed cycle corresponding to a simple undirected cycle
in G(r), we let B¢ be the union of all B digraphs for all
consecutive triples (T,.T,.T,) of C. The result is the fol-
lowing:

Theorem 4. 7 is safe iff
(a) the restrictions of 7 to all pairs of transactions are
safe, and
(b) for all directed cycles C corresponding to undirected
minimal cycles in G (7) the digraph B¢ has a cycle.

One can now derive extremely casy proofs of correct-
ness of different locking policies, based on Theorem 4:

Corollary 4. Any transaction sysiem obeying 2PL is

safe.
Proof: That any transaction systcm obeving 2PL satisties
Theorem 3 is immediate. Condition (b) of Theorem 4
follows from the fact that in 2PL the graphs B, are com-
plete bipartite. [

Corollary 5. Any transaction system obeying TP is safe.
Proof: Since the common variables of any two transactions
form a rooted tree in TP, condition (a) of Theorem 4 is
trivial.  Condition (b) also follows easily from the tree
structure. (3

Consider now the following special case in which any
two transactions have at most one variable in common --
or, equivalently. the closure of the forbidden region on all
planes is either empty or rectangular.

Corollary 6. Under the above assumptions 7 is safe iff
the restrictions of 7 to every biconnected component of
G (7) obeys 2PL.
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Another consequence of Theorem 4 is an algorithm for
checking a transaction system for safety.

Corollary 7. Checking a transaction system 7 for safety
can be done in time polynomial in the number of minimal
cycles of G (7).

In general, of course, G(7) will have an exponential
number of minimal cycles. and thus Corollary 7 does not
imply a genuine polynomial-time algorithm. In fact, such
an algorithm is quite unlikely in view of the next result:

Theorem 5. Testing a transaction system for nonsafety
is NP-complete.

Thus Corollary 6 suggests a polynomial-time algorithm
for a special case of the NP-complete safety problem: the
case in which any two transactions have at most one enti-
tv in common. It turns out that safety is NP-complete
even if we restrict any two transactions (o have at most
two entities in common.

6 LOCKING POLICIES AND L-POLICIES

2PL is a locking policy. Intuitively it is a set of rules
which govern but do not completely specify the transfor-
mation of any transaction system to a locked one. Furth-
er, these rules have the desirable property that they focus
on cach individual transaction, and do not regulate the in-
teraction of any two or more transactions. A locking policy
P is a mapping from the set of transactions on E 1o the
power set of (well-formed) locked transactions on E,
which satisties the property: if T € P(T) then T and T
contain exactly the same actions in the same order. The
locking policy P is safe if for any finite set 7 = {Ty.....T,,}
of transactions with P(T,) = @, for all i, any set
7=1IT,. ..., T, of locked transactions with 7, € P(T)
is safe. The locking pattern p(T) of a locked transaction
T is the subsequence of T formed by deleting its actions.
It can be viewed as a set of intervals each one associated
with an entity x€ £ which is locked in the intermediate
steps (See Figure 8).

An interval [ associated with entity x is an action inter-
val if there is an action on x in /. It is easy to see that if
7 is a safe locked transaction system and we rearrange in
each transaction some actions within their action intervals
in any way. then the resulting system 7' will also be safe.
In other words, safety of a locked transaction system
depends only on the locking patterns and the action inter-
vals of its transactions.

Thus, we can view a locking policy P as a collection of
locking patterns together with their action intervals. In



this paper we will consider a locking policy P as a collec-
tion of locking patterns allowed by P without a
specification of which are the action intervals. In other
words, we assume that if T € P(T). for some transaction
T. then there is another transaction 7' which acts on all
the entities locked by T. and T € P(T) with
p(T) = p(T'). The reason for this assumption is the fol-
lowing: One could define policies that use for locking, any
set LV of special variables - not related to the set E of
entities It is easy to see that any such policy P can be em-
bedded to a locking policy P’ which locks only entities (by
expanding the set E of entities and the policy P in an ap-
propriate way). We don’t know if there are any non-
artificial such policies. It is very easy however to con-
struct many artificial ones, and our assumption serves 10
rule out such policies. (Note however that our complexi-
ty and sufficiency results carry over to the general set-
ling.)

