Structured VLSI design proceeds from algorithm to logic cell to
cell array to special-purpose chip, yielding cheap, powerful, and
modular hardware that will permanently alter the systems
landscape of the 80’s.

The Design of Special-Purpose LS| Chips

M. J. Foster
H.T. Kung
Carnegie-Mellon University

We have now entered a technological domain in
which many of the problems previously encountered
in building special-purpose hardware are much less
severe. LSI technology allows tens of thousands of
devices to fit on a single chip, and the advance to
VLSI should increase this number. Devices once re-
quiring many components can now be built with just
a few chips, reducing the difficulties in reliability,
performance, and heat dissipation that arise from
combining many standard SSI or MSI components.
In addition, the development of simplified tech-
niques! and implementation guides 2 for structuring
IC system design—an area often regarded as dif-
ficult—allows relatively naive designers to achieve
success.

Special-purpose VLSI chips can function as periph-
eral devices attached to a conventional host com-
puter. If many ‘types of chips are attached, the
resulting system can be considered an efficient
general-purpose computer. Figure 1 illustrates how
special-purpose chips such as a pattern matcher, FFT
device, and sorter might form part of such a general-
purpose system.

Construction of complex special-purpose VLSI
chips will be feasible only if we hold down design cost
(i.e., design time). We will argue that chip design time
can be reduced significantly if the underlying
algorithm is “good’’—i.e., designed carefully in the
first place. We will characterize such algorithms
below and will examine a concrete example of
one—the design of a pattern matching chip. (We com-
pleted this design in the spring of 1979 and have had
prototype chips fabricated, with testing now under
way. Preliminary results show that the chip can
achieve a data rate of one character every 250
nanoseconds, which is higher than the memory band-

0018-9162/80/0100-0026800.75 © 1980 IEEE

width of most conventional computers. This high per-
formance is achieved in spite of little effort given to
circuit and layout design. We attribute this perform-
ance mainly to the careful design of the underlying
algorithm.)

We will also identify the major steps in special-
purpose VLSI chip design according to the good algo-
rithm philosophy, and will offer a methodology for
transforming a good algorithm into a final layout ina
more or less mechanical way. With this approach,
designing a special-purpose chip should not be more
difficult than designing a high-level algorithm for the
same job.

Design philosophy

Algorithms that perform well on conventional ran-
dom access computers are not always the best for
VLSI implementation. As Sutherland and Mead?
point out, good algorithms for VLSI implementation
are not necessarily those requiring minimal computa-
tion. Computation is cheap in VLSI; communication
determines performance. Thus, in this new era of
computation, we need to reconsider the algorithms
for many tasks.

A ‘““good’ algorithm in this context should possess
one or more of the following properties:

o Thealgorithm can be implemented by only a few
different types of simple cells.
¢ The algorithm’s data and control flow is simple
and regular, so that cells can be connected by a
network with local and regular interconnections.
Long distance or irregular communication is
thus minimized. :

COMPUTER

e The algorithm uses extensive pipelining and
multiprocessing. Typically, several data
streams move at constant velocity over fixed
paths in the network, interacting at cells where
they meet. In this way a large number of cells are
active at one time so that the computation speed
can keep up with the data rate.

Algorithms with these properties have been named
systolic algorithms® by Kung and Leiserson.* Many
have been designed recently and are surveyed by
Kung.b :

Since most special-purpose chips will be made in
relatively small quantities, the design cost must be
kept low. Systolic algorithms have several advan-
tages which help reduce this cost:

e One can design and test only a few different, sim-
ple cells, since most of the cells on the chip are
copies of a few basic ones.

¢ Regular interconnection implies that the design
can be made modular and extensible, so one can
design a large chip by combining the designs of
small chips.

¢ By pipelining and multiprocessing, one can meet
the performance requirement of a special-
purpose chip simply by including many identical
cells on the chip.

*The word ‘‘systole”” was borrowed from physiologists, who use it to
refer to the rhythmically recurrent contractions of the heart, which
pulse blood through the body. For a systolic algorithm, the function
of a cell is analogous to that of the heart. Each cell regularly pumps
data in and out (performing some short computation before each
‘“‘contraction”’), so that a regular flow of data is kept up in the net-
work.

PRIMARY
MEMORY

PATTERN
MATCHER

PATTERN MATCHER |
PATTERN

STRING |

RESULT }

Figure 2. Data to and from the pattern matcher.

January 1980

All these imply that if a good algorithm is used, the
design time, and therefore the design cost, can be
substantially reduced.

In VLSI special-purpose chip design, then, the
most crucial decision is the choice of the underlying
algorithm, since the suitability of the algorithm
largely determines the design cost and performance.
Given the importance of algorithm design, it should
receive thelargest part of the design effort. Low-level
optimizations at the circuit or layout design level are
probably not worthwhile, as these will lead only to
minor improvements in the overall performance
while increasing design time.

The design of a pattern matching chip

A specific VLSI chip—one that performs on-line
pattern matching of strings with wild card charac-
ters—illustrates our design philosophy and method-
ology. The design of the underlying algorithm
demonstrates that it can be mapped to circuit and
layout designs in a straightforward way.

The string pattern matching problem. Our chip ac-
cepts two streams of characters from the host ma-
chine, and produces a stream of bits as shown in
Figure 2. One of the input streams, the text string, is
an endless string of characters over some alphabet Z.
The other input stream, the pattern, contains a fixed-
length vector of characters over the alphabet ZU{ X},
where X is the wild card character. The output is a
stream of bits, each of which corresponds to one of the
characters in the text string. The data streams move
at a steady rate between the host computer and the

HOST COMPUTER

27

28

pattern matcher, with a constant time between data
items.

