An Optimality Theory of Concurrency Control for Databases

H. T. Kung

Department of Computer Science
Carnegie~Meilon University
Pittsburgh, Pennsylvania 15213

C. H. Papadimitriou
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetis 02139

1. Introduction

In many database applications it is desirable that the
database system be time-shared among multiple users who
access the database in an interactive way. In such a
system the arriving requests for the execution of steps in
different from different

interleaved in any order. Assume that each transaction is

transactions users may by
correct in the sense that it preserves the consistency of
the database when executed alone. The execution of many
correct transactions in an interleaved order may, however,
bring a consistent database state into an inconsistent one
(see, e.g, [Eswaran et al. 76]). It is the task of the
concurrency conirol mechanism of the database system,

which is also called scheduler in this paper, to safeguard
the database consistency by properly granting or rejecting
the execution of arriving requests. A rejected request is
scheduled for execution after some requests which arrive
That is, the
concurrency control enforces database consistency by

tafer have been scheduled for execution.

delaying the execution of some requests when this is
necessary.

Although system consistency is the primary objective of
concurrency control, there are certain other important
considerations that must be taken into account in its
design. For instance, one sure way to secure consistency
would be to delay all other user requests until the first

This research in supported in part by the National Science Foundation
under Grants MCS 75.222-55, MCS 77-01193, MCS 77-05314, the Office
of Naval Research under Contract NO0O14-76-C-0370, NR 044-422, and »
Miller Feliowship.

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is
given that copying is by permission of the Associa-
tion for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific
permission.
© 1979 ACM 0-89791-001-X/79/0500-0116 $00.75

user logs out, then let the second user go, and so on.
Since each individual transaction is correct, the execution
in this order will preserve consistency.
Obviously, this straight-forward mechanism has a major

of requests

deficiency: it may cause unnecessary delays for all but one
user, and thus degrade the throughput and response time
of the system. This schedulér, however, does have one
important advantage. Namely, it requires no information
about the transactions except for a user identification for
each reduest. We see therefore that it is necessary to

the performance of a scheduler and the
information that it uses, in addition to its correctness.

consider

Performance. We measure the performance of a
scheduler by the set of request sequences which the
scheduler can pass without any delay. We call this set the
fixpoint set of the scheduler. The idea is that the richer
this set is, the more likely that no delays will be imposed
by the scheduler to the user requests. In fact, if the
fixpoint set of a scheduler strictly includes that of another
scheduler, then it can be argued that the former scheduler
performs strictly better than the latter one as far as
average delays are concerned. Further justification of this
measure, as well as a discussion of its limitations appears
in Section 6.

Information. The information used by a scheduler is the
minimum knowledge about the database the
transactions that it requires in order to function correctly.
Typical information that would be useful to the scheduler
is syntactic information about the transactions (ie., a
flowchart with the names of the variables accessed and
updated.at each step); or semantic information about the
meaning-t'i;of the data and the operations performed; or the
integrity constraints, the consistency requirements that the
data must satisfy. It should be intuitively obvious that the

and

~ more information the scheduler has, the better job it can

116

do in scheduling the transactions. There are, however,

sound reasons why it is sometimes advantageous to “keep

efficiency: we would like our scheduler to be reasonably
efficient in reaching its decision about each arriving
request, and excessive information may be distracting.
These issues are examined in [Papadimitriou 78] Another
reason is that some information may not be available to
the scheduler. For example, the integrity constraints may
only be implicit.
given in some powerful enough logical language, then the
scheduler may even be faced with undecidable q:%oblems.

If the semantics of the aperations are

Finally, it may be appropriate to leave the scheduler in
some imperfect level of information because of other
considerations, such as recovery {Gray 78]

There is a growing body of literature on various
solutions to the concurrency control problem. This paper

gives a uniform framework for evaluating these solutions,

and, in many cases, for establishing their optimality. We
point out a trade-off between the performance of a
scheduler and the information that it uses. We show that
most of the existing work on concurrency control is
concerned with specific points this
trade-off. For example, our framework allows us to
formally show that the popular approach of serialization
(see, e.g., [Bernstein et al. 78], [Eswaran et al. 76],
[Papadimitriou et al. 77], [Papadimitriou 78}, [Stearns et al.
76}, [Silberschatz and Kedem 78)) is the best one can hope
for when only syntactic information is available. If the
scheduler then
non-serializable approaches such as those proposed by
[Kung and Lehman 79] and [Lamport 76] are possible.

of fundamental

also has some semantic information,

In Section 2 we introduce our model of transaction
systems, carefully distinguishing among the syntactic,
semantic, and integrity constraint components. In Section
3 we define schedulers, and develop the basic tools for
studying the information-performance trade-off. In
Section 4 we show several examples of schedulers, most of
them already existing in the literature, that can be proven
optimal with respect to the information that they use.