For simplicity we are going to assume that each pattern
has at most one interval associated with each entity. [t
should be easy for the reader to modify the statements of
the theorems, whenever necessary, in order to handle
patterns with multiple intervals. We shall use the term
transaction to refer both to a locked transaction 7 with an
action on an entity x in the interval associated with x,
and to the pattern of 7. We will use the term policy P to
refer (1) to a mapping from unlocked to locked transac-
tions, as in the definition we gave, and (2) to a collection
of transactions - i.e. locked transactions or their patterns
- which form the image set of this mapping. If A is a
class of structures on E (e.g. relations, graphs, etc.) a
structured policy AP operating on A is a family of locking
policies, one for each structure D€A.

Theorem 5 of the previous section, besides suggesting
that testing safety is in general probably intractable, tells
us also something about the limitations of "nice" locking
policies.

Intuitively, a "nice" structured policy AP operating on a
set of structures A should possess several properties, such
as: (1) the set of structures A should be efficiently recog-
nizable (e.g. trees. graphs, DAGs, etc.), (2) the policy
should be operating in polynomial time:. i.e. for each
D €A, and for every unlocked transaction 7. the mapping
DP(T) of the corresponding policy DP should be com-
putable by a (nondeterministic) algorithm running in po-
lynomial time in |D| and |E|. Let us say that a structure
D of A covers a set 7 of transactions if DP (regarded as a
set of transactions) includes 7. Theorem 5 then implies
that unless NP = co—NP. no "nice" structured policy can
cover all safe transaction systems in a succinct way, i.c.
there will always be transaction systems 7 that need a
very large structure D of A (not bounded by any polyno-
mial in |7|) 1o be covered. This means in particular that
“nice" policies operating on simple structures, such as
trees, graphs, etc., cannot possibly cover all safe transac-
tion systems.

In this Section we will focus on a natural class of poli-
cies, one that includes all locking policies proposed thus
far, and show that all policies in the class can be covered
by a "nice" structured policy.

We say that a locking policy P is an L-policy if P can be
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described by a set of conditions that state whether a given
entity can be locked at a certain moment in a transaction,
depending on the portion of the transaction up to this
moment. In other words, with each entity x there is as-
sociated a set W(x) of prefixes of transactions; a transac-
tion T is in P iff for each entity x referenced by 7. the
prefix of T 10 the left of Lx belongs to W(x). For exam-
ple, the two-phase locking policy has for every x€E,
W(x) = {T|T does not contain any unlock steps}.

A truncation of a transaction T at the j-th step is a
transaction T' that agrees with T in the first j steps, and
then unlocks (in any order) the entities locked by T
through the j+I1-th step. The closure under truncation
Ct(7) of a transaction system T is
Ci(r) =1 U [Ttg Tr(T)], where Tr(T) is the set of

truncations of a transaction T. A system 7 is closed under
truncation if Ct(v) = r. Thus a policy P is an L-policy if
(when viewed as a transaction system) it is closed under
truncation.

We will show that if a system 7 that is closed under
truncation is not safe, then it has a particular nonserializ-
able schedule; one in which all transactions of 7 but one
are executed serially. A hypergraph H = (N,F) has a set
of nodes N and a set of hyperedges F. Each hyperedge is
a subset of N. With every transaction system 7 we can
associate a hypergraph H(7), which has one node for
each entity and a hyperedge R(T) for each transaction T
of 7. Let us denote by Lr(i) the set of entities locked by
T through step /.

Theorem 6 . A transaction system 7. that is closed
under truncation, is safe if and only if for every Té€r,
and x, y in R(T) such that Ux occurs in T before Ly,
the set Ly(Ly) (or equivalently Ly (Ux)—{x}) separates x
from y in H(r).

Corollary 8. Given a transaction system 7, we can test in
polynomial time if its closure under truncation is safe.

We will now define a policy and show as an example

how the criterion of Theorem 6 can be used to show its
safety.
DAG policyltDP):  The entities are arranged on
(correspond to the nodes of) a single source directed acy-
clic graph (DAG) D.

The rules of the policy are as follows:

(1) First lock is arbitrary,

(2) Subsequently, an entity x can be locked only if (a) all
its fathers (immediate predecessors) have been men-
tioned in the transaction up to this point, and (b) at least
one father is currently locked.

