
An Optimality Theory of Concurrency Control for Databases

H. T. Kung

Department of Computer Scionco
Carnogio-Mellon University

Pittsburgh, Pennsylvania 152 13

C. H. Papsdimitriou
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

1. Introduction

In many database applications it is desirable that the

database system be time-shared among multiple users who

access the database in an interactive way. In such a

systewi the arriving requests for the execution of steps in

different transactions from different users may by

interleaved in any order. Assume that each transaction is

correct in the sense that it preserves the consistency of

the database when executed alone. The execution of many

correct transactions in an interleaved order may, however,

bring a consistent database state into an inconsistent one

(see, e.g., [Eswaran et al. 761). It is the task of the

concurrency control mechanism of the database system,

which is also called scheduler in this paper, to safeguard

the database consistency by properly granting or rejecting

the execution of arriving requests. A rejected request is

scheduled for execution after some requests which arrive

lafer have been scheduled for execution. That is, the

concurrency control enforces database consistency by

delaying the execution of sonie requests when this is

necessary.

Although system consistency is the primary objective of

concurrency control, there are certain other important

considerations that must be taken into account In Its

design. For instance, one sure way to secure consistency

would be to delay all other user requests until the first

This rssssrch is supports! in pmrt by th Nsiionsl Scisncs Fomdstion
under Grsnts MCS 75-222-55, MCS 77-01193, MCS 77-05314, ths Gffia
of Nsvsl Rssosrch undsr Contrsct NOOOUI-75-C-0370, NR 044-422, srd I
Miihr Fsllowshii.

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is
given that copying is by permission of the Associa-
tion for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific
permission.

@ 1979 ACM 0-89791-001-X/79/0500-0116 $00.75

user logs out, than let the second user go, and so on
Since each individual transaction is correct, the execution

of requests in this order will preserve consistency.

Obviously, this straight-forward mechanism has a major

deficiency: it may cause unnecessary delays for all but one

user, and thus degrade the throughput and response time

of the system. This scheduler, however, does have one

important advantage. Namely, it requires no information

about the transactions except for a user identification for

each request. We see therefore that it is necessary to

consider the performance of a scheduler and the
information that it uses, in addition to its correctness,

Performance. We measure the performance of a

scheduler by the set of request sequences which the

scheduler can pass without any delay. We call this set the

fixpoint set of the scheduler. The idea is that the richer

this set is, the more likely that no delays will be imposed

by the scheduler to the user requests. In fact, if the

fixpoint set of a scheduler strictly includes that of another

scheduler, then it can be argued that the former scheduler

performs strictly better than the latter one as far as
average delays are concerned. Further justification of this
measure, as well as a discussion of its limitations appears

in Section 6.

Information. The information used by a scheduler is the

minimum knowledge about the database and the

transactions that it requires in order to function correctly.

Typical information that would be useful to the scheduler

is syntactic information about the transactions (i.e., a

flowchart with the names of the variables accessed and

update&at each step); or semantic information about the ./
meaningtiof the data and the operations performedi or the

intenritv constraints, the consistency requirements that the

data must satisfy. It should be intuitively obvious that the
more information the scheduler has, the better job It can
do in scheduling the transactions. There are, howevi)r,

sound reasons why it is sometimes advantageous to “keep

116

efficiency: we would like our scheduler to be reasonably

efficient in reaching its decision about each arriving

request, and excessive information may be distracting.

These issues are examined in [Papadimitriou 78) Another

reason is that some information may not be available to

the scheduler. For example, the integrity constraints may

only be implicit. If the semantics of the aperations are

given in some powerful enough logical language, then the

scheduler inay even be faced with undecidable ({oblems.

Flnally, it may be appropriate to leave the scheduler in

some imperfect level of information because of other

considerations, such as recovery [Gray 781.

There is a growing body of literature on various

solutions to the concurrency control problem. This paper

gives a uniform framework for evaluating these solutions,’

and, in many cases, for establishing their optimality. We

point out a trade-off between the performance of a

scheduler and the information that it uses. We show that

most of the existing work on concurrency control is

concerned with specific points of this fundamental

trade-off. For example, our framework allows us to

formally show that the popular approach of Serialization

(see, e.g., [8ernstein et al. 781, [Eswaran et al. 761,

[Papadimitriou et al. 771, [Papadimitriou 781 [Stearns et al.

763, [Silberschatz and Kedem 781) is the best one can hope

for when only syntactic information is available. If the

scheduler also has some semantic information, then

non-serializable approaches such as those proposed by

[Kung and Lehma! 791 and [Lamport 761 are possible.

In Section 2 we introduce our model of transaction

systems, carefully distinguishing among the syntactic,

semantic, and integrity constraint components. In Section

3 we define schedulers, and develop the basic tools for

studying the information-performance trade-off. In

Section 4 we show several examples of schedulers, most of

them already existing in the literature, that can be proven

optimal with respect to the information that they use.