In Section 5 we examine the concept of locking from a
similar viewpoint. We show that the locking approach
amounts to first transforming a transaction system by a
locking policy, and then entrusting its concurrency control
to a very simplistic scheduler, the lock manager. Ws
examine the question of optimality of the two-phase
locking policy of [Eswaran et al. 76), and we outline a
geometric methodology that very
understanding locking. A full account of our investigations
in locking appears in a forthcoming paper [Kung and
Papadimitriou 79] Finally, in Section 6 we discuss our
results, the limitations of our model, as well as directions
of future work.

is useful for

117

2. Transaction Systems: Definition

By a transaction system we mean intuitively a database
(bssically data and integrity constraints) together with a
set of prespecified transaction programs. Through these
fixed transaction programs multiple users can access the
database from different terminals in an interactive way. In
the following we give both syntactic and semantic
definitions of a transaction system. The definitions will be
illustrated by an example in the end of the section.

Syntax

A transaction system T is a finite set of transactions,
{Ty o T,}, where each transaction T, is a finite sequence.

of transaction steps, Ty, .., T, The n-tuple of integers
(My, . M) Is called the format of the transaction system.
For simplicity, we assume that all transaction systems
under consideration have the same, fixed format.

The transactions in a transaction system operate on a
set of variable names. The variables are abstrections of
data entities, whose granularity is not important for our
development. The variables can represent bits, files or
records, as long as they are individually accessible. The
set of variable names is denoted by V. Besides the
(global) variables in V, each transaction T, is associated

with local variables, t;1, ..., 'imi; A transaction step Tu inT,
can be thought of as the indivisible execution of the
following two instructions: '

tu Xip.

Xy ¢ filtyy o b))y
where flj Is a j-place function symbol. That is to say, at
step T, the current value of some global variable x; € Vis
stored at a local place t" and then X is transformed, based
on knowledge available to the transaction T, at this time,
namely, the values of all "declared” local variables t,, .., t,r
In keeping this transformation as general as possible, we
do not assign specific meaning to f.j at this point; f,‘ may be
open to arbitrary interpretations. For example, it could be
the identity function on l‘j, in which case T,j is simply &
read step. Similarly, if f‘j is independent of tU’ then Tu isa
write step. In this case, 'll Xy need not be performed in
an actual implementation.

Thus, our transactions are straight-line programs. In
this simplified model of computation, results of this paper
can be made easy to understand. In Section 6, we shall
discuss how the results can be extended to transactions
defined by more general programs.

Semantics

Associated with each variable name v ¢ V we have an
enumerable set D{v), the domain of v, consisting of all
possible values that the variable v can assume -- typically
the integers, the set {0,1}, or finite strings. A local
variable t, has always the same domaln as X

A state of a transaction system T is a triple (J, L, G),
where
- J Is an n-tuple of integers (j;, . . .j,) with j;,
(1 < j; £ m+l), specifying the next step of
transaction T, The j‘-’s are thus program

counters. If }; = m;+1, then transaction T has
terminated.

~L is an element in I Iy D{x;:))
representing the values oflglfndecﬁ]';,d lo::jal
variables.

- G is an element in I1,,yD(v) representing the
current values of all global variables v € V.
The integrify constrainls of a transaction system T
correspond to a subset IC of the product Il ,\D(v). A
state (J, L, G) of T is sald to be consistent if G belongs to
IC.

Finally, the semantics of T; associated with the function
symbol f,, at each step T, is & function ij T 1 <keiDixik) -
D(x”) which is the interpretation of 'ij' The execution of a
transaction step maps one state of the transaction system
into another one. More precisely, if transaction step T” is
eligible for execution at state (J, L, G), that is, if jj sm; and
Jj = J, then its execution modifies the three components of
the state as follows: :

e+,
Qi- o Xi',
xij + ¢lj(tll’ .. "'ij)'
This view can be exfanded to sequences of transaction
steps in the obvious way. A sequence of transaction steps
is said to be correct if a serial execution of the steps in
the sequence will map any consistent state of the
transaction system into a consistent state.

Qur basic assumption throughout the paper [s that ali
tr_'gngactigng in a transaction system are correct,

Enmpﬁ

Consider a transaction system consisting of three
transactions Ty T and Tas that access two banking
accounts A and B in the following way:

=Ty transfers $100 from A to B if A has

enough funds and the balance of B is below
$100,

118

- To withdraws $50 from B and increments a
counter C, if B has enough funds.

- T Is an auditing transaction that computes
the sum S of A and B, and sets the counter C

back to 0.
Syntax. The set of global variable names |Is

V={ABG5C} The x”’s are as follows:

13 = A xgp =B xyy = A
Xz = B, Xy = C,
X3 = A X3 = B, %33 = 5, x5, =C
Thus the format of the transaction system is (3, 2, 4).

Semantics. For all v € V, D{v) is the set of natural
numbers. Typical states would be as follows:

-{J, L, G) = ((1, 1, 1), %, (150, 50, 200, 0)). This
is a possible state before any of the
transactions has started execution. We have
A = 8150, B = 850, S = $200, C = 0, and don’t
care about the values of focal variables.