(3) Each entity is locked at most once.”

Formally, a transaction 7 with at most one interval asso-
ciated with each entity, is in DP iff
x € R(T) => [R;(Lx) = 2] or [F(x) C R;(Lx) and
F(x) N Ly(Lx) = @], where F(x) is the set of fathers
of xin D.

Thus, if the underlying DAG D is a rooted tree, DP be-
comes the tree policy.

* We mention this here explicitly because it is an essential part of
the rules, in order to guarantee safety of DP.



If T is any transaction following DP, and z the first en-
tity locked by T, then an easy induction can show that,

(i) z is an ancestor of R(T): in fact z dominates all ele-
ments of R(T), i.e. any path from the source of D to an
element x of R(T) has to pass through z (See [AHU]
p.210), and

(ii) for each x in R(T), all nodes that are ancestors of x
and descendants of z are in Ry(Lx).

Let us prove now that DP is a safe policy. Suppose it is
not. Then there is a transaction T and entities x and y of
it such that Ux occurs before Ly in T, and Ly(Ly) does
not separate x from y in H(DP). Let R(T))..... R(T}) be
an x-y path that avoids Ly(Ly) with x€T, and y€T,.
Since y is not the first entity locked by T,
F(y) 0 Ly(Ly) = @. Since Ly(Ly) N RT (Uy) =@,

we have F(y) € Ry, (Ly), and therefore y must be the

first entity locked by T,. Let x;,.; be an element of
R(T, ) N R(T,) such that
F(x, ) 0 R(T, ) N R(T,) = @. Since x, , is not the
first element locked by T, we have F(x, ;) € R(T,),
F(xi ) N R(T, ) =@, and therefore x, ; must be the
first element locked by T, ,. Thus by property (i) of DP,
y is an ancestor of R(T,)U R(T, ). Proceeding similar-

ly we can deduce that y is an ancestor of U R(T;), and

consequently of x. But then by propcrly (ii) of DP,
y € Ry (Lx) contradicting the rule that each entity is

locked at most once.

A directed hypergraph DH = (N .F) is a hypergraph,
each hyperedge 4 of which has a node specified as its
head. The rest of the nodes of 4 form its ril. The
underlying hypergraph of DH is simply =(N.F)
without head-tail specitication. When we’ll talk about
"paths." "cycles," "separators," etc. in a directed hyper-
graph we are referring to the underlying hypergraphs.

Hypergraph policy (HP): The entities are arranged in a
directed hypergraph H. The rules are:

(1) First lock arbitrary,

Subsequently, an entity x can be locked iff

(2) There is a hyperedge 4 of H with head x. whose tail
has been mentioned in the transaction up to this point,
and

(3) For each y previously unlocked. the set of entities
that are currently locked separate x from y.

Corollary 9. An L-policy is safe if and only if it is
covered by the hypergraph policy for some directed hyper-
graph H.

Proof Both directions follow trivially from Theorem 6.
However let us construct from an L-policy P a directed
hypergraph without redundant hyperedges. For each
transaction T. let /(T) be the entity locked last by T. H
has a hyperedge R (T) with head /(T) if there is no tran-

"o

saction T of P such that R(T) C R(T) and
I(T)YER(T'). Clearly HP on this hypergraph H covers
PO

Examples

The hypergraph H is a complete
In order that a hypergraph

1. Two-phase policy.
symmetric digraph (a clique).
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H be nontrivial | i.e. have HP(T) = @ for at Icast onc T
which acts upon more than one entities, H must have at
least one arc (hyperedge of cardinality ?). Then the
clique is the only hypergraph that has all possible auto-
morphisms (i.e. 2PL is the only nontrivial safe L-policy
that treats all entities uniformly).

