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1. Introduction 

In many database applications it is desirable that the 

database system be time-shared among multiple users who 

access the database in an interactive way. In such a 

systewi the arriving requests for the execution of steps in 

different transactions from different users may by 

interleaved in any order. Assume that each transaction is 

correct in the sense that it preserves the consistency of 

the database when executed alone. The execution of many 

correct transactions in an interleaved order may, however, 

bring a consistent database state into an inconsistent one 

(see, e.g., [Eswaran et al. 761). It is the task of the 

concurrency control mechanism of the database system, 

which is also called scheduler in this paper, to safeguard 

the database consistency by properly granting or rejecting 

the execution of arriving requests. A rejected request is 

scheduled for execution after some requests which arrive 

lafer have been scheduled for execution. That is, the 

concurrency control enforces database consistency by 

delaying the execution of sonie requests when this is 

necessary. 

Although system consistency is the primary objective of 

concurrency control, there are certain other important 

considerations that must be taken into account In Its 

design. For instance, one sure way to secure consistency 

would be to delay all other user requests until the first 
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user logs out, than let the second user go, and so on 
Since each individual transaction is correct, the execution 

of requests in this order will preserve consistency. 

Obviously, this straight-forward mechanism has a major 

deficiency: it may cause unnecessary delays for all but one 

user, and thus degrade the throughput and response time 

of the system. This scheduler, however, does have one 

important advantage. Namely, it requires no information 

about the transactions except for a user identification for 

each request. We see therefore that it is necessary to 

consider the performance of a scheduler and the 
information that it uses, in addition to its correctness, 

Performance. We measure the performance of a 

scheduler by the set of request sequences which the 

scheduler can pass without any delay. We call this set the 

fixpoint set of the scheduler. The idea is that the richer 

this set is, the more likely that no delays will be imposed 

by the scheduler to the user requests. In fact, if the 

fixpoint set of a scheduler strictly includes that of another 

scheduler, then it can be argued that the former scheduler 

performs strictly better than the latter one as far as 
average delays are concerned. Further justification of this 
measure, as well as a discussion of its limitations appears 

in Section 6. 

Information. The information used by a scheduler is the 

minimum knowledge about the database and the 

transactions that it requires in order to function correctly. 

Typical information that would be useful to the scheduler 

is syntactic information about the transactions (i.e., a 

flowchart with the names of the variables accessed and 

update&at each step); or semantic information about the ./ 
meaningtiof the data and the operations performedi or the 

intenritv constraints, the consistency requirements that the 

data must satisfy. It should be intuitively obvious that the 
more information the scheduler has, the better job It can 
do in scheduling the transactions. There are, howevi)r, 

sound reasons why it is sometimes advantageous to “keep 
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efficiency: we would like our scheduler to be reasonably 

efficient in reaching its decision about each arriving 

request, and excessive information may be distracting. 

These issues are examined in [Papadimitriou 78) Another 

reason is that some information may not be available to 

the scheduler. For example, the integrity constraints may 

only be implicit. If the semantics of the aperations are 

given in some powerful enough logical language, then the 

scheduler inay even be faced with undecidable ({oblems. 

Flnally, it may be appropriate to leave the scheduler in 

some imperfect level of information because of other 

considerations, such as recovery [Gray 781. 

There is a growing body of literature on various 

solutions to the concurrency control problem. This paper 

gives a uniform framework for evaluating these solutions,’ 

and, in many cases, for establishing their optimality. We 

point out a trade-off between the performance of a 

scheduler and the information that it uses. We show that 

most of the existing work on concurrency control is 

concerned with specific points of this fundamental 

trade-off. For example, our framework allows us to 

formally show that the popular approach of Serialization 

(see, e.g., [8ernstein et al. 781, [Eswaran et al. 761, 

[Papadimitriou et al. 771, [Papadimitriou 781 [Stearns et al. 

763, [Silberschatz and Kedem 781) is the best one can hope 

for when only syntactic information is available. If the 

scheduler also has some semantic information, then 

non-serializable approaches such as those proposed by 

[Kung and Lehma! 791 and [Lamport 761 are possible. 

In Section 2 we introduce our model of transaction 

systems, carefully distinguishing among the syntactic, 

semantic, and integrity constraint components. In Section 

3 we define schedulers, and develop the basic tools for 

studying the information-performance trade-off. In 

Section 4 we show several examples of schedulers, most of 

them already existing in the literature, that can be proven 

optimal with respect to the information that they use. 

In Section 5 we examine the concept of locking from a 

similar viewpoint. We show that the locking approach 

amounts to first transforming a transaction system by a 

locking policy, and then entrusting its concurrency control 

to a very simplistic scheduler, the lock manager. We 

examine the question of optimality of the two-phase 

locking policy of [Eswaran et al. 763, and we outline a 
geometric methodology that is very useful for 

understanding locking. A full account of our investigations 

In locking appears in a forthcoming paper [Kung and 

Papadimitriou 79j. Flnatly, in Section 6 we discuss our 
results, the limitations of our model, as well as directions 
of future work. 
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2. Transaction Systems: Definition 

By a transaction system we mean intuitively a database 

(basically data and integrlty constraints) together with a 

set of prespecified transaction programs. Through these 
fixed transaction programs multiple users can access the 

database from different terminals in an interactive wry. In 

the following we give both syntactic and semantic 

definitions of a transactlon system. The definitions will be 

Mustrated by an example in the end of the section. 