-(J, L, G) = ((2, 2, 9), (150; 50; 150, 0, 200),
(150, 0, 150, 0)). In this state, A has not been
decreased but B has, The new S has been
computed but C has not. ’

As for the operations performed by each step:

@y =ty

Py = if 1y, 2 100 and 1y, < 100 then t,, + 100
else t;,

13 = If t,; 2 100 and t,, < 100 then t,, - 100
else ty,

gy = If ty 2 50 then t,, - 50 else t,,
Py = If tyy 2 50 then ty, + 1 else t,,

¥y =ty

P32 =ty

P33 =ty + 1y

P34 =0
The Integrity constraints may very well be the set of
states for which A20,B20,and A+ B =S - 50C.

3. An Information-Based Model for Schedulers

3.1. Schedules

A s‘@edule (a log or a history) of a transaction system T
is @ permutation # of the set of steps in T such that

m(T,) < m(Ty) for 1 <] <k S m, A schedule corresponds to
a possible stream of arriving execution requests for steps
in T, or the order in which these requests are granted for
execution. The set of all schedules of T is denoted by
H(T). Since this set depends only on the format of T and

the format is assumed fixed, we shall write H for KT). A
schedule is said to be correct if its execution preserves
the consistency of the database. The set of all correct
schedules of T is denoted by C(T). The set C(T) is always
nonempty, since it at least contains, by our basic
assumption, all serial schedules, le, all permutations #
such that (T, .,;) = m(T) + 1 for j < m-1.

3.2. Schedulers: Performance vs. Information n

The primary goal of a scheduler or concurrency controf
is to transform a log of execution requests into a correct
schedule, whose execution will preserve database
consistency. Formally, a scheduler for a transaction
system T is a mapping S from H to C(T). A scheduler S is
said to be correct if all schedules produced by S are
correct, i.e., if S(H) c C(T). In this paper, schedulers under
consideration are always assumed to be correct. As
mentioned in Section 1, we measure the performance of a
scheduler S by its fixpoint set P, which is defined to be
the largest subset of H satisfying the following property:

S(h) = h for all h ¢ P,

Hence, P must be a subset of C(T). For sequences of
execution requests in P, the scheduler grants the requests
in the same order as they arrive. Thus, the larger P is the
less chance that the scheduler will have to ask a user to
wait for other users. Further justifications of this measure
will be given in Section 6.

While considering the performance of a scheduler, we
must also look at its cost. A high performance scheduler
that has a large cost is not necessarily useful. The cost of
a scheduler refers to either the information or the time
that the scheduler requires to make its decision. This
g_a_p_gi studies the Information component of the cost of
schedulers. We derive upper bounds on the performance
of schedulers based solely on the information they use,
and we do not address the-problem of how long it takes
for schedulers to reich their decisions. The latter problem
has been examined in great detail in [Papadimitriou 78}
where sufficient and necessary conditions for the
existence of efficient schedulers with prescribed fixpoint
sets are given.

Given that the fixpoint set of any scheduler must always
be a subset of C(T), ideally we wish to have a scheduler
that can recognize all correct schedules In C({T) so as to
maximize performance. For several reasons that we
mentioned in Section 1, however, this is not always
possible, nor desirable. The maximum possible information
that a scheduler can have is, of course, the complete

syntactic and semantic information about the transaction
system in question. The minimum information is the format

(my, .., m,). The more information available to the
scheduler, the “"better" scheduling results may be
expected. We would like to capture this in a formal
theorem (Theorem 1 below). What is, therefore, a formal
model for the information available to a scheduler S?

3.3. A Formal Theory

A level of information avallable to a scheduler about a
transaction system T is a set I of transaction systems

(T, v, 7", ..} that contains T. Intuitively, if S is kept at this
fevel of ir{formatiOn, it knows that the transaction system it
handles is among the transaction systems in 1, but does not
know exactly which. For example, the set | could be the
set of all transaction systems that have the same syntax,

" This level of information corresponds to the case that a

119

scheduler has complete syntactic information, but no other
information,

Aiternatively, we could define I as a projection that
maps any transaction system T to an object KT)
Intuitively, KT) is the information extracted from T by the
projection operator [; for example, I(T) could be the syntax
of T for all T. The effect would be that T cannot be
distinguished from the transaction systems T’ that have the

same image I(T); in the notation of the previous paragraph,

which we are going to follow henceforth,
Pe (T KT) = KT}
Theorem |: For any scheduler using

information 1, its fixpoint set P must satisfy:

pSnT'elc(T')-

The proof of this theorem uses a very general
adversary argument, instances ot which we shall see many
times in the sequence. The proof goes as follows: If there
is & schedule h ¢ P and a transaction system T' € I such
that S when fed by h is not correct for T ie,

S(h) = h ¢ C(T"), then an adversary could “fool” the
scheduter S by choosing T for S to handle, and giving h as

the stream of execution requests. The resulting state after
the execution can be inconsistent, since S(h) ¢ C(T"). Thus,

the scheduler Is incorrect.