2. Tree policy. The hypergraph constructed above is the
underlying tree.

3. DAG policy. The dominator of a node x is the
(unique) lowest ancestor of x that dominates x. The
hypergraph of DP contains for each node x a hyperedge
A, with head x. The tail of A, is the set of all ancestors
of x that are descendants of its dominator. Although a
DAG can be more easily visualized than a hypergraph,
the hypergraph makes explicit restrictions that are "hid-
den" in the rules of the policy: if we want to act in a tran-
saction T upon entily x then we have to lock beforehand
all of A, unless the rest of entities acted upon by T are
all dominated by x. Also the hypergraph shows that rule
2(b) of DP is stricter than necessary: it could be replaced
by 2(b') at least one ancestor of x but not of its domina-
tor is currently locked. U

Since a general hypergraph can have an exponential
number of hyperedges, the question that arises is wheth-
er there is a more succinct representation of L-policies.
We will show that there are "too many" distinct (incom-
parable) L-policies, and therefore this is not the case.
We will call two safe policies P,.P, distinct if there is no
safe policy P; that includes both of them. A safe L-
policy is maximal in L if there is no other safe L-policy
that includes it. For example, an L-policy whose hyper-
graph contains an arc (x.,y) but not the symmetric arc
(y.x) is not maximal in L. On the other hand HP
operating on a symmetric digraph (an undirected graph)
can be shown to be maximal in L. Maximality of a policy
P in L does not imply that P is maximally safe; in fact it
is easy to see that 2PL is the only maximally safe L-
policy.

Lemma lf P, Z P, are two safe L-policies, maximal in

L, then Py and P, are distinct.

Corollary 10. There is a doubly exponential number (in
|E]) of (mutually) distinct safe L-policies.

The results of this section can help also answer ques-
tions such as the one examined in [KS]: If AP is a partic-
ular L-policy operating on a set of structures A, find the
set of structures A" € A for which AP is safe. Since AP
is an L-policy, we can construct as in the proof of Corol-
lary 9 a set H of hypergraphs, one for each structure of
A. The problem then reduces to finding the set of struc-
tures A’ for which rule (3) of HP is enforced by AP. For
example. in [KS] A is the set of directed graphs. and AP
is the policy with rules
(1) First lock arbitrary,

(2) Subsequently entity x can be locked if there is a fa-
ther y of x that is currently locked.

It was shown there that AP is safe if and only if the
underlying graph of the digraph is a tree. Let us see how
this result can be derived from Corollary 9.

The hypergraph H that corresponds to a digraph D is
clearly D itself. For a digraph D, rule (2) of AP implies
rule (3) of HP if and only if for every x€FE. for every



possible transaction 7 of AP with x¢ R (7). and ftor every
yERU(T) such that v — x. v scparates R(T) from x
(again "separates” refers to the underlying graph G of D).
since by the rules of AP we can unlock all of R(T)but v,
and then lock x (and this is the worst that can happen).
Since any pair of adjacent (in (i) nodes can be R(T) for
some TE€AP, for every arc v — x. node y must separate
x from all nodes adjacent in G to v ie. every edge of G
is a bridge and G is a tree. Conversely, if v separates x
from all the nodes adjacent 1o v. then it separates x also
from all the nodes of R(T) with x¢R(T). vER(T).
since the subgraph of G induced by R(T) is connected.

7 FREEDOM FROM DEADLOCK

A partial  schedule s of a  transaction  sysitem
7= 1T,.....T,1 is a legal schedule of any prefices of the
transactions of 7. The state J(s) of a partial schedule s is
the vector <(jy.....J, > that describes the next step to be
executed for cach transaction of 7. The state J is a
deadlock state if for all 7 the j,-th step of every untinished
transaction T, is Lx, for some entity x; locked at J. A
transaction system 7 - and the associated policy P - is

deadlock-free if the state J(s) of any partial schedule s of

7 1S not a deadlock state. In other words any partial
schedule of 7 can be extended to (is a prefix of) a (com-
plete) schedule of .

From a partial schedule s of # we can construct. as with
a complete  schedule. a  directed graph  D(s) by
corresponding a node v, to each transaction 7T,. and hav-
ing an arc (v,.v;) labelled x. if T, locks x in s before T;
does (even if the Lx step of T, has not been executed vet
in s). Then 7 is safe and deadlock-free iff for every par-
tial schedule s of 7. the digraph D (s) is acvclic.

Let us consider a deadlock state J. There is a set of

transactions | T..... T, | such that the next step of T, is Lx,
where x, i1s currently locked by 7T, (x,€ L,"I(L.\j,AIH -

See Figure 9.