Syntax 

A transaction system T Is a finite set of fransactions, 
{Ti, . . . . TJ, where each transaction T, Is a finite sequence 

of transaction w Tu, . . . . T,,+: The n-tuple of integers 

hi, . . . . mn) Is called the format of the transaction system. 

For simplicity, we assume that all transaction systems 
under consideration have the same, fixed format. 

The transactions In a transaction system operate on a 

set of variable names The variables are abstractions of - -4 
data entities, whose granularity is not important for our 

development. The variables can represent bits, files or 

records, as long as they are individually accessible. The 

set of variable names Is denoted by V. Besides the 
(global) variables in V, each transaction T, is associated 

with local variables, tilt . . . . timi; A transaction step T,, in T, 

can be thought of as the indivisible execution of the 

following two instructions: 

where f,, is a j-place function symbol. That is to say, at 

step T,l the current value of some global variable x,, c V is 

stored at a local place t,, and then x,, is transformed, based 

on knowledge available to the transaction T, at this time, . 

namely, the values of all “declared” local variables fll, -., t,f 

In keeping this transformation as general as possible, we 
do not assign specific meaning to f,, at this point; f,, may be 

open to arbitrary interpretations. For example, it could be 
the identity function on t,,, in which case T,, is simply a 

read step. Similarly, if f,, is independent of $, then T,, is a 

write step. In this case, t,, + x,, need not be performed in 

an actual implementation. 

Thus, our transactions are straight-line programs. In 

this simplified modal of computation, results of this paper 
can be made easy to understand. In Section 6, we shall 
discuss how the results can be extended to transactions 
defined by more general programs. 



Semantics 

Associated with each variable name v c V we have an 

enumerable set D(v), the domain of v, consisting of all 
possible values that the variable v can assume -- typically 

the integers, the set {OJ), or finite strings. A local 
variable t,, has always the same domain as x 1s 

A && of a transaction system T is a triple (J, L, G), 

where 

- J is an n-tuple of integers (j , . . .,jn) with ji, 
(1 S jl S mi+l), specifying t e next step of i 
transaction Tl. The j.*s are thus program 
counters. If ji - mitl, I 
terminated. 

hen transaction Ti has 

- L is an element in Il l$lfnfn\$j<j.qXij)) 
representing the values of a dec ared locsl 
variables. 

- G is an element in II,,&(v) representing the 
current values of all global variables v c V. 

The jnteeri+v gonstraints of a transaction system T 

correspond to a subset IC of the product II,,,@(v). A 

state (J, L, G) of T is said to be consistent if G belongs to 

IC. 

Finally, the semantics of T: associated with the function 
symbol f,, at each step T,, is a function pij :nISkSjD(xik) * 

D(Xij) which is the interoretation of fii. The execution of a 

transaction step maps one state of the transaction system 

into another one. More precisely, if transaction step Tij is 

eligible for execution at state (J, L, G), that is, if ji zz q and 

jl - j, then its execution modifies the three components of 

the state as follows: 

ii a- ii + 1, 
t ij + Xijv 

xij + Vlj(t(l, * * *,+ij)- 
This view can be extended to sequences of transaction 

steps in the obvious way. A sequence of transaction steps 

is said to be correct if a serial execution of the steps In 

the sequence will map u consistent state of the 
transaction system Into a consistent state. 

h && assumD+ion throunhout the paDer is m 1 

transactions ia L transaction system are correct 

Exampfo 

Consider a transaction system consisting of three 

transactions TI, T2, and T3, that access two banking 

accounts A and B in the following way: 

- T1 transfers $100 from A to B if A has 
enough funds and the balance of B is below 
8100. 

- T2 withdraws 150 from B and increments a 
counter C, if 6 has enough funds. 

- T3 is an auditing transaction that computes 
the sum S of A and 8, and sets the counter C 
back to 0. 

Syntax. The set of global variable names ls 

V - (A, 8, S, C). The xlj’s are as follows: 

xi1 - A, xi2 - 6, xi3 - A 
xzl = 8, xz - C, 
~31 * A, ~32 - 6 Xm m Sn ~34 -C 

Thus the format of the transaction system is (3,2,4). 

Semantics. For all v t V, D(v) is the set of natural 

numbers. Typical states would be as follows: 

- (J, L, G) = ((I, I, I), a, (150, 50, 200, 0)). This 
is a possible state before any of the 
transactions has started execution. We have 
A - $150, B - 850, S - $200, C = 0, and don’t 
care about the values of local variables. 