In Section 5 we examine the concept of locking from a

similar viewpoint. We show that the locking approach

amounts to first transforming a transaction system by a

locking policy, and then entrusting its concurrency control

to a very simplistic scheduler, the lock manager. We

examine the question of optimality of the two-phase

locking policy of [Eswaran et al. 763, and we outline a
geometric methodology that is very useful for

understanding locking. A full account of our investigations

In locking appears in a forthcoming paper [Kung and

Papadimitriou 79j. Flnatly, in Section 6 we discuss our
results, the limitations of our model, as well as directions
of future work.

11

2. Transaction Systems: Definition

By a transaction system we mean intuitively a database

(basically data and integrlty constraints) together with a

set of prespecified transaction programs. Through these
fixed transaction programs multiple users can access the

database from different terminals in an interactive wry. In

the following we give both syntactic and semantic

definitions of a transactlon system. The definitions will be

Mustrated by an example in the end of the section.

Syntax

A transaction system T Is a finite set of fransactions,
{Ti, TJ, where each transaction T, Is a finite sequence

of transaction w Tu, T,,+: The n-tuple of integers

hi, mn) Is called the format of the transaction system.

For simplicity, we assume that all transaction systems
under consideration have the same, fixed format.

The transactions In a transaction system operate on a

set of variable names The variables are abstractions of - -4
data entities, whose granularity is not important for our

development. The variables can represent bits, files or

records, as long as they are individually accessible. The

set of variable names Is denoted by V. Besides the
(global) variables in V, each transaction T, is associated

with local variables, tilt timi; A transaction step T,, in T,

can be thought of as the indivisible execution of the

following two instructions:

where f,, is a j-place function symbol. That is to say, at

step T,l the current value of some global variable x,, c V is

stored at a local place t,, and then x,, is transformed, based

on knowledge available to the transaction T, at this time, .

namely, the values of all “declared” local variables fll, -., t,f

In keeping this transformation as general as possible, we
do not assign specific meaning to f,, at this point; f,, may be

open to arbitrary interpretations. For example, it could be
the identity function on t,,, in which case T,, is simply a

read step. Similarly, if f,, is independent of $, then T,, is a

write step. In this case, t,, + x,, need not be performed in

an actual implementation.

Thus, our transactions are straight-line programs. In

this simplified modal of computation, results of this paper
can be made easy to understand. In Section 6, we shall
discuss how the results can be extended to transactions
defined by more general programs.

Semantics

Associated with each variable name v c V we have an

enumerable set D(v), the domain of v, consisting of all
possible values that the variable v can assume -- typically

the integers, the set {OJ), or finite strings. A local
variable t,, has always the same domain as x 1s

A && of a transaction system T is a triple (J, L, G),

where

- J is an n-tuple of integers (j , . . .,jn) with ji,
(1 S jl S mi+l), specifying t e next step of i
transaction Tl. The j.*s are thus program
counters. If ji - mitl, I
terminated.

hen transaction Ti has

- L is an element in Il l$lfnfn\$j<j.qXij))
representing the values of a dec ared locsl
variables.

- G is an element in II,,&(v) representing the
current values of all global variables v c V.

The jnteeri+v gonstraints of a transaction system T

correspond to a subset IC of the product II,,,@(v). A

state (J, L, G) of T is said to be consistent if G belongs to

IC.

Finally, the semantics of T: associated with the function
symbol f,, at each step T,, is a function pij :nISkSjD(xik) *

D(Xij) which is the interoretation of fii. The execution of a

transaction step maps one state of the transaction system

into another one. More precisely, if transaction step Tij is

eligible for execution at state (J, L, G), that is, if ji zz q and

jl - j, then its execution modifies the three components of

the state as follows:

ii a- ii + 1,
t ij + Xijv

xij + Vlj(t(l, * * *,+ij)-
This view can be extended to sequences of transaction

steps in the obvious way. A sequence of transaction steps

is said to be correct if a serial execution of the steps In

the sequence will map u consistent state of the
transaction system Into a consistent state.

h && assumD+ion throunhout the paDer is m 1

transactions ia L transaction system are correct

Exampfo

Consider a transaction system consisting of three

transactions TI, T2, and T3, that access two banking

accounts A and B in the following way:

- T1 transfers $100 from A to B if A has
enough funds and the balance of B is below
8100.

- T2 withdraws 150 from B and increments a
counter C, if 6 has enough funds.

- T3 is an auditing transaction that computes
the sum S of A and 8, and sets the counter C
back to 0.

Syntax. The set of global variable names ls

V - (A, 8, S, C). The xlj’s are as follows:

xi1 - A, xi2 - 6, xi3 - A
xzl = 8, xz - C,
~31 * A, ~32 - 6 Xm m Sn ~34 -C

Thus the format of the transaction system is (3,2,4).

Semantics. For all v t V, D(v) is the set of natural

numbers. Typical states would be as follows:

- (J, L, G) = ((I, I, I), a, (150, 50, 200, 0)). This
is a possible state before any of the
transactions has started execution. We have
A - $150, B - 850, S - $200, C = 0, and don’t
care about the values of local variables.

- (J, L, G) = ((2, 2, 4), (150; 50; 150, 0, 2001,
(150, 0, 150, 0)). In this state, A has not been
decreased but B has. The new S has ken
computed but C has not.