T Lxy, Lx, Ux;
Tg: L,\'] L.\') U.\‘;
Tk . L.\'A ] L.\‘A b’.\'A ]

Figure 9

Thus in the partial schedule S, transaction T, accesses
x, | before T, . if S could possibly finish in anv way then
the resulting schedule would not be correct. In other
words. deadlocks prevent some wrong schedules from
finishing. Let us show that the DAG policy is deadlock-
free using this fact.

Theorem 7. The DAG policy is deadlock-free.

Proof Suppose S is a partial schedule. of T
deadlocked at state J where the next step of each 7, is
Lx, as in Figure 9. We can assume without loss of gen-
erality that Lx, is the last locking step of T,. Suppose that
for some /. the transaction T," obtained from 7, by mov-
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ing the Ux, | step right before the Ly, step is also a tran-

saction of the DAG policy. Then the partial schedule S

could be extended to a nonserializable schedule of the

syslem (g{T,H U 71 contradicting the safety of the
I

DAG policy. Thercefore, for cach 7. x, | must be a father
of x,. which implics that the DAG has a cvele {xy....x )10

If we modified the DAG policy by changing the locking
rule (2) mto: (2 an entity x can be locked if at least one
father of x is currently locked. and all fathers of x are
mentioned until the Ux step. then the modilied policy
(which is not an L-policy any more) is safe. However. il
is easy 10 see that it is not any more deadlock-free: post-
poning the locking of some father of x allows a (partial)
schedule to start wrongly. and then be stopped later on by
a deadlock.

Testing for freedom from deadlock

We will now characterize safety and freedom from
deadlock for a pair of transactions. If F C E is a set of
entities, the restriction of T on F, is the sequence of steps
of T that involve entities from F.

Theorem 8. {T\. T, is a safe and deadlock-free pair
of transactions if and only if the restrictions 7,. T5'. of
T, and T, on their common cntities (R(7)) N R(T>))
follow the DAG policy for some DAG D on
R(T)) N R(T,). [Note that entities referenced only by
one of the transactions do not affect safety or freedom
from deadlock.]

[t is not hard to see that the tree policy does not suffice
to cover all safe and deadlock-free pairs of transactions.

Unfortunately  freedom from deadlock cannot be test-
cd efficiently (and characterized) in general even for L-
policies :

Theorem 9. 1t is NP-complete 1o decide whether a sct
of two phase transactions is not deadlock-frec.

In Section 5 we showed that safety can be tested in
time polvnomial in the number of minimal cvcles. The
direct analogue of this result for freedom from deadlock
does not hold however. The reason for this difference is
the fact that if a transaction system is not safe then this is
due to some chordless cvcle. whereas deadlock may be
possible due 1o some cvele with chords. cven though all
chordless cveles are deadlock-free.  Thus the correct
analogue of Theorem 4 and Corollary 7 is:

Theorem 10. Freedom from deadlock of a safe transac-
tion system can be decided in time polvnomial in the
number of cvceles.

Deadlock-free l.-policies

Theorem 11 1f 7 is a safe transaction svstem that is
closed under truncation. then 7 is deadlock-free it and

only i there do not exist transactions Ty, T,. and enti-

lies Xpo Xy where

X ER(THYNR(T,.) | U R(TH] and
S0

Ry(Lx) 0 lu R(T)| = o .

From Theorem 11 it follows that whether a safe L-
policy is deadlock-free or not depends only on the order



(a)

(b)

Figure 11

in which entities get locked. and not on how the unlock
steps are placed within the transactions. More formally

we have:
Corollary  11.  Supposc  that 7 =1{T,.....T, and
T =1|T\....T,'} are two safe transaction systems that are

closed under truncation, and such that for every /. there
is a j, where T;' locks the same entities as 7, in the same
order. Then, if 7" is deadlock-free, then so is 7.

Note that Corollary 11 is not true for general policies
(systems that are not closed under truncation). A conse-
quence of Corollary 11 is that if H is the underlying
directed hypergraph of a safe L-policy which uses the full
freedom of rule (2) of HP_ then whether P is deadlock-
free or not depends only on H and not on how rule (3) of
HP is enforced (how safety is ensured in P). Thus the fol-
lowing two problems are suggested by this fact : (1)
characterize those directed hypergraphs H for which HP is
deadlock-free, and (2) find the "correct” restriction of rule
(2) of HP for freedom from deadlock - "correct" in the
sense that it describes all deadlock-free L-policies (in the
same way that rule (3) of HP is the "correct” rule for
safety). Theorem 9 (the proof of it rather) implies that
there is probably no solution to these problems that can
be efficiently tested. In the remainder of this Section we
will give a partial answer to these problems, and show
how Corollary 11 can be used to prove the freedom from
deadlock of L-policies.