- (J, L, G) = ((2, 2, 4), (150; 50; 150, 0, 2001, 
(150, 0, 150, 0)). In this state, A has not been 
decreased but B has. The new S has ken 
computed but C has not. 

As for the opera+ions performed by each step: 

?i - Gi 
vi2 - if t,, 2 100 snd t,, < 100 then 1, t 100 

!&Q $2 

921 - Ir +2, 2 50 &3J t*l - 50 * t,, 
(P22-~t21z50fhent~t1~t, 

%l - '31 

%2-b2 
v$J - t, + t, 

p34 - O 
The integrity constraints may very well be the set of 

states for which A 2 0, B i? 0, and A t B - S - 50C. 

3. An Information-Based Model for Schedulers 

3.1. Schodulos 

A ;‘@edule (a b or a historv) of a transaction system T 
ls a tiermutation w of the set of steps in 1 such that 

r(T,,) c r(T,) for 1 S j < k S mr A s&dule corresponds to 

a possible stream of arriving execution requests for Steps 

in T, or the order in *which these requests are granted for 

execution. The set of all schedules of T is denoted by 
H(T). Since this set depends only on the format of T and 

118 



the format is assumed fixed, we shall write H for H(T). A 

schedule is said to be correct if its execution preserves 

the consistency of the database. The se+ of all correct 

schedules of T is denoted by C(T). The set C(T) is always 

nonempty, since it at least contains, by our basic 
assumption, all 6g&l schedules, i.e., all permutations w 

such that w(T,,,+~) - n(T,,) + 1 for j S m,-1. 

5Yntactic and semantic information about the transaction 
5Y5+em ln question. The minimum ,informa+ion’ 15 the format 
(ml, . . . . mJ. The more information available to the 

scheduler, the “better” scheduling results may be 
expected. We would like to capture this in a formal 
theorem (Theorem 1 below). What is, therefore, a formal 
model for the information available to a scheduler s? 

3.2. Scbdulors: Performance w. Information 
‘i 

33. A Formal Theory 

schedule, 

The primary goal of a scheduler or concurrency control 

whose 

is to transform a log of execution requests into a correct 

execution will preserve database 

consistency. Formally, a scheduler for a transaction 

system T is a mapping S from H to C(T). A scheduler S is 

sold to be correct If ail schedules produced by S are 

correct, i.e., if S(H) 5 C(T). In this paper, schedulers under 

consideration are always assumed to be correct. As 
mentioned in Section 1, we measure the performance of a 

scheduler S by its fixpoint set P, which is defined to be 

the largest subset of H satisfying the following property: 

(T, T’, T” 

A level of. information available to a scheduler about a 

, . ..I that contains T. Intuitively, if S is kept at this 

level of information, it knows that the transaction system It 

handles is among the transaction systems in I, but does not 

transaction system T is a set I of transaction systems 

know exactly which. For example, the set I could be the 

set of all transaction systems that have the same syntax. 
This level of information corresponds to the case that a 

scheduler has complete syntactic informa+ion, but no other 

information. 

S(h) - h for all h C P. 

Hence, P must ,be a subset of C(T). For sequences of 
execution requests in P, the scheduler grants the requests 

in the same order as they arrive. Thus, the larger P is the 
less chance that the scheduler will have to ask a user to 

wait for other users. Further justifications of this measure 

will be given in Section 6. 

While considering the performance of a scheduler, we 

must also look at its cost. A high performance scheduler 

that has a large cost is not necessarily useful. The cost of 

a scheduler refers to either the information or the t& 

that the scheduler requires to make its decision. fhis 
paoer studies the information comoonent of thg So5t of 

schedulers. We derive upper bounds on the performance 
of schedulers based solely on the information they use, 

and we do no+ address the. problem of how long it takes 

for schedulers to reach their decisions. The latter problem 

has been examined in great detail in [Papadimitriou 781 

where sufficient and necessary conditions for the 

existence of efficient schedulers with prescribed fixpoint 

sets are given. 

Given that the fixpoint set of any scheduler must always 

be a subset of C(T), ideally we wish to have a scheduler 

that can recognize all correct schedules in C(T) so as to 

maximize performance. For several reasons that we 
mentioned in Ser!ion 1, however, this is not always 

possible, nor desirable. The maximum possible information 
that a scheduler can have is, of coursei the complete 

Alternatively, we could define I as a proiection that 

maps any transaction system T to an object I(T). 
Intuitively, l(T) IS the information extracted from T bv the 

proiection operator b for example, I(T) could be the syntax 

of T for all T. The effeit would be that T cannot be 
distinguished from the transaction systems T’ that have the 

same image I(T); in the notation 7; thefI;zious paragraph, 
which we are going henceforth, 

I - (T’: NT’) - I(T)). 