As for the opera+ions performed by each step:

?i - Gi
vi2 - if t,, 2 100 snd t,, < 100 then 1, t 100

!&Q $2

921 - Ir +2, 2 50 &3J t*l - 50 * t,,
(P22-~t21z50fhent~t1~t,

%l - '31

%2-b2
v$J - t, + t,

p34 - O
The integrity constraints may very well be the set of

states for which A 2 0, B i? 0, and A t B - S - 50C.

3. An Information-Based Model for Schedulers

3.1. Schodulos

A ;‘@edule (a b or a historv) of a transaction system T
ls a tiermutation w of the set of steps in 1 such that

r(T,,) c r(T,) for 1 S j < k S mr A s&dule corresponds to

a possible stream of arriving execution requests for Steps

in T, or the order in *which these requests are granted for

execution. The set of all schedules of T is denoted by
H(T). Since this set depends only on the format of T and

118

the format is assumed fixed, we shall write H for H(T). A

schedule is said to be correct if its execution preserves

the consistency of the database. The se+ of all correct

schedules of T is denoted by C(T). The set C(T) is always

nonempty, since it at least contains, by our basic
assumption, all 6g&l schedules, i.e., all permutations w

such that w(T,,,+~) - n(T,,) + 1 for j S m,-1.

5Yntactic and semantic information about the transaction
5Y5+em ln question. The minimum ,informa+ion’ 15 the format
(ml, mJ. The more information available to the

scheduler, the “better” scheduling results may be
expected. We would like to capture this in a formal
theorem (Theorem 1 below). What is, therefore, a formal
model for the information available to a scheduler s?

3.2. Scbdulors: Performance w. Information
‘i

33. A Formal Theory

schedule,

The primary goal of a scheduler or concurrency control

whose

is to transform a log of execution requests into a correct

execution will preserve database

consistency. Formally, a scheduler for a transaction

system T is a mapping S from H to C(T). A scheduler S is

sold to be correct If ail schedules produced by S are

correct, i.e., if S(H) 5 C(T). In this paper, schedulers under

consideration are always assumed to be correct. As
mentioned in Section 1, we measure the performance of a

scheduler S by its fixpoint set P, which is defined to be

the largest subset of H satisfying the following property:

(T, T’, T”

A level of. information available to a scheduler about a

, . ..I that contains T. Intuitively, if S is kept at this

level of information, it knows that the transaction system It

handles is among the transaction systems in I, but does not

transaction system T is a set I of transaction systems

know exactly which. For example, the set I could be the

set of all transaction systems that have the same syntax.
This level of information corresponds to the case that a

scheduler has complete syntactic informa+ion, but no other

information.

S(h) - h for all h C P.

Hence, P must ,be a subset of C(T). For sequences of
execution requests in P, the scheduler grants the requests

in the same order as they arrive. Thus, the larger P is the
less chance that the scheduler will have to ask a user to

wait for other users. Further justifications of this measure

will be given in Section 6.

While considering the performance of a scheduler, we

must also look at its cost. A high performance scheduler

that has a large cost is not necessarily useful. The cost of

a scheduler refers to either the information or the t&

that the scheduler requires to make its decision. fhis
paoer studies the information comoonent of thg So5t of

schedulers. We derive upper bounds on the performance
of schedulers based solely on the information they use,

and we do no+ address the. problem of how long it takes

for schedulers to reach their decisions. The latter problem

has been examined in great detail in [Papadimitriou 781

where sufficient and necessary conditions for the

existence of efficient schedulers with prescribed fixpoint

sets are given.

Given that the fixpoint set of any scheduler must always

be a subset of C(T), ideally we wish to have a scheduler

that can recognize all correct schedules in C(T) so as to

maximize performance. For several reasons that we
mentioned in Ser!ion 1, however, this is not always

possible, nor desirable. The maximum possible information
that a scheduler can have is, of coursei the complete

Alternatively, we could define I as a proiection that

maps any transaction system T to an object I(T).
Intuitively, l(T) IS the information extracted from T bv the

proiection operator b for example, I(T) could be the syntax

of T for all T. The effeit would be that T cannot be
distinguished from the transaction systems T’ that have the

same image I(T); in the notation 7; thefI;zious paragraph,
which we are going henceforth,

I - (T’: NT’) - I(T)).

Theorem I: For any cchadulor uting
information I, its fixpoint set P murt satisfy:

The proof of this theorem uses a very general

adversary argument, Instances of which we shall see many

times in the sequence. The proof goes as follows: If there
is a schedule h f P and a transaction system T’ c I such

that S when fed by h is not correct for Tr i.e.,

S(h) - h f C(f), then an adversary could “fool” tha

5chedu+er S by choosing T’ for S to handle, and giving h as

the stream of execution requests. The resulting state after
the execution can be inconsl5tent, since S(h) # c(f). Thus,

the scheduler is incorrect.