With every transaction system 7 we can associale a
directed graph D(7) as follows: the nodes of D(r) are the
entities, and there is an arc (x.y) if there is a transaction
T of 7 that starts by locking x and references y. Suppose
that 7 is safe and deadlock-free. Then. it is casy o sce

that
(a) D7) is acyclic.
(b)  If x is an ancestor of vy, then in all transactions that

contain both x and y, x gets locked before v .

Let Fy(x) be the set of fathers y of x. for which there
is a transaction T that starts with y. contains x. and there
is no ancestor z of x in R¢(Lx)—y. Denote by D'(7) the
subgraph of D(7), where the arc (v.x) is in D'(7) if
there is a transaction T starting with y. containing x, and
such that Fi(x)N[R;(Lx)—y] = @. (D'(+) has the same
transitive closure as D(7), but is not necessarily its transi-
tive reduction.) Clearly every transaction T of 7 has the
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property:

(C) Ifx€R(T) is not the first entity locked by T, then at

least some father v of x in D'(7) is referenced by T
before Lx.

Conscquently every transaction 7T references a connected
subgraph of D'(7) which can be reached from the first
entity locked by 7. For example, if 7 is the tree policy,
then D'(7) is the tree itself: in general if 7 is the hyper-
graph policy on a (directed) graph G. then D'(7) is the
graph G. If 7 is the DAG policy. then D'(7) is the domi-
nator tree of the DAG. In general, if P is an L-policy
with D'(P) a tree (not necessarily rooted). then P is
deadlock-free (by Corollary 11 and the freedom from
deadlock of the tree policy). This is not the case however
for general policies. For example, if - = {T,.T,} .where
T,: LALCUALBUBUC
T,: LALBUA LCUBUC
then D'(7) is the tree of Figure 10, 7 is safe (but its clo-
sure under truncation Cr(7) is not). and 7 is not
deadlock-free. A

\cC

Figure 10

This is not a coincidence: if any such 7 is deadlock-free.
then it can be extended to a safe (and of course still
deadlock-free) L-policy.

Theorem 12. Suppose that 7 is a safe and deadlock-free
transaction system with D'(7) a tree. Then Ct(7) is also
safe and deadlock-free.

Suppose now that 7 is an L-policy . Deadlocks may ar-
ise because of undirected cycles in D'(7) (cycles in the
underlying undirected graph of D'(7))

In a general D'(7) we can distinguish between two kinds
of cycles - See Figure 11(a).(b). A cycle as in Figure
11(a) may give rise to a pair of transactions |7,.T,}.
where 7 starts from x and follows the path 1o v, and T,
starts from z. follows the path to y. and then goes on 1o
lock x: thus. T, does not satisfy condition (b). (Note
that if 7 is the hypergraph policy with the graph D'(7) as



the underlving hypergraph. then both transactions are al-
lowed.) In this case we have:

Theorem 13 Let P be a safe L-policy whose digraph
D (P) is acyclic and contains no (undirected) cveles as in
Figure 11(b). Then P is deadlock-free if and only if it
satisfies condition (b).

Note that if D" is a tree. then (b) is satistied automati-
cally. Also. note that if a cvele as in Figure 11(b) exists
in D', and P is the hypergraph policy operating on D',
with condition (b) checked in addition, such a cvcle gives
rise 1o a deadlock. Deadlock from such a cvele can be
avoided cithc 7 we lock nodes according o some
specified (ac order or prevent the x’s from being
the first comuias entities of the corresponding transac-
tions T,. by forcing the transactions to start locking higher
in the DAG 2. For cxample the following rule guaran-
tees freedom from deadlock (assuming that (b) is en-
forced): if x€ Ry (Ly) and x is not an ancestor of v, then
R (Ly) and the descendants of x separate v and v in the
underlying graph of D'. Thus. for example. the DAG
policy enforces this rule by requiring all fathers of x to be
locked before x (which results in D'(DP) being a tree
rather than the original DAG). Note however that the
previous rule (or anyv other simple rule) is not necessary.
because of our NP-completeness result of the previous
Section.