Theorem I: For any cchadulor uting 
information I, its fixpoint set P murt satisfy: 

The proof of this theorem uses a very general 

adversary argument, Instances of which we shall see many 

times in the sequence. The proof goes as follows: If there 
is a schedule h f P and a transaction system T’ c I such 

that S when fed by h is not correct for Tr i.e., 

S(h) - h f C(f), then an adversary could “fool” tha 

5chedu+er S by choosing T’ for S to handle, and giving h as 

the stream of execution requests. The resulting state after 
the execution can be inconsl5tent, since S(h) # c(f). Thus, 

the scheduler is incorrect. 

As a corollary of Theorem 1, the maximum-performance 
scheduler that Is correct using information I is the one thet 
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has its fixpoint bet P - fl~‘~~ C(T’). We call this scheduler 

the Optimal scheduler for the level of information L 

(Notice that in practice there may be insurmountable 

difficulties - such as the negative complexity results in 

[Papadtmitriou 783 - in realizing the optimal scheduler for 

a given level of information.) The concept of information 

introduced here partially orders schedulers with respect to 

their sophlsticatton: we say that S is more sophisticated 
than S’ if S operates at a level of information I that is 

On included In the level of Information I’ of S’, i.e., if I 5 I’. 

the other hand, schedulers are also partially ordered with 

respect to their performance: we say that S performs 
better than S’ if P’ + P, where Pr and P are fixpotnt sets of 

S and S’, respectively. Then the mapplng from any level of 

information 1 to the fixpoint set of the optimal scheduler 

for & 

I + P (= nTtcI C(T% 

ts a natural jsomorphism between these two partially 

ordered sets. This captures the fundamental trade-off 
between scheduler tnformatton and performance: If 1s f 

then P 2 P’ for the optimal schedulers. 

In the next sectlon, we present several examples of 
schedulers that are ophmat for different levels of 

information. 

4. Optimal Schedulers 

4.1. Optimal Schoduiors for Extrema of Information 

Maximum Information 

This is the case when complete information on the 

transaction system T in question is available to the 

scheduler. The information level I in this case is a 

singleton set, I - (T}. We can therefore define the 

‘scheduler S, in principle at least, such that P - C(T). This 

is the optimal scheduler for the ultimate level of 
information. 

Minimum lnformation 

If we only know the format of T, then we have the 

poorest possible level of information. What is the best 

Possible scheduler In this case? Consider the & 

scheduler S which Is defined to be a scheduler satisfying 

the following property: 
P - {all serial schedules in H} and S(H) - P. 

By our basic assumption that each transaction is correct, S is correct. 

Theorem 2: The serial scheduler S is optimal 
among ail rcbedulerr Using the minimum 
information. 

Proof: Suppose that S Is not optimal. Then there must 
exist a non-serial schedule in C(T) in which some steps T,, 

T,P T,,,t+p in T are executed In this order. Note that 

because of the minimum information assumption, I may 

contain transaction systems with any integrity constraints 

end interpretations for steps. We assume that the 
integrity constraints for some transaction system T’ in I 

correspond to “x=O”, and that the interpretations of 
function symbols are such that TI Is 

V,: x + x+1, T,#+p x + x-1) and T, is (Tg: x c 2x). We 

see that T, and T, are correct, but the sequence (Tilu Tjl, 

Ti, h+l) is not correct for it may transform a consistent 

state, x=O, into an inconsistent state, x=1. Thos, the 
schedule is not in C(T’). This is a contradiction. Hence, for 

the minimum information case, the only correct schedules 

that a scheduler can produce are serial schedules, i.e., the 
serial scheduler defined above is optimal. 0 

4.2. Optimal Schedulers for Complete Syntsctic Information 

Suppose now that all syntactic information is available; 
that is, the information level has the property that I is the 

. set of all transaction systems with the same syntax. As In 

a similar situation in the theory of program schemata, one 

can supplement this syntax with canonical semantics called 

Herbrand semantics (see [Manna 741 for a detailed 

exposition). For all v ( V, the domain O(v) is the set of all 

strings from the alphabet 3 - V U (ftj: i-l,. . ., n; j-1,. . , 

ml} plus the symbols “I”, $“, “,“. If al, . . ., at are elements 
of D(v), then ‘t) (a,, . . ., a$, the interpratatlon of fti’ is the 

string flj (at, . . ., Sj). In other words, the Rerbrand 

interpretation captures ali the history of the values of dl 

global variables. We say that a schedule h is serializable if 

its execution results are the same as the execution results 

of some serial schedule under the iierbrand semantics. By 

SR(T) we denote the set of all serializable histories of T. 

A Serialization scheduler is defined to be a scheduler S 

satisfying the foilowlng property: 

P = SR(T) and S(H) - P, 

for any T. 

‘moorom 3: The roriaihation uhaduior is 
codroct, end is optimal among ati rcheduton using 
corkpIe rynlacttc information. 