Let us denote the input text stream as sgs;s;. . . .
The finite pattern stream will be denoted as
DobPi- - - P, and the output result stream as ryry7,. . . .
Characters in the two input streams may be tested for
equality, with the wild card character X deemed to
match any character in 3. The output bit ; is to be set
to 1 if the substring s;,s;,,. . . s; matches the pat-
tern, and 0 otherwise, i.e., :

r; < (8- =Po) Alsiz1-2 =P1)A. . .Als; = py).

In Figure 2, for example, the pattern AX C matches
the substrings sgs;s,, s35,485, and s s5s¢ (ABC, AAC,
and ACC). Result bits r,rs, and rgare thusset tol, and
all other result bits are 0.

This problem is important in many applications.
String pattern matching is a basic operation in

- SNOBOL-like languages® and in data base query

languages. String matching hardware has been pro-
posed for use in office automation systems.” Many
artificial intelligence systems make heavy use of pat-
tern matching as a search method. Furthermore,
string pattern matching is similar to many stressing
numerical computations such as convolutions and
correlations. All of the linear product problems
discussed by Fischer and Paterson8 are also similar to
string matching.

Several fast algorithms are known for solving the
string matching problem without wild card charac-
ters on a normal random access machine.” 1° These
methods use information about partial matches of
the pattern with itself to avoid redundant com-
parisons, skipping over parts of the string where par-
tial match results may be inferred from previous com-
parisons. When wild card characters exist in the pat-
tern these methods break down, since the ‘“‘matches”’
relation is no longer transitive. The strings AC and
XB both match AX, for example, but do not match
each other. Information about matchings of the pat-
tern with itself is therefore irrelevant if wild card
characters are present. The fastest algorithm known
for string matching with wild card characters is
based on multiplication of large integers® and re-
quires more than linear time. The pattern matching
chip solves the problem in linear time by performing
comparisons in parallel.

The chip design. We designed our chip according to
the methodology discussed earlier, beginning with
the careful design of a systolic algorithm and pro-
ceeding to its hardware implementation.

Algorithm design—data flow. The pattern and the
text string arrive alternately over the bus one charac-
ter at a time. We will call the interval during which
one character arrives from either stream a beat. Dur-
ing each pair of consecutive beats the chip must input

Figure 3. The flow of characters through a linear array of cells.

COMPUTER

two characters and output one result. All characters
on the chip move during each beat.

The chip is divided into character cells, each of
which can compare two characters and accumulate a
temporary result. The pattern and string follow a
preset path of cells from the time they enter the chip
until the time they leave it. On each beat every char-
acter moves to a new cell. We use a linear array of
cells, with the pattern and string moving in opposite
directions, to make each character of the string move
past all characters of the pattern. To make each pair
of characters meet rather than just pass, we must
separate them by one cell so that alternate cells are
idle. Each cell is then active on alternate beats.
Figure 3 traces the flow of characters for several
beats. :

Following the pointer in Figure 3 illustrates the
history of the character cell, starting when the first
character of the pattern, p,, is present. Suppose the
string character s; is present during this beat. During
the next beat the cell is idle, but during the beat after
that it contains p, and s, ;. Two beats later, p, and
;4 are together, then pg and s ;, 3, and so on. By the
time the last pattern character p, leaves the cell, the
substring s;s;,;. . .s;,; will have met the whole pat-
tern. We can therefore keep the partial match results
in this cell, update it whenever a new pair of charac-
ters enters the cell, and output the results after the
last character of the pattern goes past. To output
results we shift them along with the string, so that
each match result leaves the array with the last char-
acter of its substring. If we recirculate the pattern so
that the first character follows two beats after the
last one, we can output the completed result and in-
itialize a new partial result on the same beat. The
number of character cells required is therefore no
more than the number of characters in the pattern.

Each character cell performs two separate func-
tions—it compares characters of the pattern and
string, and it updates and outputs match results. We
can divide these functions between two modules, so
that there are two linear arrays with connections be-
tween corresponding cells as shown in Figure 4. The
cells on the top are the comparators; the pattern flows
through them from left to right, the string from right
to left, The bottom cells, or accumulators, receive the
results of the comparison from above. They maintain
partial results and shift completed results right to
left. Two bits associated with the pattern flow
through the accumulators from left to right. One of
these bits, called A, marks the end of the pattern. It is
one for the last character of the pattern and zero for
the others. The other bit is x, the ‘““don’t care” bit,
which marks wild card characters. A one in this bit
tells the accumulator to ignore the result from the
comparator, since this pattern character matches
anything.

We can further divide the comparators. Rather
than using one large circuit to compare whole charac-
ters, we can divide each comparator into modules
that can compare single bits. Two characters are
equal if corresponding bits are equal. By staggering
the bits so the high-order bits enter the array before

January 1980

the low-order ones, we can make a pipeline com-
parator. Each single-bit comparator shifts its result
down to meet the bits coming into the next lower com-
parator. The active and idle comparators alternate
vertically as well as horizontally, so that on each beat
the active comparators form a checkerboard pattern
as shown in Figure 5.

Algorithm design—cell algorithms. Two kinds of
cells must be designed to build a pattern matching
chip exhibiting the data flow described above:

* The one-bit comparator has one bit of the pattern
flowing from left to right, one bit of the string
flowing from right to left, and the comparison
result for the pair of characters flowing from top
to bottom. The cell uses this algorithm to update
the comparison result:

d‘n
Pout <= Pin :
Sout < Sin Pin eppf e PO
dout + djn AND (pjn=Sin) :
SQU G e S

dout

¢ The accumulatorreceives d;y, (the result from the
comparator above), 1;; (the end-of-pattern in-
dicator), and x;; (the don’t care bit). It maintains
atemporary result ¢, and at the end of the pattern
uses t toreplace the result r that flows from right

to left:
din
Ao i
i i
in

THEN fout‘_t,' t<TRUE Xj) e—p y--bxaut
ELSE Tout<rip; t<t AND (Xln OR d/n)

Iout = e in

Figure 4. Pattern matching achieved in two modules, each
consisting of a linear array of identical cells. Comparators
are on the top and accumulators on the bottom.