As a corollary of Theorem 1, the maximum-performance
scheduler that is correct using information 1 is the one that

has its fixpoint set P = [l C(T'). We call this scheduler
the oplimal scheduler for the level of information L
(Notice that in practice there may be insurmountable
difficulties - such as the negative complexity results in
{Papadimitriou 78] - in realizing the optimal scheduler for
a given level of Information.) The concept of information
Introduced here partially orders scheduiers with respect to

their sophistication: we say that S is more sophisticated
than ' it S operates at a level of information I that is
included In the level of information I' of §', ie,, if 1c 1. On
the other hand, schedulers are also partially ordered with
respect to their performance: we say that S performs
better than S' if P’ 2 P, where P’ and P are fixpoint sets of
$ and S’ respectively. Then the mapping trom any level of
information I to the fixpoint set of the optimal scheduler
for 1,
- P (= Ny ST,

is a natural isomorphism between these two partially
ordered sets. This captures the fundamental irade-off
between scheduler information and pertormance: if 1c 1
then P o P’ for the optimal schedulers.

In the next section, we present several examples of
schedulers that are optimal for different levels of
information.

4, Optlimal Schedulers

4.1. Optimal Schedulers for Extrema of Information

Maximum Information

This is the case when complete information on the
transaction system T in question .is available to the
scheduler. The information level 1 in this case is a
singleton set, 1= {T}. We can therefore define the
‘scheduler S, in principle at least, such that P = C(T), This
is the optimal scheduler for the uitimate level of
information.

Minimum Information

If we only know the format of T, then we have the
poorest possible level of information, What is the best
possible scheduler In this case? Consider the gerial

scheduler S which Is defined to be a scheduler satisfying
the following property:

P = {all serial schedules in H} and S(H) = P.
By our basic assumption that each transaction is correct, S
is correct.

Theorem 2: The serisl scheduler S is optimal

smong all schedulers using the minimum
information.
Proof: Suppose that S is not optimal. Then there must

exist a non-serial schedule in C(T) in which some steps T
Tji' Tl,kﬂ' in T are executed in this order. Note that
because of the minimum information assumption, I may
contain transaction systems with any integrity constraints
and interpretations for steps. We assume that the
integrity constraints for some transaction system T' in I

correspond to "x=0", and that the interpretations of
function symbols are such that T; is

{Tys x « x4, T,,Hl: x « x-1} and T} is {Tu’ x «2x}. We
see that T, and TJ are correct, but the sequence (T, Tﬂ,
Ti, k+1} is not correct for it may transform a consistent
state, x=0, into an inconsistent state, x=1. Thus, the
schedule is not in C(T'). This is a contradiction. Hence, for
the minimum information case, the only correct schedules
that a scheduler can produce are serial schedules, i.e, the
serial scheduler defined above Is optimal. D

4.2. Optimal Schedulers for Complete Syntactic Information

Suppose now that all syntactic information is available;
that is, the information level has the property that 1 is the

© set of all transaction systems with the same syntax. As in

a similar situation in the theory of program schemata, one
can supplement this syntax with canonical semantics called
Herbrand semantics (see [Manna 74] for a detailed
exposition). For all v ¢ V, the domain D(v) is the set of all
strings from the alphabet £ = Vu {fij: =], .
m;} plus the symbols)", ", %% If ay, ..., a; are elements
of D{v), then "i) (ag, ..o a)), the interpretation of (“, is the
string fij (ag, - . . aj). In other words, the Herbrand
interpretation captures all the history of the values of all
global variables. We say that a schedule h is serializable if
its execution results are the same as the execution results
of some serial schedule under the Herbrand semantics. By
SR(T) we denote the set of all serializable histories of T.
A serialization scheduler is defined to be a scheduler S
satisfying the following property:
P = SR(T) and S(H) = P,

Co =l L,

for any T,

‘fheorem 3: The serialization scheduler Is
correct, and is optimal among all schedulers using
complete syntactic information,

Proof: To prove that SR(T") ¢ C(T’) for any T' ¢ 1, we use

120

Herbrand’s Theorem [Manna 74), which essentially states

that if two sequences of steps are equivaient under the ..

Herbrand interpretation, then they are equivalent under
any interpretation. Thus if h ¢ SR(T') then the execution
results of h are the same as those of some serial schedule
for T'. This Implies that for any h ¢ SR(T'), the execution
of h preserves the consistency of T’

To prove optimality, take a history h # SR(T), we shall
define a transaction system T’ € I such that h ¢ C(T"). The
tsemantics of T are the Herbrand interpretation. t;pw. for
the integrity constraints, we define IC as follows: iAssume
that T is consistent initially. Let (Vg s v,) be the initial
values of global variables in v, where k = M. If ag . 8
are in DX(v), we say that (a, ..,) € IC iff there exists a
sequence S (possibly empty) of that
concatenation of serial executions of transactions such that
the initial values (v, .., v,) are transformed by S to (a;, ..

steps is a

8,). By this definition, all transactions are individually
correct, and our basic assumption holds. Now, it is easy to
ses that, if h is any history, not in SR(T), then it transforms
the initial values (v,, ...,.vk) to a set of values not in IC.