Proof: To prove that SR(T’) c, C(T’) for any r’ f 1, we use 

Herbrand’s Theorem [Manna 741 which essentially states 

that if two sequences of steps are equivalent under the I. 
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Herbrand interpretation, then they are equivalent under 
any interpretation. Thus If h C SR(T’) then the execution 

results of h are the same as those of some serial schedule 
for f’. This implies that for eny’h C SRtT’), the execution 

of h preserves the consistency of T’ 

To prove optimality, take a history h $ SRtT), we shall 

define a transaction system T’ C 1 such that h # C(T’). The 

semantics of T’ are the Herbrand interpretation. VW, for 

the integrity constraints, we define IC as follows: *Assume 
that T is consistent initially. Let (vi, . . . vk) be the initial 

values of global variables in v, where k - M If ai, . . . . at 

are in D(v), we say that (ai, . . . . a,J E IC iff there exists a 

sequence S (possibly empty) of steps that is a 

concatenation of serial executions of transactions such that 
the initial values (vi, . . . . vk) are transformed by S to (aI, .- 

a$. By this definition, all transactions are individually 

correct, and our basic assumption holds. Now, it is easy to 

see that, if h Is any history, not in SRtT), then it transforms 
the initial values (vi, . . . . ‘v,) to a set of values not in IC. 

Hence, h # UT’). D 

The theorem shows that even if complete syntactic 

information of a transaction system T is available to a 
scheduler, SR(T) is the maximum possible set of correct 
schedules the scheduler can hope to produce. After all 

syntactic information is the information one can quite 

easily extrect from a transaction system, by having the 

users declare the flies that they intend to open, say. It is 

therefore not et all surprising that most approaches to 
concurrency control have serialization as their goal 

[Eswaran et al. 76, Stearns et al. 76, Silberschatt and 
Kedem 78, Bernstein et al. 78, Papadimitriou 781 In 

[Papadimitriou 783, it is shown that for some transaction 

systems of restricted syntax, although serialltation is 

algorithmically Intractable, it can nevertheless be 

gDDroximeted by more restrictive schedulers (see also 

[Popadimitrlou et al. 771). 

4.3. Optimal Schodulea for Complete Semantic Information but 

Integrity Constraints 

1 Consider the transaction system of Fig. 1. 

f I T2 
T11: x + x+1 T21: x +x*1 

Tl2: x+2:x 

Figure 1: A transaction system. 

The history h - (T11, T21, Tl2) is not serializable since 

the Herbrand values for x of the two serial histotles are 

f12 ffll tf21 (x))) and f 21 tfl2 (111 lx))), whereas that of 
h is fl2 (f2l ffll (x))). But with the given interpretations 

Of the flj*Si h is seen to produce the same state as the 

serial history (Tpl, T 11, T12). Hence, our knowledge of 
the interpretations allows us to expand the set of 

achievable correct schedules. It Is not hard to see, 
however, that the gains are dellmited by a generalized 

notion of serialization, defined as follows. A schedule h Is 

sald to be weaklx serializable, if starting from any state E 

the execution of the schedule will and with a state which is 

achievable by some concatenation of transaction S, 
possibly with repetitions and omissions of transactions, 

also starting from state E. Denote by W!%(T) the set of all 

weakly serializable schedules of T. It is clear that SR(T) 5 

WSRfT). The weak serialization schedul@s defined to be s 

scheduler S aatlsfying the property: 

for any T. 

P - WSRfT) and S(H) - P 

Theorem 4: The weak aeriallzation scheduler is 
optimal among all schedulers using all information 
but tha integrity constraints. 

The proof is quite similar to the proof of Theorem 3, and 

Is omitted. 

5. Some Comments on Locking 

Almost all concurrency control methods that appear in 

the literature, with the notable exception of the SDD-1 

system ([Bernstein et al. 78]), are implemented by locking, 

that Is, by mechanisms ensuring exclusive access to certain 
resources, such as data. Locking-based concurrency 

control mechanisms are certainly special cases of 

schedulers, and hence our previous formalism applies to 

them. As we shall see, they are in fact very restricted 

>speclal cases of schedulers, and possess an interesting 

mathematical structure of their own that Is susceptible to a 

theoretical study parallel to the one developed in the 

previous sections. A full account of our results on locking 

will appear elsewhere [Kurig and Papadimitriou 791 We 

shall allude here to only the main Important Ideas. As a 

result, this sectlon is quite dense. 

5.1. Locking Policlea 

A locking-based concurrency control mechanism is 

implemented via a locking policy. A locking policy, L, takes 

an ordlnary transaction system T, as defined in Sectlon 2, 
ahd maps it into another transaction system, L(T), called 
the locked transaction svstem. Locked transaction systems 

have the following characteristics: 
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- Besides the set of variable ndmes V of T, L(T) 
has also a set of new variable names LV, the 
lockinn variables. If X f LV, then tha domain 
of X, D(X), contains only three elements: 0 
(for unlocked), 1 (for locked) and -1 (for 
error). In usual implementations, there is an 
lsomorphism between LV and V, and a locking 
variable X < LV can always be thought of as 
the lock-bit of some ordinary variable x C V. 
There is no reason, however, to impose this 
restriction to LV at this point. 