30

Figure 5. Comparators for single bits.

Circuit and layout design—data flow circuit. Each
pipeline used by the algorithm for data flow is imple-
mented as a unidirectional shift register shifting on
each beat. Every other cell of the shift register con-
tains valid data. In the NMOS technology used for
this chip, a shift register is a chain of inverters
separated by pass transistors as shown in Figure 6.
When the voltage on the gate of a transistor is near
the supply voltage V 4, its channel conducts current,
while if the voltage is near ground it does not. The in-
puts to the inverters can store charges, so data is
stored within the inverters; the pass transistors con-
trol the inverter inputs. A clock with two non-over-
lapping phases controls the pass transistors.
Because adjacent transistors are turned on by op-
posite phases of the clock, there is never a closed path
between inverters that are separated by two transis-
tors. Alternate inverters can therefore store
independent data bits.

The dynamic alternation of active and idle in-
verters in the NMOS shift register mirrors the alter-

nation of active and idle cells in the algorithm (com-
pare with Figure 5). Each cell can thus contain one
gated inverter from each of the shift registers that
passes through it. The clock controlling the shift
register stagesin a cell can activate the cell. The shift
register components are then fully utilized—all idle
inverters are in idle stages.

Circuit and layout design—cell circuit. Since each
cell inverts its inputs before sending them to its
neighbors, two versions of each cell must be con-
structed. One version operates on positive inputs to
produce inverted outputs, while the other computes
positive outputs from inverted inputs. Transforming
a cell algorithm to its inverted twin is straightfor-
ward, so the existence of two versions presents no
problem. Using the cell algorithms, we can design cir-
cuits for the twin versions of each cell. From the cir-
cuit designs, we can lay out the masks for fabricating
the chip. The positive version of the comparator cell
illustrates the process. It takes positive inputs and

Figure 6. A shift register in NMOS.

COMPUTER

RASTER DISPLAY SYSTEM DESIGN NOTE 1.

How to display

a1280 x 1024
image

that doesn’t
flicker

9 nanosec.

| il |

up to 18 nanosec.

| i |
% DXl | !

System 3400’s fast rise time
and minimal glitching yield sharp,
uniform pixels at 60 Hz refresh.

Competitive systems typically must
run slower to minimize slow
rise time and glitching problems.

Do it with the Lexidata System 3400 image
and graphics processor.

If you're designing high-
resolution raster scan video
display systems, only Lexidata
can give you a 1280 x 1024
picture that doesn’t flicker.

The high-speed, micro-
processor-controlled System
3400 is unique among video
processors in its ability to
generate a pixel in only nine
nanoseconds. This means you
get a refresh rate that’s at
least twice as fast as other
processors on the market.
And your happy system
users get none of the eye
fatigue common with
conventional systems.

But a display that doesn’t
flicker is just one of the ways
the System 3400 can help
improve your image. Its ex-
tensive line-drawing and tonal
imaging capabilities make it a
perfect fit in a wide range of
color, gray-scale and mono-
chrome display applications.

So, whether you're design-
ing a specialized system for
medical imaging, or mass
producing systems for a
variety of CAD/CAM applica-
tions, the 3400’s repertoire of
over three dozen standard
and optional features can give
you the ideal mix of hardware
and software tools to handle
the job. And at a price you're
sure to like.
el e s P e e e

Send For New Detailed
System Description

To find out more about the
System 3400, send for a copy
of our new 12-page system
description booklet. Or, if you
need information immediately,
call us at (617) 273-2700.

E LEXIDATA
CORPORATION

37 NORTH AVENUE, BURLINGTON, MA 01803

Reader Service Number 8

produces inverted outputs, so the outputs in the com-
parator algorithm must be inverted:

din
ot = NOT piy '
AhEE Pin e e D00/
5o NOT 57 in Pout
dout < din NAND (pjn =Sin) Sout = e—Sin
dout

In NMOS, data storage can take place on the input
to any logic gate, as long as a pass transistor can iso-
late that input. The p and s shift registers can be im-
plemented with inverters as planned, but a NAND
gate can be used as the stage for the d shift register.
Figure 7 is the circuit for the positive comparator.
When the clock input goes from ground to Vg, the
power supply voltage, all three pass transistors turn
on. The pattern and string inputs are then stored on
the inverters, and the d input is stored on one input to
the NAND gate. The exclusive NOR gate outputs
TRUE if the two inputs are equal, and FALSE other-
wise. The output of this equality test goes to the other
input of the NAND gate, which computes d,,,. After
the inputs have stabilized, the clock goes to ground.
The outputs of this cell then provide stable inputs to
neighboring cells until the clock goes high again.

Circuit and layout design—cell sticks. The next
step after completing the circuit diagram is the de-
sign of the cell’s topological layout, or stick diagram,
which shows the relative positions of all signal paths,
power connections, and components but hides their
absolute sizes and positions. Most of the circuit’s
components can be implemented in several ways, and
a choice among these must be made at this stage of
the design. Figure 8 is an example of a stick diagram.