As a corollary of Theorem 1, the maximum-performance
scheduler that Is correct using information I is the one thet

119

has its fixpoint bet P - fl~‘~~ C(T’). We call this scheduler

the Optimal scheduler for the level of information L

(Notice that in practice there may be insurmountable

difficulties - such as the negative complexity results in

[Papadtmitriou 783 - in realizing the optimal scheduler for

a given level of information.) The concept of information

introduced here partially orders schedulers with respect to

their sophlsticatton: we say that S is more sophisticated
than S’ if S operates at a level of information I that is

On included In the level of Information I’ of S’, i.e., if I 5 I’.

the other hand, schedulers are also partially ordered with

respect to their performance: we say that S performs
better than S’ if P’ + P, where Pr and P are fixpotnt sets of

S and S’, respectively. Then the mapplng from any level of

information 1 to the fixpoint set of the optimal scheduler

for &

I + P (= nTtcI C(T%

ts a natural jsomorphism between these two partially

ordered sets. This captures the fundamental trade-off
between scheduler tnformatton and performance: If 1s f

then P 2 P’ for the optimal schedulers.

In the next sectlon, we present several examples of
schedulers that are ophmat for different levels of

information.

4. Optimal Schedulers

4.1. Optimal Schoduiors for Extrema of Information

Maximum Information

This is the case when complete information on the

transaction system T in question is available to the

scheduler. The information level I in this case is a

singleton set, I - (T}. We can therefore define the

‘scheduler S, in principle at least, such that P - C(T). This

is the optimal scheduler for the ultimate level of
information.

Minimum lnformation

If we only know the format of T, then we have the

poorest possible level of information. What is the best

Possible scheduler In this case? Consider the &

scheduler S which Is defined to be a scheduler satisfying

the following property:
P - {all serial schedules in H} and S(H) - P.

By our basic assumption that each transaction is correct, S is correct.

Theorem 2: The serial scheduler S is optimal
among ail rcbedulerr Using the minimum
information.

Proof: Suppose that S Is not optimal. Then there must
exist a non-serial schedule in C(T) in which some steps T,,

T,P T,,,t+p in T are executed In this order. Note that

because of the minimum information assumption, I may

contain transaction systems with any integrity constraints

end interpretations for steps. We assume that the
integrity constraints for some transaction system T’ in I

correspond to “x=O”, and that the interpretations of
function symbols are such that TI Is

V,: x + x+1, T,#+p x + x-1) and T, is (Tg: x c 2x). We

see that T, and T, are correct, but the sequence (Tilu Tjl,

Ti, h+l) is not correct for it may transform a consistent

state, x=O, into an inconsistent state, x=1. Thos, the
schedule is not in C(T’). This is a contradiction. Hence, for

the minimum information case, the only correct schedules

that a scheduler can produce are serial schedules, i.e., the
serial scheduler defined above is optimal. 0

4.2. Optimal Schedulers for Complete Syntsctic Information

Suppose now that all syntactic information is available;
that is, the information level has the property that I is the

. set of all transaction systems with the same syntax. As In

a similar situation in the theory of program schemata, one

can supplement this syntax with canonical semantics called

Herbrand semantics (see [Manna 741 for a detailed

exposition). For all v (V, the domain O(v) is the set of all

strings from the alphabet 3 - V U (ftj: i-l,. . ., n; j-1,. . ,

ml} plus the symbols “I”, $“, “,“. If al, . . ., at are elements
of D(v), then ‘t) (a,, . . ., a$, the interpratatlon of fti’ is the

string flj (at, . . ., Sj). In other words, the Rerbrand

interpretation captures ali the history of the values of dl

global variables. We say that a schedule h is serializable if

its execution results are the same as the execution results

of some serial schedule under the iierbrand semantics. By

SR(T) we denote the set of all serializable histories of T.

A Serialization scheduler is defined to be a scheduler S

satisfying the foilowlng property:

P = SR(T) and S(H) - P,

for any T.

‘moorom 3: The roriaihation uhaduior is
codroct, end is optimal among ati rcheduton using
corkpIe rynlacttc information.

Proof: To prove that SR(T’) c, C(T’) for any r’ f 1, we use

Herbrand’s Theorem [Manna 741 which essentially states

that if two sequences of steps are equivalent under the I.

120

Herbrand interpretation, then they are equivalent under
any interpretation. Thus If h C SR(T’) then the execution

results of h are the same as those of some serial schedule
for f’. This implies that for eny’h C SRtT’), the execution

of h preserves the consistency of T’

To prove optimality, take a history h $ SRtT), we shall

define a transaction system T’ C 1 such that h # C(T’). The

semantics of T’ are the Herbrand interpretation. VW, for

the integrity constraints, we define IC as follows: *Assume
that T is consistent initially. Let (vi, . . . vk) be the initial

values of global variables in v, where k - M If ai, at

are in D(v), we say that (ai, a,J E IC iff there exists a

sequence S (possibly empty) of steps that is a

concatenation of serial executions of transactions such that
the initial values (vi, vk) are transformed by S to (aI, .-

a$. By this definition, all transactions are individually

correct, and our basic assumption holds. Now, it is easy to

see that, if h Is any history, not in SRtT), then it transforms
the initial values (vi, ‘v,) to a set of values not in IC.