- The steps of L(T) are the same as the steps of 
T, except that there are some additional steps 
of the form “lock’ X”, “unlock X” inserted. 
These steps are well-nested in the obvious 
sense. They have a fixed interpretation: & 
XmeansX:-ifX=Othenlelse-ll&&&X 
means X: - if X - 1 then 0 g& -1. 

- The integrity constraints of L(T) correspond 
just to th8 assertion that AXtLV (X - 0). In 
other words, all one has to do in order to 
safeguard the execution of L(T) Is to manage 
locks properly. 

Thus all the cleverness of concurrency control is 

incorporated Into the locking policy L. After a locking 

policy L Is designed, all we ha<8 to do is entrust L(T) to a 

very almple scheduler, the && resoectlng bchedulet LRS, 

which can only “aoe” the locking-unlocking at8pa, tha 

integrlty constraints, and nothing else. Obvlously, LRS Is 
optimal with respect to this level of information. 

1.2. The Two-Phaao Locking Policy - An ;xample 

The moat well-known paradigm of locking policies is the 

Iwo-phase locking policy 2PL [Gwaran et al. 76) i!PL 

transforms a transaction system into a locked OM) aa 

follows: 

1. Associate a locking variable X wlth every x C 
V. (One can think that X is the lock-bit of x.) 

2. If a step T,t eccesaea x,,, then there is 8 step 

“@r& X,,” before T,P and a step “gt&& X,,” 
after T,, subject to the following rules: 

8) In no transaction la there &lock step 
after the first unlock step. I’ 

b) Lock steps are as late and unlock steps 
as early as possible subject to condition. 
a) above. Note that this does not 
unlquelly d8fin8 th8 positions of lock& 
but w8 shell disregard this point. 

For example, 2PL tianaforms the transaction of Figure 

2(a) to that of Figure 2(b). 

Original transaction Locked Transaction 

Til: x +- +.. 

Tt2: y + . . . 

Tt3: x + . . . 
T,,: z + . . 

!l&X 

Til: x G- . . . 

p&Y 

Ti,: y + . . 
TiJ: x t . . . 

lock2 

unlock X 
unlock Y 
T1,: z t . 

unlock Z 

(a) (b) 
Figure 2: Locked transaction using 2PL. 

Notice that one can talk about the Information used by a 

locking policy exactly as with schedulers (Section 3). For 

example, 2PL uses only syntactic Information. We shall 
return to discuss the question of its Optimality. What is a 

performancs measure for a locking policy L? Following our 

approach for general schedulers, we consider the sbt of 

schedules that ar8 possible outputs of LRS to schedules of 

L(T). To compare wlth ordinary schedulers for T, we 
simply remove the lock-unlock steps from these sc.hedulea. 

I.3. The Geometry of Locking 

Much insight into locking can be gained by a simple 
geometric method. Suppose that we have two transactions 
T, end T, Then any state of progress towards the 

completion of Ti and T, can bs viewed as a point In tha 

two-dimensional “progress apace”, as shown In Figure 3. 

f * 

unlock Y 
unlock X 

lock Y 
lock X 

‘& I . . 
1; 

i 
lock Y4 

lock X 
4 unlock X 

unlock Y 

Figure 3: The “progress space” for T1 and T? 
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Locking has the effect of imposing restrictions in the 

form of forbiddeh rectangular regions (blocks Bx and 8y 
Figure 3). The joint progress of T, and T2 is represented 

by a nondecreasing curve from the origin to the point F 

that avoids ail blocks. Such a curve, called a prosress 

curve, is shown is Figure 3. The simultaneous increasing 

of the progress curve in two coordinates corresponds to 

the simultaneous progress the users make ;at their 

terminals. A schedule produced by a scheduler,ewever, 

corresponds io a nondecreasing step function, reflecting 

the fact that the scheduler grants only one request at a 
time. The step functions h in Figure 3 represents the 

schedule that could result in the particular progress curve 

shown in the figure. In fact, any nondecreasing function 

lying entirely in the indicated triangular regions 

surrounding the step function h can be a progress curve 

resulting from the schedule h. Region D in Figure 3 is a 

deadlock region, in the sense that any progress curve 
trapped in the region will not be able to reach F. In fact, 

this geometric method was used for the study of deadlocks 

by-Dijkstra [Ooffman et al. 71) Here, we use it in a quite 

different way for studying several consistency related 

problems. 

First,. how good is locking as a concurrency control 

primitive? In other words, how general are the schedulers 

that can be implemented by locks? The answer is, not 

very. Note that any lock-implemented scheduler is 

memoryless in the following sense. Consider Figure 4(a). 

When the execution has reached point g, it has essentially 

“forgotten how it got there”. We cannot distinguish among 
histories leading to the same point just by locking. Thus, if 
a class of schedules Is the output set of a locking policy, It 

must be oblivious in this sense. Unfortunately, most 

sophisticated serialization principles (see, e.g., 
[Papadimitriou 781) require that the scheduler remembers 

which transaction read data first from which, and thus they 

cannot be Implemented by locks alone - although they may 
be implementable by queues ([8ernsteln et al. 781). In 

fact, the above statement has a converse that 

characterizes classes of schedules that can be the output 

sets of locking policies. In contrast, recall that, at least in 

principle, gjj classes of schedules are possible output sets 
of some scheduler. 