Hence, h ¢ C(T'). OO

The theorem shows that even if complete syntactic
information of a transaction system T is available to s
scheduler, SR(T) is the maximum possible set of correct
After all
syntactic information is the information one can quite
easily extract from a transaction 'system, by having the
users declare the files that they intend to open, say. It is
therefore not at alf surprising that most approaches to
concurrency control have serialization as their goal
[Eswaran et al. 76, Stearns et al. 76, Silberschatz and
Kedem 78, Bernstein et al. 78, Papadimitriou 78] In
[Papadimitriou 78], it is shown that for some transaction
systems of restricted syntax, although serialization is
algorithmicaily intractable, it can nevertheless be
approximated by more restrictive schedulers (see also
" [Papadimitriou et al. 77)).

schedules the scheduler can hope to produce.

4.3. Optimal Schedules for Complete Semantic Information but
Integrity Constraints

Consider the transaction system of Fig. 1.
T

Typ: xex+l
Ty x & 2%x

T2
Top: x & x4l
Figure 1: A transaction system.

The history h = (Ty1, T p T12) is not serializable since
the Herbrand values for x of the two serial historles are

" achievable correct schedules.

121

fro (F1y (F21 (D)) and 5 (F15 (f); (X)), whereas that of
his fis (faq (f11 (). But with the given interpretations
of the f”’s, h is seen to produce the same state as the
serial history (T4, Tyt Tyo) Hence, our knowledge of
the interpretations allows us to expand the set of
It is not hard to sée,
however, that the gains are delimited by a generalized

notion of serialization, defined as follows. A schedule h is
sald to be weakly serializable, if starting from any state E
the execution of the schedule will end with a state which is
achievable by some concatenation of transaction S,
possibly with repetitions and omissions of fransactions,
also starting from state E. Denote by WSR(T) the set of ali
weakly serializable schedules of T. It is clear that SR(T) ¢
WSR(T). The weak serialization scheduleris defined to be a
scheduler S satistying the property:
P = WSR(T) and S(H) = P

for any T.

Theorem A: The weak serialization scheduleris
optimal among all schedulars using all information
but the integrity constraints.

The proof is quite simifar to the proof of Theorem 3, and
is omitted.

5. Some Comments on Locking

Almost all concurrency control methods that appear in
the literature, with the notable exception of the SDD-1
system ([Bernstein et al. 78]), are implemented by locking,
that is, by mechanisms ensuring exclusive access to certain
resources, such as data. Locking-based concurrency
certainly of
schedulers, and hence our previous formalism applies to

them. As we shall see, they are in fact very restricted

control mechanisms are special cases

.special cases of schedulers, and possess an interesting

mathematical structure of their own that is susceptible to a
theoretical study parallel to the one developed in the
previous sections. A full account of our results on locking
will appear elsewhere [Kung and Papadimitriou 791 We
shall allude here to only the main important ideas. As s
result, this section is quite dense.

5.1. Locking Policies

A locking-based concurrency control
implemented via a locking policy. A locking policy, L, takes
an ordinary transaction system T, as defined in Section 2,
ahd maps it into another transaction system, L(T), cailled
the locked transaction system. Locked transaction systems
have the following characteristics:

mechanism s

- Besides the set of variable names V of T, L(T)
has also a set of new variable names LV, the
locking variables. If X ¢ LV, then the domain
of X, D(X), contains only three elements: O
(for unlocked), 1 (for Jocked) and -1 (for
error). In usual implementations, there is an
isomorphism between LV and V, and a locking
variable X ¢ LV can always be thought of as
the lock-bit of some ordinary variable x € V,
There is no reason, however, to impose this
restriction to LV at this point.

- The steps of L(T) are the same as the steps of
T, except that there are some additional steps
of the form “lock™ X", "unlock X" inserted,
These steps are well-nested in the obvious
sense. They have a fixed interpretation: lock
X means X: = if X = O then 1 else -1; unlock X
means X: = {f X = | then O else -1.

The integrity constraints of L(T) correspond
just to the assertion that Ayqy (X =0). In
other words, all one has to do in order to
safeguard the execution of L(T) is to manage
locks properly.

Thus all the cleverness of concurrency control is
incorporated into the locking policy L. After a jocking
policy L is designed, all we have to do is entrust L(T) to a
very simple scheduler, the lock respecting scheduler LRS,
which can only "see” the locking-unlocking steps, the
integrity constraints, and nothing else. Obviously, LRS is
optimal with respect to this level of information.

8.2. The Two-Phase Locking Policy - An knmplo

The most well-known paradigm of locking policies is the
two-phase locking policy 2PL [Eswaran et al. 76] 2PL
transforms a transaction system into a locked one as
follows:

1. Associate a locking variable X with every x €
V. (One can think that X is the lock-bit of x.)
2.1f a step T, sccesses x,, then there is a step

. "ogk Xu" before T,, and a step "unlock Xu"
after T, subject to the following rules:

a) In no transaction Is there & lock step
after the first unlock step,'

b) Lock steps are as late and unlock steps
as early as possible subject to condition.
a) above. Note that this does not
uniquelly define the positions of locks,
but we shall disregard this point.

For example, 2PL transforms the transaction of Figure
2(a) to that of Figure 2(b).