Hence, h # UT’). D

The theorem shows that even if complete syntactic

information of a transaction system T is available to a
scheduler, SR(T) is the maximum possible set of correct
schedules the scheduler can hope to produce. After all

syntactic information is the information one can quite

easily extrect from a transaction system, by having the

users declare the flies that they intend to open, say. It is

therefore not et all surprising that most approaches to
concurrency control have serialization as their goal

[Eswaran et al. 76, Stearns et al. 76, Silberschatt and
Kedem 78, Bernstein et al. 78, Papadimitriou 781 In

[Papadimitriou 783, it is shown that for some transaction

systems of restricted syntax, although serialltation is

algorithmically Intractable, it can nevertheless be

gDDroximeted by more restrictive schedulers (see also

[Popadimitrlou et al. 771).

4.3. Optimal Schodulea for Complete Semantic Information but

Integrity Constraints

1 Consider the transaction system of Fig. 1.

f I T2
T11: x + x+1 T21: x +x*1

Tl2: x+2:x

Figure 1: A transaction system.

The history h - (T11, T21, Tl2) is not serializable since

the Herbrand values for x of the two serial histotles are

f12 ffll tf21 (x))) and f 21 tfl2 (111 lx))), whereas that of
h is fl2 (f2l ffll (x))). But with the given interpretations

Of the flj*Si h is seen to produce the same state as the

serial history (Tpl, T 11, T12). Hence, our knowledge of
the interpretations allows us to expand the set of

achievable correct schedules. It Is not hard to see,
however, that the gains are dellmited by a generalized

notion of serialization, defined as follows. A schedule h Is

sald to be weaklx serializable, if starting from any state E

the execution of the schedule will and with a state which is

achievable by some concatenation of transaction S,
possibly with repetitions and omissions of transactions,

also starting from state E. Denote by W!%(T) the set of all

weakly serializable schedules of T. It is clear that SR(T) 5

WSRfT). The weak serialization schedul@s defined to be s

scheduler S aatlsfying the property:

for any T.

P - WSRfT) and S(H) - P

Theorem 4: The weak aeriallzation scheduler is
optimal among all schedulers using all information
but tha integrity constraints.

The proof is quite similar to the proof of Theorem 3, and

Is omitted.

5. Some Comments on Locking

Almost all concurrency control methods that appear in

the literature, with the notable exception of the SDD-1

system ([Bernstein et al. 78]), are implemented by locking,

that Is, by mechanisms ensuring exclusive access to certain
resources, such as data. Locking-based concurrency

control mechanisms are certainly special cases of

schedulers, and hence our previous formalism applies to

them. As we shall see, they are in fact very restricted

>speclal cases of schedulers, and possess an interesting

mathematical structure of their own that Is susceptible to a

theoretical study parallel to the one developed in the

previous sections. A full account of our results on locking

will appear elsewhere [Kurig and Papadimitriou 791 We

shall allude here to only the main Important Ideas. As a

result, this sectlon is quite dense.

5.1. Locking Policlea

A locking-based concurrency control mechanism is

implemented via a locking policy. A locking policy, L, takes

an ordlnary transaction system T, as defined in Sectlon 2,
ahd maps it into another transaction system, L(T), called
the locked transaction svstem. Locked transaction systems

have the following characteristics:

121

- Besides the set of variable ndmes V of T, L(T)
has also a set of new variable names LV, the
lockinn variables. If X f LV, then tha domain
of X, D(X), contains only three elements: 0
(for unlocked), 1 (for locked) and -1 (for
error). In usual implementations, there is an
lsomorphism between LV and V, and a locking
variable X < LV can always be thought of as
the lock-bit of some ordinary variable x C V.
There is no reason, however, to impose this
restriction to LV at this point.

- The steps of L(T) are the same as the steps of
T, except that there are some additional steps
of the form “lock’ X”, “unlock X” inserted.
These steps are well-nested in the obvious
sense. They have a fixed interpretation: &
XmeansX:-ifX=Othenlelse-ll&&&X
means X: - if X - 1 then 0 g& -1.

- The integrity constraints of L(T) correspond
just to th8 assertion that AXtLV (X - 0). In
other words, all one has to do in order to
safeguard the execution of L(T) Is to manage
locks properly.

Thus all the cleverness of concurrency control is

incorporated Into the locking policy L. After a locking

policy L Is designed, all we ha<8 to do is entrust L(T) to a

very almple scheduler, the && resoectlng bchedulet LRS,

which can only “aoe” the locking-unlocking at8pa, tha

integrlty constraints, and nothing else. Obvlously, LRS Is
optimal with respect to this level of information.

1.2. The Two-Phaao Locking Policy - An ;xample

The moat well-known paradigm of locking policies is the

Iwo-phase locking policy 2PL [Gwaran et al. 76) i!PL

transforms a transaction system into a locked OM) aa

follows:

1. Associate a locking variable X wlth every x C
V. (One can think that X is the lock-bit of x.)

2. If a step T,t eccesaea x,,, then there is 8 step

“@r& X,,” before T,P and a step “gt&& X,,”
after T,, subject to the following rules:

8) In no transaction la there &lock step
after the first unlock step. I’

b) Lock steps are as late and unlock steps
as early as possible subject to condition.
a) above. Note that this does not
unlquelly d8fin8 th8 positions of lock&
but w8 shell disregard this point.