Silicon-gate NMOS technology uses three conduc-
tion layers (differentiated by color in Figure 8). Fol-
lowing Mead and Conway’s ! convention, blue lines
represent metal conduction paths, red lines poly-
crystalline silicon (polysilicon), and green lines diffu-
sion into the substrate. The three layers are insulated
from each other except at contact cuts, represented
by round black dots. The yellow squares are areas of
ion implantation, used to create depletion mode tran-
sistors. These serve as pull-up resistors in the gates
and inverters.

NMOS field-effect transistors are created by cross-
ing a diffusion path (green) with a polysilicon area
(red). The green path is the channel, and the red area is
the gate. If no ion implantation is present, the chan-
nel conducts current only when the gate is at V y,.

The positive’comparator cell uses pass transistors
and inverters to implement the shift registers; it also
uses a NAND gate and an equality, or NXOR, gate.
These basic components are combined as shown in
Figure 8 to produce the stick diagram for the positive
comparator cell. Power and ground run horizontally
across the cell on metal (blue) paths. The clock is in
polysilicon (red) at the top and right edges, and dips
below the upper power wire near the middle of the cell

COMPUTER

to allow the cell above to connect to the power wire.
Data paths for p and s run horizontally along the top,
while d runs downward in diffusion (green).

Let us trace the p data path through the cell. It
enters at the left in diffusion and passes through the
channel of a transistor thatis gated by the clock. Con-
tact is made to a polysilicon path that goes to the in-
put of the p inverter. The inverter output, in metal,
crosses the d data path with no interaction and pro-
vides an input to the equality gate. It then passes
over the s inverter and leaves the cell at the right.

Circuit and layout design—final layout and mask-
ing. When stick diagrams have been designed for all
of the cells, actual layouts can be produced. These fol-
low the topology of the stick diagrams, but also in-
clude the absolute sizes and positions of all com-
ponents. Designing a layout involves choosing elec-
trical parameters for all transistors as well as fol-
lowing minimum spacing rules for the intended
fabrication process. Care must be taken to line up
power connections and data paths that cross several Figure 7. Positive comparator circuit.

CLOCK dip

Pin Pout
Sout Sin

- H

s INVERTER

GROUND®"iNVERTER

Viq dout % NANDGATE NXORGATE

Figure 8. Stick diagram for the positive comparator cell in the pattern matching chip. Color differentiates conduction layers.

January 1980 33

Figure 9. The CMU pattern matching chip prototype. The pattern matching array at left center measures 472 by 1528 microns and is
connected to bonding pads on a rectangle measuring 1536 by 1884 microns.

34 COMPUTER

cells. In principle, thelayout can be designed mechan-
ically from the circuit and stick diagrams.

When thelayouts for all cells are complete, they can
be assembled into a working array with the inputs
and outputs hooked to contact pads. The layouts can
be described using a graphics language (such as the
Caltech Intermediate Form!) that can be interpreted
to make the masks. These masks can then be used to
fabricate the chips.

Figure 9 is a photograph of the prototype pattern
matcher we constructed according to the methodolo-
gy outlined above. It can handle patterns containing
up to eight-two-bit characters.

Design alternatives. In designing the chip we often
reached points where we had to choose among several
alternatives. There were three major decision-
making areas—choice of an algorithm, choice of a
data flow implementation, and choice of a method for
cell implementation.

Alternative algorithms. A bewildering variety of
algorithms could form the basis for a pattern match-
ing chip. The desire for simple and regular data flow
rules out the fast sequential algorithms described by
Boyer and Moore® and Knuth et al.!? Since these algo-
rithms require dynamically changing communica-
tion, their hardware implementation will be too com-
plex to be modular.

Mukhopadhyay!! has proposed several machines
which store a character of the pattern in each cell and
which broadcast the text string character by charac-
ter to all cells. This broadcasting is the major disad-
vantage of this algorithm. Each cell requires a con-
nection to the broadcast channel, increasing the
power requirements of the system as a whole or
decreasing its speed. Our algorithm requires no
broadcasting of data.

A chip designed by Mead et al.!? uses another
algorithm in which pattern characters are stored in
the cells. The text string passes through all of the
cells, and the results of character matches are com-
bined using a common wired-NOR bus. We wished to
avoid unbounded fan-in of this type, since it may
degrade performance when a design is extended to
VLSI.

Another algorithm—similar to ours—uses a linear
array of cells with data flowing in only one direction.
The pattern is permanently stored in the array of
cells, and the text string moves past it. Partial results
move at half the speed of the text so that they accu-
mulate results from an entire substring match. Were-
jected this algorithm because of the static storage of
the pattern—loading the cells in preparation for a pat-
tern match would require extra time and circuitry.

Our algorithm is well suited to VLSI implementa-
tion. All communication is local, since each character
cell communicates only with its left and right
neighbors. This enhances modularity and extensibili-
ty, as well as avoiding the large drivers needed for
long-range transmission. Only a few types of cells are
used, with many copies of each type. By replicating
the basic cells, pattern matching chips of any size can

be formed. Finally, control of the chip is simplified

January 1980

since our algorithm requires no separate operation to
set up the system for a new pattern. »

Alternative data flow implementations. Although
the global flow of data is determined by the choice of
algorithm, several methods of implementing the data
flow may be possible. Serial or parallel data transmis-
sion between cells may be selected, for example. Com-
munication may be coordinated in several ways. The
data flow can even be transformed to combine several
cells into one circuit. We will discuss two of the
choices that arose in implementing the data flow of
the pattern matching chip.)

The existence of idle cells can be avoided by com-
bining pairs of neighboring cells when implementing
the data flow. Because each cell pair contains one ac-
tive and one idle cell at each beat, the two cells can
share circuitry. In the pattern matching chip, for ex-
ample, neighboring comparators could have shared
theequality gate, and the d data path could have been
multiplexed. -

If the amount of sharable circuitry is large enough,
it may be advantageous to combine two or more cells
in this way. Some additional circuitry will of course
be needed to coordinate the sharing and may wipe out
the savings. The increased interdependence of the cir-
cuit components may also offset the savings, since
design changes may become more difficult and errors
may be made. The pattern matcher cells are too small
to profit from this data flow transformation.