Original Transaction Locked Transaction

Tyt X & . lock X
LITHE X
Tyt ¥ & o lock Y
Tty & o
Tyg X & o Tigr X & o
Tig 2z ’ lock 2
unlock X
unlock Y
T2 €
unlock Z
(a) (b)

Figure 2: Locked transaction using 2PL.

- Notice that one can talk about the information used by a
locking policy exactly as with schedulers (Section 3). For
example, 2PL uses only syntactic information. We shall
return to discuss the question of its optimality. What is a
performance measure for a locking policy L? Following our
approach for general schedulers, we consider the set of
schedules that are possible outputs of LRS to schedules of
L(T). To compare with ordinary schedulers for T, we
simply remove the lock-unlock steps from these schedules.

8.3. The Geometry of Locking

Much insight into locking can be gained by a simple
geometric method. Suppose that we have two transactions

Ty end T, Then any state of progress towards the
completion of T, and T, can be viewed as a point in the

two-dimen;lom! "progress space”, as shown in Figure 3.

Ta/\- ------------- ———— F

progress

- - — . - . -

uniock Y curve
unlock X . ;B
lock ¥ 7
lock X : Y
1 [}
1 t ot
] [}
- 2 11 >| T
g lock Y4 1 1 unlock X
lock X unlock Y

Figure 3t The "progress space” for Ty and To.

Locking has the effect of imposing restrictions in the
form of forbidden rectangular regions (blocks B, and By
Figure 3). The joint progress of T, and T, is represented
by a nondecreasing curve from the origin to the point F
that avoids all blocks. Such a curve, called a progress
curve, is shown is Figure 3. The simultaneous increasing
of the progress curve in two coordinates corresponds to
the simuitaneous progress the users make -at their
terminals. A schedule produced by a scheduler,f;owever.
corresponds 'to a nondecreasing step function, réﬂecting
the fact that the scheduler grants only one request at a
time. The step functions h in Figure 3 represents the
schedule that could result in the particular progress curve
showh in the figure. In fact, any nondecreasing function
lying entirely in the indicated triangular regions
surrounding the step function h can be a progress curve
resulting from the schedule h. Region D in Figure 3 is a
deadlock region, in the sense that any progress curve
trapped in the region will not be able to reach F. In fact,
this geometric method was used for the study of deadlocks
by Dijkstra [Coffman et al. 71] Here, we use it in a quite
different way for studying several consistency related
problems,

First, how good is locking as a concurrency control
primitive? In other words, how general are the schedulers
that can be implemented by locks? The answer is, not
very. Note that any lock-implemented scheduler is
memoryless in the following sense. Consider Figure 4(a).
When the execution has reached point g, it has essentially
"forgotten how it got there”. We cannot distinguish among
histories leading to the same point just by locking. Thus, if
a class of schedules is the output set of a locking policy, it
must be oblivious in this sense. Unfortunately, most
sophisticated (see, eg.,
[Papadimitriou 78]) require that the scheduler remembers
which transaction read data first from which, and thus they
cannot be implemented by locks alone - although they may
be implementable by queues ([Bernstein et al. 78)). In
fact, the above statement has a converse that
characterizes classes of schedules that can be the output

serialization principles

sets of locking policies. In contrast, recall that, at least in
principle, all classes of schedules are possible autput sets
of some scheduler.

Secondly, let us consider consistency - in fact,
serlalizability, by assuming only syntactic information.
Assume that the locking variables are locking bits, and that
the transactions are well-forméd, in that any access of x is
surrounded by a (lock X, unlock X) pair. Then it can be
shown that a schedule h is serializable if it can be

123

transformed by elementary transformations (ses Figure
4(b)) to one of the serial schedules without passing
through any of the forbidden blocks. (The twa serial
schedules are the two nondecreasing functions lying on the
boundaries of the square, OPF and OP,F) Such a
elementary transformation corresponds to “interchanges"
of the neighboring steps such as Ty and sz. In the classic
mathematical terminology, a serializable schedule is
homotopic to some serial schedule. So non-serializable
schedules are schedules that separate blocks (Figure 4(c)).
An incorrect locking policy means a policy that may leave
the blocks disconnected. The exact condition for a correct
locking policy is somewhat less trivial for high dimensional
cases, which correspond to transaction systems consisting
of more than two transactions. The two-phase locking is
now extremely easy to explain. It simply keeps all blocks
connected by letting them have a point u in common.
(Figure 4(d)). The coordinates u, u, of u are the
phase-shift points, at which all locks have been granted,
and none has been released. It is easy to check that u is
contained by all blocks. This implies that 2PL is correct.

- -

[3
b
——
N
N

lock

!
1
{c) (d)

Figure 4: The geometries of locking.

8.4, Is Two~Phase Locking Optimal?

By the previous discussion 2PL cannot be optimol s
scheduler, since there will always be @ scheduler that
performs strictly better than any locking policy. But is
2PL optimal as a locking policy? The answer is no for a
trivial reason. Suppose that there is a variable x that is

only accessed by just one transaction. Then a locking

policy that two-phase locks all variables but x may be
strictly better than 2PL, and still it Is correct, This counter
example shows just one of the ways that one can take
advantagé of global knowledge of all the transactions.
However, 2PL has an important property, which is also a
significant practical advantage: it is separable, in that it
transforms the transaction system one transaction at a
time, without using information on other transactions.