For example, 2PL tianaforms the transaction of Figure

2(a) to that of Figure 2(b).

Original transaction Locked Transaction

Til: x +- +..

Tt2: y + . . .

Tt3: x + . . .
T,,: z + . .

!l&X

Til: x G- . . .

p&Y

Ti,: y + . .
TiJ: x t . . .

lock2

unlock X
unlock Y
T1,: z t .

unlock Z

(a) (b)
Figure 2: Locked transaction using 2PL.

Notice that one can talk about the Information used by a

locking policy exactly as with schedulers (Section 3). For

example, 2PL uses only syntactic Information. We shall
return to discuss the question of its Optimality. What is a

performancs measure for a locking policy L? Following our

approach for general schedulers, we consider the sbt of

schedules that ar8 possible outputs of LRS to schedules of

L(T). To compare wlth ordinary schedulers for T, we
simply remove the lock-unlock steps from these sc.hedulea.

I.3. The Geometry of Locking

Much insight into locking can be gained by a simple
geometric method. Suppose that we have two transactions
T, end T, Then any state of progress towards the

completion of Ti and T, can bs viewed as a point In tha

two-dimensional “progress apace”, as shown In Figure 3.

f *

unlock Y
unlock X

lock Y
lock X

‘& I . .
1;

i
lock Y4

lock X
4 unlock X

unlock Y

Figure 3: The “progress space” for T1 and T?

122

Locking has the effect of imposing restrictions in the

form of forbiddeh rectangular regions (blocks Bx and 8y
Figure 3). The joint progress of T, and T2 is represented

by a nondecreasing curve from the origin to the point F

that avoids ail blocks. Such a curve, called a prosress

curve, is shown is Figure 3. The simultaneous increasing

of the progress curve in two coordinates corresponds to

the simultaneous progress the users make ;at their

terminals. A schedule produced by a scheduler,ewever,

corresponds io a nondecreasing step function, reflecting

the fact that the scheduler grants only one request at a
time. The step functions h in Figure 3 represents the

schedule that could result in the particular progress curve

shown in the figure. In fact, any nondecreasing function

lying entirely in the indicated triangular regions

surrounding the step function h can be a progress curve

resulting from the schedule h. Region D in Figure 3 is a

deadlock region, in the sense that any progress curve
trapped in the region will not be able to reach F. In fact,

this geometric method was used for the study of deadlocks

by-Dijkstra [Ooffman et al. 71) Here, we use it in a quite

different way for studying several consistency related

problems.

First,. how good is locking as a concurrency control

primitive? In other words, how general are the schedulers

that can be implemented by locks? The answer is, not

very. Note that any lock-implemented scheduler is

memoryless in the following sense. Consider Figure 4(a).

When the execution has reached point g, it has essentially

“forgotten how it got there”. We cannot distinguish among
histories leading to the same point just by locking. Thus, if
a class of schedules Is the output set of a locking policy, It

must be oblivious in this sense. Unfortunately, most

sophisticated serialization principles (see, e.g.,
[Papadimitriou 781) require that the scheduler remembers

which transaction read data first from which, and thus they

cannot be Implemented by locks alone - although they may
be implementable by queues ([8ernsteln et al. 781). In

fact, the above statement has a converse that

characterizes classes of schedules that can be the output

sets of locking policies. In contrast, recall that, at least in

principle, gjj classes of schedules are possible output sets
of some scheduler.

Secondly, let us consider consistency - in fact,

serializability, by assuming only syntactic information,

Assume that the locking variables are locking bits, and that

the transactions are well-formed, In that any access of x is

surrounded by a (IQ& X, p&& X) pair. Then it can be
shown that a schedule h is serializable if it can be

transformed by elementarv transformations (see Figure

4(b)) to one of the serial schedules without, passing

through any Of the forbidden blocks. (The two serial

schedules are the two nondecreasing functions lying on the
boundaries of the square, OP,F and OP2F.) Such a

elementary transformation corresponds to ‘interchanges’

of the neighboring steps such as T, and Ttr In the classic

mathematical terminology, a serializable schedule is
homotopic to some serial schedule. So non-serializable

schedules are schedules that separate blocks (Figure 4(c)).

An incorrect locking policy means a policy that may leave

the blocks disconnected. The exact condition for a correct

locking policy is somewhat less trivial for high dimensional

cases, which correspond to transaction systems consisting

of more than two transactions. The two-phase locking is

now extremely easy to explain. It simply keeps all blocks

connected by letting them have a point u in common.
(Figure 4(d)). The coordinates ui, u2 of u are the

phase-shift points, at which all locks have been granted,
and none has been released. It is easy to check that u Is

contained by all blocks. This implies that 2PL is correct.

T, Tz t

(4 (b)

I
lock cl unlock * Tl

(d;

Figure 4: The geometries of locking.

8.4. ts Two-Phaao Locking Optimal?