Another choice in data flow implementation is be-
tween self-timed and clocked (synchronous) data
paths. Ina clocked data flow implementation, all data
movement is under centralized control. The data flow
controller sends signals to each cell to enable data
transfers. The pattern matching chip uses this meth-
od. In fact, the data flow control signals are the same
clock signals needed for data refreshing, although
this need not be true in general.

In a self-timed implementation, data flow control is
distributed among the cells so that each cell controls
its own data transfers. Neighboring cells must obey a
signaling convention to coordinate their communica-
tion. Self-timed data flow has advantages in modu-
larity and extensibility, since no common clock is
needed. Each of the cells may run at its own pace, syn-
chronizing with its neighbors only when commu-
nication is needed. Self-timing’s disadvantage lies in
the extra circuitry needed to implement the signaling
conventions. For systems small enough to use a com-
mon clock—like the pattern matching chip—clocked
data flow is best. For larger systems, of course, self-
timed communication may be the better choice.!3

Alternative cell implementations. Two major
choices affected the design of the cells. We rejected
static shift registers, which can hold data for long
periods without shifting it, in favor of dynamic shift
registers, which can not. Also, we chose a random
logic implementation of the cell circuitry rather than
a more structured approach using standard PLA—
programmed logic array—and register layouts.

The dynamic shift registers we used can not hold
data for more than about 1 millisecond without shift-
ing. Data is refreshed only by shifting. Static shift

35

36

registers, the alternative choice, have regeneration
circuitry in every stage so that data can be held in-
definitely without shifting. In addition to the two
clock phases, static registers need a third signal for
the shift command.

Static shift registers are probably the better choice
for most systems. They do not invert data between

‘stages, as do dynamic shift registers, and they

simplify testing. For our chip, however, dynamic
shift registers have advantages. The alternation of
activeand idlecells allows just oneinverter from each
shift register to be placed in each cell. This permits
the two-phase clock to do double duty as a data flow
control signal. The cells and the global layout are
thus greatly simplified.

The simplicity of the cell functions dictated the use
of random logic. If cells contain more than a few
gates, the state-machine design approach should be
taken. The state of the cell can be held in a register,
and the combinational logic used for changing states
can be implemented with a PLA. Standard layouts
for registers and PLA cells are available, simplifying
design and layout tasks and shortening design
change and error correction time. However, the small
size of our pattern matcher cells, each containing only
four gates, made the use of random logic possible.
Design and layout of such simple circuits is easy.

Uses and extensions of the pattern matching chip.
A pattern matching chip with n character cells can
directly match patterns of length only up ton. Longer
patterns require the existence of more than n partial
results at each beat. Since any chip must be of finite
size, it is important that the chip be extensible. It
should be possible to combine several chips to form a
larger pattern matcher.

In order to make the ch1p extensxble, an mput for
theresult stream and outputs for the pattern and text
streams must be provided. Several pattern matching
chips can then be cascaded (Figure 10). The inputs to
each chip in the figure are taken from the outputs of
its neighbors, so that the cells on all of the chips form
a single linear array. The pattern is fed to the inputs
of the leftmost chip, and the text string is input to the
rightmost chip. The result output is taken from the

leftmost chip. A cascade of k chips with n cells each
can thus match patterns of up to kn characters.

If the pattern to be matched is longer than the ca-
pacity of the available pattern matching system, the
pattern can be run through the system several times
to match it against the entire string. If the system
contains a total of n character cells, each run will
match the complete pattern against n substrings. To
cover all substrings, all we need do is delay the string
by n characters on succeeding runs.

Modifying the design of the pattern matcher can
provide special-purpose hardware for problems -
similar to string matching. For example, we might
wish to count how many characters in a substring
match corresponding characters in a pattern. This
problem can be solved by replacing the result bit
stream with a stream of integers, and replacing the
accumulator cell with a counting cell:

di'n

Aoyt Ain i 3
Xout < Xin (R« > Aout

-An
THEN rout""t; t<0 Xj) et e X011
ELSE IF xj5 OR djp
THEN t<t+1; Tout*rin Tt G —in
ELSE Tout*Tin

A problem of more practical interest is the com-
putation of correlations. Here, the pattern, string,
and result are all numbers. The result r; of a correla-
tion is defined as

ri=(si-p—pol® +sip14—p1)? +. . . Hls—py)
A good match of substring to pattern resultsin a high
correlation.

Correlations can be computed by a machine with a
data flow identical to the string matching chip, ex-
cept that all streams contain numbers. The com-
parator is replaced by a difference cell that computes

d

- -_D.
out Sin " Din-

a .

Figure 10. A five-chip pattern matcher—cascading of chipé permits the direct matching of longer strings.

COMPUTER

Like the character comparison, this difference com-
putation may be pipelined bit by bit. An adder cell
replaces the accumulator. The algorithm for the ad-
der cell is

IF A,

THEN Four<t t<0

ELSEr,,, < ry; t < t+d,2

Other problems such as convolutions and FIR

filtering have algorithms using the same data flow.*>
It should be clear that special-purpose hardware
similar to the pattern matching chip can be built for
any of these problems.

Design methodology

A systematic approach is essential when designing
a complex system of any kind. The design task must
be broken into manageable subtasks, with a well-
defined flow of information between them. Each sub-
task can then be performed separately with no need
to consider more than one subtask at a time. This
allows division of labor and, more importantly,
prevents mistakes and eases design changes.