Secondly, let us consider consistency - in fact, 

serializability, by assuming only syntactic information, 

Assume that the locking variables are locking bits, and that 

the transactions are well-formed, In that any access of x is 

surrounded by a (IQ& X, p&& X) pair. Then it can be 
shown that a schedule h is serializable if it can be 

transformed by elementarv transformations (see Figure 

4(b)) to one of the serial schedules without, passing 

through any Of the forbidden blocks. (The two serial 

schedules are the two nondecreasing functions lying on the 
boundaries of the square, OP,F and OP2F.) Such a 

elementary transformation corresponds to ‘interchanges’ 

of the neighboring steps such as T, and Ttr In the classic 

mathematical terminology, a serializable schedule is 
homotopic to some serial schedule. So non-serializable 

schedules are schedules that separate blocks (Figure 4(c)). 

An incorrect locking policy means a policy that may leave 

the blocks disconnected. The exact condition for a correct 

locking policy is somewhat less trivial for high dimensional 

cases, which correspond to transaction systems consisting 

of more than two transactions. The two-phase locking is 

now extremely easy to explain. It simply keeps all blocks 

connected by letting them have a point u in common. 
(Figure 4(d)). The coordinates ui, u2 of u are the 

phase-shift points, at which all locks have been granted, 
and none has been released. It is easy to check that u Is 

contained by all blocks. This implies that 2PL is correct. 

T, Tz t 

(4 (b) 

I 
lock cl unlock * Tl 

(d; 

Figure 4: The geometries of locking. 

8.4. ts Two-Phaao Locking Optimal? 

By the previous discussion 2PL cannot be optimal aa I 
scheduler, since there will always be a scheduler that 

performs strictly better than any locking policy. But la 
2PL optimal as a locking Policy? The answer is no for a 

trivial reason. Suppose that there is a variable x that is 
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only accessed by just one transaction. Then a locking 
policy that two-phase locks all variables but x may be 

strictly better than 2PL, and still it is correct, This counter 

example shows just one of the ways that one can take 
advantage of global knowledge of all the transactions. 

However, 2PL has an important property, which is also a 
significant practical advantage: it is seearable, in that it 

transforms the transaction system one transaction at a 

time, without using information on other transactions. 

Is, therefore, 2PL at least optimal among separable 

locking policies? The following variant of 2PL can be 

shown to be both correct and strictly better than 2PL in 

performance. 

1. Apply 2PL to all variables 
except to a distinguished 
one, x. 

2. After the first usage of x 
insert a pair of steps j2& 
X’ - unlock X’. 

3. After the last usage of x 
insert the steps I& X’, 
&t&&k x. 

4. After the last lock step 
insert unlock X’. 

For example, 2PL’ would transform the transaction of 

Figure 2(a) into the one of Figure 5 (b). 2PL’ is correct, 

separable, and better than 2PL in performance, but is not 

the two-phase locking policy. 

2PL, however, k optimal in the following important 

6ense.l It is the best among all separable locking policies 

with syntactic information on unstructured variables. In 

other words, it is optimal among all policies that remain 

correct under arbitrary, local to the transactions, 

renaming6 of the variables. The tree-locking schema of 

[Silberschatz and Kedem 783 violates this by assuming a 
hierarchical database, and our 2PL’ by making the variable 

x distinguished. 

5.5. Conclusions about Locking 

Locking is a simple primitive for implementing 

concurrency control techniques. Unfortunately, its 
simplicity is payed for by a significant loss in performance. 
A simple geometric vehicle Is especially helpful for 

Original tranmction , Locked frroaaction 

111: x t . . . 

ti2: y t . . . 
T13: x t . . . 

T14: z + -. 

&j$X 

TIi: x + -. 
!f& X’ 

unlock X’ 

MY 

TiZ: y + . . . 

Tg x t . . . 
!I& x’ 

X unlock 
@cJZ 

Y unlock 
g&j& x’ 

T,: z c . . . 

unlock Z 

(4 (b) 
Figure 5: Locked transaction using 2PL’. 

studying locking and its limitations. Strictly better results 

should be expected by combining locks with other simple 

techniques, such aa queues [Bernstein et al. 78) 

Restricting ourselves to locking, 2PL is optimal only for 

unstructured data. More general locking policies can 

therefore be devised by taking advantage of structured 

data [Kung and Papadimitriou 79, Yannakakis 79J. 