By the previous discussion 2PL cannot be optimal aa I
scheduler, since there will always be a scheduler that

performs strictly better than any locking policy. But la
2PL optimal as a locking Policy? The answer is no for a

trivial reason. Suppose that there is a variable x that is

123

only accessed by just one transaction. Then a locking
policy that two-phase locks all variables but x may be

strictly better than 2PL, and still it is correct, This counter

example shows just one of the ways that one can take
advantage of global knowledge of all the transactions.

However, 2PL has an important property, which is also a
significant practical advantage: it is seearable, in that it

transforms the transaction system one transaction at a

time, without using information on other transactions.

Is, therefore, 2PL at least optimal among separable

locking policies? The following variant of 2PL can be

shown to be both correct and strictly better than 2PL in

performance.

1. Apply 2PL to all variables
except to a distinguished
one, x.

2. After the first usage of x
insert a pair of steps j2&
X’ - unlock X’.

3. After the last usage of x
insert the steps I& X’,
&t&&k x.

4. After the last lock step
insert unlock X’.

For example, 2PL’ would transform the transaction of

Figure 2(a) into the one of Figure 5 (b). 2PL’ is correct,

separable, and better than 2PL in performance, but is not

the two-phase locking policy.

2PL, however, k optimal in the following important

6ense.l It is the best among all separable locking policies

with syntactic information on unstructured variables. In

other words, it is optimal among all policies that remain

correct under arbitrary, local to the transactions,

renaming6 of the variables. The tree-locking schema of

[Silberschatz and Kedem 783 violates this by assuming a
hierarchical database, and our 2PL’ by making the variable

x distinguished.

5.5. Conclusions about Locking

Locking is a simple primitive for implementing

concurrency control techniques. Unfortunately, its
simplicity is payed for by a significant loss in performance.
A simple geometric vehicle Is especially helpful for

Original tranmction , Locked frroaaction

111: x t . . .

ti2: y t . . .
T13: x t . . .

T14: z + -.

&j$X

TIi: x + -.
!f& X’

unlock X’

MY

TiZ: y + . . .

Tg x t . . .
!I& x’

X unlock
@cJZ

Y unlock
g&j& x’

T,: z c . . .

unlock Z

(4 (b)
Figure 5: Locked transaction using 2PL’.

studying locking and its limitations. Strictly better results

should be expected by combining locks with other simple

techniques, such aa queues [Bernstein et al. 78)

Restricting ourselves to locking, 2PL is optimal only for

unstructured data. More general locking policies can

therefore be devised by taking advantage of structured

data [Kung and Papadimitriou 79, Yannakakis 79J.

6. Discussions

A typical environment to which results of this paper

apply can be described as follows: There are multiple

users at various terminals executing transactions which

mainly involve local computations but occasionally have to

access or update data shared by many users. This is the

case for example when in each transaction step the
computation of- f&, $1 is much more time-consuming
than the read and write on x,, (cf. Section 2). To safeguard

the consistency of the database, some centralized

scheduler is employed to properly sequence the execution

of transaction steps from different users. From a user’s

viewpoint the ‘time for carrying out a transaction step is

divided into the following three parts:

- Scheduling time: The execution of the
transaction step has to be scheduled by the

.:gcheduler. This may Involve the time spent In
Iwaiting for the scheduler to become available
to do its job and the time for the scheduler to
figure out its decision.

- Waiting time: The scheduler may decide that
the transachon step can not be executed until
the completion of some transaction steps from
other users.

124

- Execution time: This is the time actually spent
in executing the transaction step.

we are interested in choosing a scheduler that will
minimize the sum of these three quantities. We assume
that the execution time is a constant, since it ls

independent of the the scheduler. The waiting time is

directly related,tc the fixpoint set P of the scheduler for
the following reasons: ‘1

.::
- The probability that none of the transact&

steps have to wait is lPjd4, if all request
histories are assumed to be equally likely.

- The richer P is the easier (and hence less
waiting required) to rearrange a history
originally not in P into one in P.

Thus, in the paper we have used P to measure the

performance of the scheduler. The scheduling time

reflects the complexity of the scheduler. Scheduling times

for different users can not be overlapped, since there is

only one central scheduler for all users. Thus, the

scheduling time of a transaction step is also affected by

the number of users who are competing for the scheduler.

In general it it a difficult task to characterize the

complexity of a scheduler. This paper has addressed it

only in the information-theoretic point of view. Results of.

this paper nevertheless can have practical significance as

well, if the schedulers in question have relatively small

scheduling times as compared with waiting and execution

times. This is fortunately often the case in practice, since

practical schedulers ill tend to be simple.

Our assumption that all transactions are straight-line

programs is not essential, and was made only because it

tends to simplify somewhat the notation. It also simplifies

concepts like that of a legal schedule, which would have
been data-dependent otherwise. We can easily extend our

results in this direction.

A more important issue is the assumption that underlies

our model that all information available to the scheduler is

known to it at the beginning’ of the session with the

transactions. This includes our other assumption that all
transactions are fixed beforehand. In practice, however,

one expects the scheduler to acquire this knowledge
progressively and interactively, by questioning the users

and sollcitlng declarations. This issue of dynamic

information (as opposed to our &t&model) is admittedly a
very important one, and must be dealt with theoretically in
future work in concurrency control. Our results of Section

4 are ln effect negative results, showing the impossibiiity

of the existence of schedulers better than given ones, SO

their validity does not depend on this static information

assumption. What remains to be seen, however, is whether
our static information model prevents us from proving

similar optimality results for certain other levels of

Information. We shall next see that this is indeed the case.