Because of the diversity of tasks and concerns in
VLSI design, a systematic method is especially im-
portant in designing a special-purpose chip. It is im-
possible, for example, to take global data flow, circuit
design, and transistor characteristics into account all
at once. We must find small subtasks, with bound-

- aries between them that hide the implementation
details of one from another. Of course, any set of sub-
tasks is unlikely to be completely independent, since
problems that crop up in performing one may require
redoing another—difficulties in layout, for example,
may mandate a circuit redesign. However, these
design iterations will be easier if the interactions be-
tween subtasks are few.

VLSI system structure suggests several natural
information boundaries. One advantage of geometri-
cally regular algorithms is the spatial separation that
they impose between subsystems. The interior of one
cell can be designed in ignorance of the interior
details of another (although exterior details such as
size and data path positions must be known). If cells
are complex, the separation of circuit functions
within each cell may provide an additional informa-
tion boundary. The design of each functional block of
a cell can then be largely independent of the others.
The existence of a hierarchy of abstract chip models,
from algorithm to gate to layout level, is a further aid
to VLSI design. Eachlevel of the hierarchy deals with
an independent set of design issues and serves as an
implementation of the next level up and as a specifica-
tion for the next level down.

Chip design can thus be decomposed geometrical-
ly, functionally, and hierarchically. These decomposi-
tions must be consistent to be used to best advan-
tage. Tasks separated geometrically should also be
separated functionally and hierarchically. It would
be unfortunate, for example, if all cell circuits had to

January 1980

be considered at once in order to construct a stick
diagram for a chip. Careful construction of a task
dependency graph, before beginning the design,
avoids this problem. This graph should contain all of
the subtasks to be performed and include the infor-
mation needed for each and the precedence relations
among them. Of course, backtrack paths resulting in
several iterations of one task because of difficulties in
another need not be shown. The chip design task is
not yet understood well enough to predict such back-
tracking.

The task dependency graph ensures that no more
than a small amount of knowledge is required for any
subtask. Each of the subtasks in the graph should
deal with the design of one geometric area at onelevel
of abstraction. The circuit design of the entire chip all
at once is too large a task because it covers too much
chip area. Generating a layout from a cell’s function is
too large a task, since it spans too many levels of the
hierarchy. Designing a single cell circuit from a cell’s
function is probably a task of the proper size,
although if the cell performs several different func-
tions the task should be further subdivided. ’

Figure 11 is a task dependency graph for the design
of a pattern matching chip like ours. Our own project
in fact brought out the need for the task dependency
graph and suggested its structure. It should be
suitable for designing other chips of about the same
scale. Each subtask deals with only one geometric
region, one circuit function, and one level of the VLSI
chip model hierarchy. The arrows indicate the flow of
information between the subtasks, each of which we
briefly describe below.

Data flow and cell type function. The chip design
must begin with an algorithm design conceptually
specifying the overall chip structure. Several algo-
rithms will exist for any problem, and the best one
should be found at this stage. The algorithm is a level
of abstraction at which to think about important
properties such as regularity and modularity,
without worrying about low-level issues. It should in-
tegrate two distinct bodies of information. One is the
data flow pattern, including the number of cells, their
geometric placements, and the choreography of data.
The types of cells should be distinguished and the
beats on which each is active should beidentified. The
other body of information is the function of each cell
type, comprising not just the circuit function but also
the relative positions of signal inputs and outputs
and the sequence of activity on each beat.

Cell combinations and placements. Cells in the im-
plementation might not correspond one to one with
the cells in the algorithm. Several cells may be com-

bined to share components or rarely used communi- -

cation paths in the algorithm may be multiplexed on-
to one physical data path. The first task in implemen-
ting the algorithm is to choose among these combina-
tions and to position cells and cell combinations on
the chip.

This subtask requires mformatlon about the pat-
tern of active and idle cells on each beat and the use of

37

38

each communication path, which the data flow and
geometry subtask provides. It also requires informa-
tion about the sharable subfunctions and complexity
of each cell type, which the cell function subtask pro-
vides. The output of this subtask is a skeleton layout
for the chip, with each cell group assigned a location
and a set of contained cells.

Data flow control circuit. Data flow control circuitry
ensures the orderly movement of data on the correct
beats. To perform this subtask we must learn the cor-
rect sequence of beats from the algorithm data flow
and which elements are active on each beat. From the
cell combination subtask we learn which cell groups
and physical data paths contain the active elements.

Based on the size and intended use of the chip we
can decide whether the data flow should be clocked or
self-timed. If we choose to clock we must decide
whether to generate the signal externally or on the
chip. We can then design the shift registers for data
movement and route any clock wires or synchroniza-
tion signals among the cell groups on the skeleton
layout. :

Cell logic circuits. We now have the three pieces of
information needed to design circuits for the

cells—the cell functions (from the cell type function
step), the group of cells to be implemented by each cir-
cuit (from the cell combination step), and the shift
register stages that must be included in each cell
(from the data flow control). If the cell functions are
simple enough, ad hoc circuit design techniques may
be adequate. If the functions are complex, the cells
may be split into subsystems to be designed inde-
pendently. In this way, full advantage may be taken
of the functional decomposition of each cell. In addi-
tion, the circuit for each cell type can be designed
without reference to the others, since all communica-
tion needs have been considered in the data flow con-
trol. In designing the circuits, however, considera-
tion must also be given to how the chip will be tested
after fabrication. :

Cell timing signals. A cell function may comprise
several distinct sequential steps performed on each
beat. In the pattern matching accumulator, for exam-
ple, the assignments

oS5t~ TRUE

must take place in the correct order. The cell circuit,
especially in a clocked system, may require signals to

PROBLEM

{

ALGORITHM LEVEL

GATE LEVEL

STICKS LEVEL

LAYOUT LEVEL

MASKS FOR FABRICATION

™

= SUBTASK

Figure 11. A task dependency graph can guide the designer of a special-purpose VLSI chip. This graph—for a pattern
matching chip—shows how the design effort can be decomposed into simpler tasks.