6. Discussions 

A typical environment to which results of this paper 

apply can be described as follows: There are multiple 

users at various terminals executing transactions which 

mainly involve local computations but occasionally have to 

access or update data shared by many users. This is the 

case for example when in each transaction step the 
computation of- f&, . . . . $1 is much more time-consuming 
than the read and write on x,, (cf. Section 2). To safeguard 

the consistency of the database, some centralized 

scheduler is employed to properly sequence the execution 

of transaction steps from different users. From a user’s 

viewpoint the ‘time for carrying out a transaction step is 

divided into the following three parts: 

- Scheduling time: The execution of the 
transaction step has to be scheduled by the 

.:gcheduler. This may Involve the time spent In 
Iwaiting for the scheduler to become available 
to do its job and the time for the scheduler to 
figure out its decision. 

- Waiting time: The scheduler may decide that 
the transachon step can not be executed until 
the completion of some transaction steps from 
other users. 
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- Execution time: This is the time actually spent 
in executing the transaction step. 

we are interested in choosing a scheduler that will 
minimize the sum of these three quantities. We assume 
that the execution time is a constant, since it ls 

independent of the the scheduler. The waiting time is 

directly related,tc the fixpoint set P of the scheduler for 
the following reasons: ‘1 

.:: 
- The probability that none of the transact& 

steps have to wait is lPjd4, if all request 
histories are assumed to be equally likely. 

- The richer P is the easier (and hence less 
waiting required) to rearrange a history 
originally not in P into one in P. 

Thus, in the paper we have used P to measure the 

performance of the scheduler. The scheduling time 

reflects the complexity of the scheduler. Scheduling times 

for different users can not be overlapped, since there is 

only one central scheduler for all users. Thus, the 

scheduling time of a transaction step is also affected by 

the number of users who are competing for the scheduler. 

In general it it a difficult task to characterize the 

complexity of a scheduler. This paper has addressed it 

only in the information-theoretic point of view. Results of. 

this paper nevertheless can have practical significance as 

well, if the schedulers in question have relatively small 

scheduling times as compared with waiting and execution 

times. This is fortunately often the case in practice, since 

practical schedulers ill tend to be simple. 

Our assumption that all transactions are straight-line 

programs is not essential, and was made only because it 

tends to simplify somewhat the notation. It also simplifies 

concepts like that of a legal schedule, which would have 
been data-dependent otherwise. We can easily extend our 

results in this direction. 

A more important issue is the assumption that underlies 

our model that all information available to the scheduler is 

known to it at the beginning’ of the session with the 

transactions. This includes our other assumption that all 
transactions are fixed beforehand. In practice, however, 

one expects the scheduler to acquire this knowledge 
progressively and interactively, by questioning the users 

and sollcitlng declarations. This issue of dynamic 

information (as opposed to our &t&model) is admittedly a 
very important one, and must be dealt with theoretically in 
future work in concurrency control. Our results of Section 

4 are ln effect negative results, showing the impossibiiity 

of the existence of schedulers better than given ones, SO 

their validity does not depend on this static information 

assumption. What remains to be seen, however, is whether 
our static information model prevents us from proving 

similar optimality results for certain other levels of 

Information. We shall next see that this is indeed the case. 

We have not examined in any-detail so far schedulers 

operating at a level of information that includes the 

integrity constraints. Examples of such schedulers do 
exist. One example is the concurrency control of binary 

search programs proposed by [Kung and Lehman 791 

Their programs allow constructs of the form “if no other 

program has modified x since the beginning of the present 

program then x + a else x + b”. It is not hard to argue 

that this construct is inherently non-serializable, This 

construct, however, can be used safely if it is known that 

the integrity constraints do not involve x at all. 

A different way to use the integrity constraints (and 

some further semantic information as well) is through 

proofs of correctness. Correctness proofs must rely on 

and,more importantly, must also reflect the meanings of the 

transation and integrity constraints. Therefore, a natural 

way to capture semantic information is to examine proofs. 

Such an approach has been proposed by L Lamport 

[Lamport 761 We outline it in the following. Consider, 

proofs using assertions [Floyd 673. A transaction is 

1 

represented as a flowchart of operations which manipulate 

the global variables. Executing the transaction is viewed 

as moving a token on the flowchart from the input arc to 

an output arc. An assertion, defined in terms of the 

variables, is attached to each arc of the flowchart; in 

particular, the assertions on the input and any output arcs 

are the integrity constraints. A correct proof of a serial 

transaction amounts to demonstrating that throughout the 

execution of the transaction the token will always be on an 
arc whose assertion is true at that time, and will eventually 

reach an output arc. The consistency of a database under 
the concurrent execution of several correct serial 

transactions can be insured by the following scheduling 

policy: 

The request to execute one step in a 
transaction is granted only if the execution will 
not invalidate any of the assertions attached to 
those arcs where the tokens of other 
transactions reside at that time. 

It is possible that at some time none of the transactions 

can be granted to execute their next steps. The 

“deadlock” situation can be resolved, for example, by 
backing up some transactions. With this approach it is 
possible for a scheduler to generate correct schedules 

beyond serial, serializable, or weakly serializable 

schedulers. Using the methodology developed in this 

paper, we can establish the optimality of the above 

scheduler in a dymanic information model. We plan to 

pursue thls in a later verston of this paper. 
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