Is, therefore, 2PL a! least optimal among ssparable
locking policies? The following variant of 2PL can be
shown to be both correct and strictly better than 2PL in

performance.
2pL";

1. Apply 2PL to all variables
except to a distinguished
one, x.

2. After the first usage of x
insert a pair of steps Jock

X' ~ unlock X',

3. After the last usage of x
insert the steps lock X',
unlock X.

4, After the last lock step
insert unlock X'.

For example, 2PL' would transform the transaction of
Figure 2(a) into the one of Figure 5 (b). 2PL’ is correct,
separable, and better than 2PL in performance, but is not
the two-phase focking policy.

2PL, however, is optimal in the following important
sense.l 1t is the best among all separable locking policies
with syntactic information on unstructured variables. In
other words, it is optimal among all policies that remain
correct under arbitrary, local to the transactions,
renamings of the variables, The tree-locking scheme of
[Silberschatz and Kedem 78] violates this by assuming a
hierarchical database, and our 2PL' by making tho varisble
x distinguished.

8.5, Conciusions about Lbcking)

Locking is a simple primitive for implementing
concurrency control techniques. Unfortunately, its
simplicity is payed for by a significant loss in performance.
A simple geometric vehicle Is especially helpful for

Linin remark is due 1o Minelis Yannakekis [Yennakakis 79)

124

Original Transaction Locked Transection

LITER S lock X -
Tu: X & ..
lock X’
unlock X'
lock Y
Tty € o

4 Tigt X &
Lg_g_k,x' .
unlock X
lock Z
unlock Y
unlock X’
Tize.

Tty o
Tygt x & ...
Tz & o

unioek Z

(a) (b) .
Figure 5: Locked transaction using 2PL",

studying locking and its limitations. Strictly better results
should be expected by combining locks with other simple
techniques, such as queues [Bernstein et al 78]
Restricting ourselves to locking, 2PL is optimal only for
unstructured data. More general locking policies can
therefore be devised by taking advantage of structured
data [Kung and Papadimitriou 79, Yannakakis 79}

6. Discussions

A typical environment to which results of this paper
apply can be described as follows: There are multiple
users at various terminals executing transactions which
mainly involve local computations but occasionally have to
daccess or update data shared by many users., This is the
case for example when in each transaction step the

computation of fu(tu, vy tu) is much more time-consuming

than the read and write on Xy (cf. Section 2). To safeguard
the database, some centralized
scheduler is employed to properly sequence the execution
of transaction steps from different users. From s user’s
viewpoint the time for carrying out a transaction step Is
divided into the following three parts:

the consistency of

- Scheduling time: The execution of the
_transaction step has to be scheduled by the
.Scheduler. This may involve the time spent in
‘waiting for the scheduler to become available
to do its job and the time for the scheduler to
tigure out its decision,

- Waiting time: The scheduler may decide that
the transaction step can not be executed untit
the completion of some transaction steps from
other users,

- Execution time: This is the time actually spent
in executing the transaction step.

we are interested in choosing a scheduler that will
minimize the sum of these three quantities.
that the execution time is a constant, since it is
independent of the the scheduler. The waiting time is
directly related tc the fixpoint set P of the scheduler for
the following reasons:

We assume

- The probability that none of the transacti:h

steps have to wait is |Pl/JH, if all request
histories are assumed to be equally likely.

- The richer P is the easier .(and hence less
waiting required) to rearrange a history

originally not in P into one in P,

Thus, in the paper we have used P to measure the
performance of the scheduler. The scheduling time
reflects the complexity of the scheduler. Scheduling times
for different users can not be overlapped, since there Is
only one central scheduler for all users. Thus, the
scheduling time of a transaction step is also affected by
the number of users who are competing for the scheduler.
In general it it a difficult task to characterize the
complexity of a scheduler. This paper has addressed it
only in the information-theoretic point of view. Results of
this paper nevertheless can have practical significance as
well, if the schedulers in question have relatively small
scheduling times as compared with waiting and execution
times. This is fortunately often the case in practice, since
practical schedulers all tend to be simple.

Our assumption that all transactions are straight-line
programs is not essential, and was made only because it
tends to simplify somewhat the notation. It also simplifies
concepts like that of a legal schedule, which would have
been data-dependent otherwise, We can easily extend our
results in this direction.

A more important issue is the assumption that underlies
our model that all information available to the scheduler is
known to it at the beglnnlng' of the session with the
transactions. This includes our other assumption that all
transactions are fixed beforehand.
one expects the scheduler to acquire this knowledge
progressively and interactively, by questioning the users
and soliciting declarations. This issue of dynamic
information (as opposed to our static model) is admittedly a
very important one, and must be dealt with theoretically in
future work in concurrency control. Our results of Section
4 are in effect négative results, showing the impossibility
of the existence of schedulers better than given ones, so
thelr validity does not depend on this static information

In practice, however,

125

assumption. What remains to be seen, however, is whether
our static information model prevents us from proving:
similar optimatity results for certain other levels of
information. We shall next see that this is indeed the case.