We have not examined in any-detail so far schedulers

operating at a level of information that includes the

integrity constraints. Examples of such schedulers do
exist. One example is the concurrency control of binary

search programs proposed by [Kung and Lehman 791

Their programs allow constructs of the form “if no other

program has modified x since the beginning of the present

program then x + a else x + b”. It is not hard to argue

that this construct is inherently non-serializable, This

construct, however, can be used safely if it is known that

the integrity constraints do not involve x at all.

A different way to use the integrity constraints (and

some further semantic information as well) is through

proofs of correctness. Correctness proofs must rely on

and,more importantly, must also reflect the meanings of the

transation and integrity constraints. Therefore, a natural

way to capture semantic information is to examine proofs.

Such an approach has been proposed by L Lamport

[Lamport 761 We outline it in the following. Consider,

proofs using assertions [Floyd 673. A transaction is

1

represented as a flowchart of operations which manipulate

the global variables. Executing the transaction is viewed

as moving a token on the flowchart from the input arc to

an output arc. An assertion, defined in terms of the

variables, is attached to each arc of the flowchart; in

particular, the assertions on the input and any output arcs

are the integrity constraints. A correct proof of a serial

transaction amounts to demonstrating that throughout the

execution of the transaction the token will always be on an
arc whose assertion is true at that time, and will eventually

reach an output arc. The consistency of a database under
the concurrent execution of several correct serial

transactions can be insured by the following scheduling

policy:

The request to execute one step in a
transaction is granted only if the execution will
not invalidate any of the assertions attached to
those arcs where the tokens of other
transactions reside at that time.

It is possible that at some time none of the transactions

can be granted to execute their next steps. The

“deadlock” situation can be resolved, for example, by
backing up some transactions. With this approach it is
possible for a scheduler to generate correct schedules

beyond serial, serializable, or weakly serializable

schedulers. Using the methodology developed in this

paper, we can establish the optimality of the above

scheduler in a dymanic information model. We plan to

pursue thls in a later verston of this paper.

25

References

[Bernstein et al. 78)
Berstein, P.A., Goodman, N., Rothnie, J.B.
and Papadimitriou, C.H
A System of Distributed Databases (the

Fully Redundant Case).

IEEE Transactions on Sojlware
Engineering SE-4:154-168, March
1978.

[Coffman et al. 71]Coffman, E.G., Jr., Elphick, h4.J. and
Shoshani, A.
System Deadlocks.
Computing Surveys 3(2):67-78, June

1971.

[Eswaran et al. 76]Eswaran, K.P., Gray, J.N., Lorie, R.A. and
Traiger, 1.L.
The Notions of Consistency and

Predicate Locks in a Database
System.

Communications of the ACM
19(11):624-633, November 1976.

[Floyd 671 Floyd, R.W.
Assigning Meanings to Programs.
In Proc. Symposium in Applied

Mathematics, pages 19-32. American
Mathematics Society, 1967.

[Gray 781 Gray, J.
Notes on Data Base Operating Systems.
Technical Report RJ2188, IBM Research

Laboratory, San Jose, February
1978.

[Kung and Lehman 793
Kung, HT. and Lehman, P.L
A Concurrent Database Problem: fhary

Search Trees.
Technical Report, Carnegie-Mellon

University, Department of Computer
Science, May 1979.

An abstract appears in the Proceedings
of the Fourth International
Conference on Very Large Databaser.
The full paper is to be published in
ACM Transactiotw on Datdbnre
Systems.

[Kung and Papadimitriou 791
Kung, H. T. and Papadimitriou, C. H

!n Preparation.

[Larngort 761 Lamport, L.
Towards a Theory of Cvrrectness for

Multi-user D&a Base System.
Technical Report CA-7610-0712,

Massachusetts Computer Associates,
Inc., October 1976.

[Manna 741 Manna, 2.
Mathematical Theory of Computatk>n
McGraw-Hill, New York, 1974.

[Papedimitriou 781 Papadimitriou, C.H.
Serializability of Concurrent Updates.
Harvard University.
To appear In JACK.

[Papadimitriou et al. 771
Paoadimitriou. CR.. Bernstein, P.A. and
Ro’thnie, J.B. . .
Computational Problems Related to

Database Concurrency Control.

In Proc. Conf. on Theoretical Computer
Science, pages 275-282. University
of Waterloo, 1977.

[Silberschatt and Kedem 781
Silberschatz, A. and Kedem, 2.
Consistency in Hierarchical Database

Systems.
Manuscript, University of Texas at

Dallas.

[Stearns et al. 761 Stearns, R.E., Lewis , P.M. II and
Rosenkrantz, D.J.
Concurrency Control for Database

Systems.
In Proceedings of the Seuenth Annual

Symposium on Foundations of
Computer Science, pages 19-32. ,
1976.

vannakakis 791 Yannakakis, M.

Private Communication.

“Pi
:” : i

126