COMPUTER

control such sequences, in addition to the signals
needed for cell activation. These should be supplied
by the data flow control. Such signals should be iden-
tified as soon as the cell circuits are complete, and cir-
cuits to generate them added to the data flow control.

Communication sticks. When the data flow control
circuitry is complete we can draw its stick diagram.
For geometrically regular chips this will consist of an
open communication path network, control circuitry,
and blank spaces for the cells. If the chip has cen-
tralized clock circuitry, its topology can be designed.
The distribution network for power and ground
should also be designed at this stage.

Cell sticks. The topological layouts of the in-
dividual cells can now be designed. The relative loca-
tions of power, ground, and all inputs and outputs are
known from the communication sticks. We must now
choose implementations for the circuit elements and
decide on therelative positions of internal data paths.

Cell layouts. Once the topological layouts of the
cells are complete, the detailed layout of each cell is
possible. Following the design rules for the intended
fabrication process, actual dimensions for each elec-
trical component and distances between circuit ele-
ments must be chosen. This subtask’s output is a
scale drawing of the cell.

Cell boundary layouts. With cell sizes known, the
cell boundaries can be laid out. The communication
path and data flow control topology is known from
the communication sticks. Wirelengths and spacings
can be chosen, as can distances between cells. Inputs
and outputs can be connected to contact pads. The
cell and cell boundary layouts form a complete
description of the chip; once they are complete,
masks can be made and the chip fabricated.

Summary of the design methodology. With the help
of the task dependency graph, the seemingly com-
plicated process of designing a special-purpose chip
can be carried out systematically, one subtask at a
time. The graph presented here, although based on
limited design experience, seems to be a good start-
ing point. The design tasks below the algorithm level
are relatively routine and may at least in principle be
helped a great deal by various (future) computer-
aided design systems. Eventually only the algorithm
design level will require substantial effort and ex-
perience.

Over the past few years efforts in several fields of
computer science have converged to make possible
the design of special-purpose chips as described in
this article. The study of parallel algorithms, par-
ticularly those for mesh-connected computers, has
provided techniques for VLSI algorithm design.!4
The work of Mead and Conway! in developing struc-
tured NMOS design techniques has eased the design
of reliable circuits and layouts. Improvements in

January 1980

computer-aided design and graphics systems have
reduced the drudgery of mask design. Finally, the
development of suitableintermediate languages
makes the design and fabrication processes relative-
ly independent and allows several users to share
designs.

These developments allow the relatively inexperi-
enced designer to develop chips quickly and con-
fidently for his own application. By concentrating on
algorithms, he can construct—with minimal design
time—chips of good performance and fairly small
area. The design of the pattern matching chip de-
scribed here took only about two man-months.

Further developments can make the designer’s
task even easier. It is possible, for example, to build
libraries of standard cells similar to subroutine
libraries. If a designer needs, say, an inner product
step cell, he can select it from a library rather than
construct it himself. Libraries of data flow implemen-
tations are also possible, although their forms areless
obvious.

Advances in fabrication technology may increase
the scale of projects that can be attempted. Aside
from reductions in feature size, techniques such as
wafer-scale integration will increase the size and
power of special-purpose devices. The modularity in-
herent in our philosophy is especially appropriate to
wafer-scale integration, where a wafer’s chips are in-

TERMINALS

PURCHASE FULL OWNERSHIP AND LEASE PLANS
; PURCHASE PER MONTH
DESCRIPTION PRICE 12 MOS. 24 MOS. 36 MOS.

LA36 DECwriter ll.......... $1,695 $162 $ 90 $ 61
LA34 DECwriter IV 1,295 124 69 47
LA120 DECwriter I KSR 2,295 220 122 83
VT100 CRT DECscope 1,895 182 101 68
VT132 CRT DECscope 2,295 220 122 83
DT80/1 DATAMEDIACRT 1,895 182 101 68
TI1745 Portable Terminal 1,595 153 85 57
TI765 Bubble Memory Terminal 2,795 268 149 101
Ti810 RO Printer 1,895 182 101 68
TI820 KSR Printer 2,195 210 117 79
T1825 KSR Printer 1,695 162 90 61
ADM3A CRT Terminal 875 84 47 32
QUME Letter Quality KSR ... 3,195 306 170 115
QUME Letter Quality RO 2,795 268 149 101
HAZELTINE 1410 CRT....... 875 84 47 32
HAZELTINE 1500 CRT....... 1,195 115 64 43
HAZELTINE 1552 CRT....... 1,295 124 69 47
DataProducts 2230 Printer .. 7,900 757 421 284
DATAMATE Mini Floppy 1,750 168 93: 63
FULL OWNERSHIP AFTER 12 OR 24 MONTHS
- 10% PURCHASE OPTION AFTER 36 MONTHS
ACCESSORIES AND PERIPHERAL EQUIPMENT
ACQUSTIC COUPLERS e« MODEMS e THERMAL PAPER
RIBBONS e INTERFACE MODULES e FLOPPY DISK UNITS
PROMPT DELIVERY e EFFICIENT SERVICE

TR ANSNET CORPORATION
1945 ROUTE 22, UNION. N.J. 07083
f 201-688-7800

Reader Service Number 9

40

terconnected rather than cut apart for individual
packaging. Since some of the wafer’s chips may be
defective, the fabricator must be able to reroute the
interconnections to replace a faulty chip with a func-
tioning one. He can do this easily if the chips have
regular interconnections and if they include only a
few types.