8 DISCUSSION

In this paper we examined locking as a concurrency
control mechanism in database systems. In Section 3 we
characterized the class of schedules that can be produced
it we use locking. Corollary 1 is the price in parallelism

that we have to pay for the conceptual simplicity of

locking-based schedulers. Tt is a dear price.  All sophisti-
cated serializability techniques introduced in [Pal involve
some notion of “‘remembering”” which transaction read
data first from which, and therefore they cannot be imple-
mented by order-oblivious primitives such as locking. In
contrast, all subsets € of the set of all schedules S can in
principle be the output sets of some scheduler. In fact. it
is shown in [Pal that there is a polynomial-time scheduler
A such that A(S)=C iff the set of pretixes of Cis in P.
It remains (o be seen how well locking can be comple-
mented as a concurrency control technique by other,
order-conscious primitives such as queues. The SDD -1
system [BGRP] is an instance of this.

In Sections 4 and S we characterized safety of locked
transaction systems , and showed that testing for safety is
an NP-hard task.

In Sections 6 and 7 we analyzed locking as a mechan-
ism for preserving consistency in a database that has a
given structure. We showed that safe locking policies that
fall into a "natural" class - the class of those policies that
can be stated in terms of conditions that describe when
cach entity can be locked - can be described by a certain
policy operating on hypergraphs. This policy must visit
entities along the paths of a hypergraph H. In order o
avoid unnecessary extra locking, the hypergraph must be
chosen to resemble the structure of the consistency con-
straints: i.e. the hyperedges should correspond to the con-
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sistency constraints (Recall that a transaction can be
viewed as the unit of consistency - the set of actions
needed to rectify temporary inconsistencies.) Rule (3) of
the hypergraph policy then (sce Section 6) describes when
an entity can be unlocked before the end of the transac-
tion. in order to guarantece safety. The higher the connec-
tivity of H is. the less early unlocking is allowed (but pos-
sibly less extra locking might be nceded). Thus, if H is a
graph, the two extreme cases arc H complete (2PL),
and H = t(ree (tree policy). How faithfully H should
represent the consistency constraints depends on the in-
formation available about the particular application: for
example. if entities x and y are connected by some con-
straint C which is rarcly violated. i.c. most updates on x
and v do not affect C. then it might be advantageous not
to represent C in H in order 1o achieve a higher degree of
concurrency, at the expense of doing (rarelv) some extra
locking.

In our model we viewed a locking policy as an algo-
rithm that takes a transaction - a sequence of actions -
and sets locks. 1t might be the case however that the
whole transaction is not known at the beginning, but is
found out dynamically, 1.e. the result of an action deter-
mines subsequent actions. The conditions we gave still
hold if we look at the locked transactions that are pro-
duced. In the case of the hypergraph policy, the transac-
tion must start from an entity that can reach all entities
that might be needed. and can unlock some entity x only
if the set of locked entities at this point separate x from
any other entity y that might be needed later on (in order
to ensure rule (3)).

Another choice involved in the design of such a policy,
is how rule (3) is enforced: that is one might choose not
to use the full freedom of it in order to get a more
efficient policy (at the expense of a loss in concurrency).
For example, in the case of the DAG policy, we could

just require that when x is locked, then an ancestor of x

but not of its dominator be locked, instead of requiring a
father of x to be locked. This policy is also safe and
deadlock-free (by Theorem 6 and Corollary 11). In gen-
eral, Corollary 11 implies that the way rule (3) of HP is
enforced does not affect the freedom from deadlock of
the policy.

In this paper we did not distinguish between read- and
write-actions. However probably our results generalize to
this case (where "serializability” is as in [EGLTI)]) in the
same way that 2PL is generalized in [GLPT] and [LW].

Note.

This is the merging of results obtained independently
by the first author (MY) on the one hand. and the second
and third authors (CHP and HTK) on the other. Section
3 contains results by CHP and HTK. whereas Scctions 6
and 7 contain results due to MY. Sections 4 and 5 con-
tain essentially  common. vet independently  obtained
results: the exposition of these Sections follows CHP and
HTK.
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