We have not examined in any detail so far schedulers
operating at a level of information that includes the
integrity constraints. Examples of such schedulers do
exist. One example is the concurrency control of binary
search programs proposed by [Kung and Lehman 79]
Their programs allow constructs of the form "if no other
program has modified x since the beginning of the present
program then x « a else x « b". It is not hard to argue
that this construct is inherently non-serializable. This
construct, however, can be used safely if it is known that
the integrity constraints do not involve x at all.

A different way to use the integrity constraints (and
some further semantic information as well) is through
proofs of correctness. Correctness proofs must rely on
and, more importantly, must also reflect the meanings of the
transation and integrity constraints. Therefore, a natural
way to capture semantic information is to examine proofs.
Such an approach has been proposed by L. Lamport
{Lamport 761 We outline it in the following. Consider
proofs using assertions [Floyd 67]. A transaction is
represented as a flowchart of operations which manipulate
the global variables.
as moving a token on the flowchart from the input arc to
An assertion, defined in terms of the

Executing the transaction is viewed

an output arc.
variables, is attached to each arc of the flowchart; in
particular, the assertions on the input and any output arcs
are the integrity constraints. A correct proof of a serial
transaction amounts to demonstrating that throughout the
execution of the transaction the token will always be on an
arc whose assertion is true at that time, and will eventually
reach an output arc. The consistency of a database under
the concurrent
transactions can be insured by the foliowing scheduling
policy:

The request to execute one step in a
transaction is granted only if the execution will
not invalidate any of the assertions attached to
those arcs ~ where the tokens of other
transactions reside at that time.

It is possible that at some time none of the transactions
can be granted to execute their next steps. The
"deadlock” situation can be resolved, for example, by
backing up some transactions. With this approach it is
possible for a scheduler to generate correct schedules
beyond serializable, or weakly serializable
schedulers. Using the methodology developed in this
paper, we can establish the optimality of the above
scheduler in a dymanic information model. We plan to
pursue this in a later version of this paper.

execution of several correct serial

serial,

References

[Bernstein et al. 78]
Berstein, P.A., Goodman, N., Rothnie, J.B.
and Papadimitriou, CH
A System of Distributed Databases (the
Fully Redundant Case).

IEEE Transactions on Software
Engineering SE-4:154-168, March
1978.

[Coffman et al. 711Coffman, E.G., Jr., Elphick, M.J. and
Shoshani, A,
System Deadlocks.
Comlp:;ilng Surveys 3(2):67-78, June

[Eswaran et al. 76]Eswaran, K.P,, Gray, JN, Lorie, RA. and
Traiger, LL.
The Notions of Consistency and
Predicate Locks in a Database
System.

Communications of the ACM
19(11):624-633, November 1976. -

Floyd, RW.

Assigning Meanings to Programs.

In Proc. Symposium in Applied -
Mathematics, pages 19-32. American
Mathematics Society, 1967.

(Floyd 67]

Gray, J. :

Notes on Data Base Operating Systems.

Technical Report RJ2188, IBM Research
Laboratory, San Jose, February
1978.

[Gray 78)

[Kung and Lehman 79}

Kung, H.T. and Lehman, P.L.

A Concurrent Database Problem: Binary
Search Trees.

Technical Report, Carnegie-Mellon
University, Department of Computer
Science, May 1979.

An abstract appears in the Proceedings
of the Fourth International
Conference on Very Large Databases.
The full paper is to be published in
ACM Transactions on Database
Systems.

[Kuhg and Papadimitriou 79)
Kung, H. T. and Papadimitriou, C. K

In Preparation.

[Lamoort 76} Lamport, L. ,

Towards a Theory of Correctness for
Multi-user Data Base Systems.

Technical Report CA-7610-0712,
Massachusetts Computer Associates,

Inc., October 1976.

[Manna 74] Manna, Z.
Mathematical Theory of Computation.

McGraw-~Hill, New York, 1974.

[Papadimitriou 78] Papadimitriou, CH.
Serializability of Concurrent Updates.
Harvard University.
To appear in JACM.

[Papadimitriou et al. 77}
Papadimitriou, C.H., Bernstein, P.A. and
Rothnie, J.B.
Computational Problems Related to
Database Concurrency Control.

In Proc. Conf. on Theoretical Computer
Science, pages 275-282. University
of Waterloo, 1977.

[Silberschatz and Kedem 78]
Silberschatz, A. and Kedem, Z.
Consistency in Hierarchical Database
Systems. :
Manuscript, University of Texas at
Dallas.

{Stearns et al. 76] Stearns, RE, Lewis , PM. 1l and
Rosenkrantz, D.J.
Concurrency Control for Database
Systems.
In Proceedings of the Seventh Annual
Symposium on Foundations of
Computer Science, pages 19-32.,
1976.
[Yennakakis 79] Yannakakis, M.

Private Communication.