The philosophy and methodology described here
will make practical the design of special-purpose
VLSI chips by their users. Connected to a general-
purpose computer, these devices will provide rapid
solutions to a variety of computations. Given the
ease of the design process and the availability of new
design tools, VLSI modularity will become a common
architectural strategy in the 80’s. B

Acknowledgments

We received help from many people during our
research. Using a preliminary version of Mead and
Conway’s Introduction to VLSI Systems, Bob
Sproull taught us basic NMOS design techniques in
his VLSI design course at CMU. Our pattern match-
ing chip prototypes are included in the XEROX
PARC multiproject chips for spring 1979 and have
been fabricated at XEROX facilities. Larry Stewart
checked our layouts for violations of design rules.
Bob Hon provided much needed help, including
building the layout design system we used, convert-
ing our designs into ICARUS format, and mounting
chips for testing. Philip Lehman and Siang Song of-
fered suggestions in the early stages of the algorithm
design. Lynn Conway, Bob Hon, Dick Lyon, Siang
Song, and Bob Sproull reviewed this paper. To these
people, and to the others who helped us directly or in-
directly, we express our thanks.

This research was supported in part by the Defense
Advanced Research Projects Agency under Contract
F33615-78-C-1551 (monitored by the Air Force Office
of Scientific Research), the National Science Founda-
tion under Grant MCS 78-236-76, the Office of Naval
Research under Contract N00014-76-C-0370, and an
NSF Fellowship.

References

1. C. A. Mead and L. A. Conway, Introduction to VLSI
Systems, Addison-Wesley, Reading, Mass., 1980.

2. R.Hon and C. Sequin, “A Guide to LSI Implementa-
tion,” 2nd ed., XEROX Palo Alto Research Center
Technical Report, 1979.

3. L E. Sutherland and C. A. Mead, ‘‘Microelectronics
and Computer Science,”’ Scientific American, Vol. 237,
No. 3, Sept. 1977, pp. 210-228.

4. H.T.KungandC.E. Leiserson, ‘“‘Systolic Arrays (for
VLSI),” in I. S. Duff and G. W. Stewart, eds., Sparse
Matrix Proc. 1978, Society for Industrial and Applied
Mathematics, Philadelphia, Pa., 1979, pp. 256-282. A
slightly different version appears in C. A. Mead and
L. A. Conway, Introduction to VLSI Systems, Addi-
son-Wesley, Reading, Mass., 1980, sec. 8.3.

5. H. T. Kung, “Let’s Design Algorithms for VLSI
Systems,” Proc. Caltech Conf. Very Large Scale In-
tegration, California Institute of Technology,
Pasadena, Calif., Jan. 1979., pp. 65-90. Also available
as a Carnegie-Mellon University Computer Science
Department Technical Report, 1979.

6. R. E. Griswold, J. F. Poage, and I. P. Polansky, The
SNOBOL4 Programming Language, Prentice-Hall,
Englewood Cliffs, N. J., 1968.

7. P.J.Warterand D. W. Mules, ‘‘A Proposal for an Elec-
tronic File Cabinet,” MICRO-DELCON, IEEE Com-
puter Society, Long Beach, Calif., Mar. 1979, pp.
56-63.

8. M. J. Fischer and M. S. Paterson, ‘“String Matching
and Other Products,” Massachussetts Institute of
Technology, Project MAC, Technical Report 41, 1974.

9. R.S.BoyerandJ.S. Moore, ‘A Fast String Searching
Algorithm,” Comm. ACM, Vol. 20, No. 10, Oct. 1977,
p. 762.

10. D.E.Knuth,J. H. Morris, and V. R. Pratt, “Fast Pat-
tern Matching in Strings,” SIAM J. Computing, Vol.
6, No. 2, June 1977, pp. 323-350.

11. A. Mukhopadhyay, ‘“Hardware Algorithms for Non-
numeric Computation,” IEEE Trans. Computers, Vol.
C-28, No. 6, June 1979, pp. 384-394.

12. C.A.Mead, R.D. Pashley, L. D. Britton, Y. T. Daimon,
and S. F. Sando, ‘“128-Bit Multicomparator,” IEEE J.
Solid State Circuits, Vol. SC-11, No. 5, Oct. 1976, pp.
692-695.

13. C.L.Seitz, ‘“Self-Timed VLSI Systems,”’ Proc. Caltech
Conf. Very Large Scale Integration, California In-
stitute of Technology, Pasadena, Calif., Jan. 1979, pp.
345-355.

14. H.T.Kung, ‘“The Structure of Parallel Algorithms,”’in
M. C. Yovits, ed., Advances in Computers, Volume 19,
Academic Press, N.Y., 1980.

Michael J. Foster is working toward a
PhD in the Computer Science Depart-
ment at Carnegie-Mellon University,
where he holds a National Science
Foundation Graduate Fellowship.
From 1973 to 1977 he was employed as
a programmer by Tracor Northern and
Princeton Gamma-Tech. His current
research interests include algorithms,
‘ VLSI structures, and computer system
archltecture Foster received a BS in mathematics from
MIT in 1978 and is a member of ACM and Sigma Xi.

H. T. Kung is an associate professor of
computer science at Carnegie-Mellon
University, where he has been on the
faculty since 1974. His currentresearch
interests include special-purpose chip
design, VLSI-related complexity
theory, and data base systems. He has
worked on algorithms for parallel com-
puters and problems in computational
complexity. Kung graduated from Na-
tional Tsing-Hua University, Taiwan, and received his PhD
degree from Carnegie-Mellon University.

COMPUTER

