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The simple model of a dual-processor configuratior} is suggestive of bghztyl?lr
we can expect from multiprocessor systems that require global communication.
We observe that if f = 0, execution speed is more than twice that of thebunlprfoces-
sor illustrated in Fig. 8.1. Just as in the pipeline, doub}mg t.he number o prol;
cessors contributes a factor of two, but additional speed is achieved because eac

a smaller memory.

proc’;iseolili((iigzslzzsillustrates the importance of locality in the use each process.(l;r
makes of its memory. If fis allowed. to grow too large, the factor of two cont}rll -
uted by two processors is erased by interference between the processors when

i mmon memory. . B
accelizlrrlllgagiﬁg most importal}llt parameter i.s d, w:hich is determln.ed l?y our al;nﬂl;[g
to adapt algorithms to multiprocessor configurations. Some apphcatlcf)fns (sicie; m o
decompose nicely for execution on concurrent har.dware, and some o el: i
ties. In human organizations we have become resigned to always attac 1nﬁ arge
problems in a concurrent way. We will, no doubt, have to do the same with com-

puter programs.

8.2.2 Summary

The schemes we have illustrated that reduce commpnication costs and tr}:r lgo
exploit concurrency can be combined in various ways in corpputer structurgs.' g
table below summarizes the speedup effect that these techniques offer, as derive
from our crude models (n denotes the number of processors used):

Technique Typical speedup factor
Memory hierarchy 10
Pipelining
instruction overlap 2
special-purpose
Multiprocessors <n

The processor-memory structures and algorithms presented in the remalr.ldezg_f
this chapter all attempt to use as many processors as can be kegt ssz:lire

neously productive and to locate them as close as .posszble to the data they riq ar._
These are the considerations exhibited by our simple models of memory hier :
chies, pipelines and multiprocessors. The examplles presented here .blyfpodrlx}tear; _
exhaust the topic of concurrent computation; the interested reader W.ll 13n5 | 71 er _
tures on computer architecture,?* parallel processors and processing,®%%7 per
formance evaluation,? and algorithm design.#%10-11-12

%
3

deibaasiiing

8.3 Aigorithms for VLSI Processor Arrays 271

8.3 ALGORITHMS FOR VLSI PROCESSOR ARRAYS*

8.3.1 Introduction

“And the smooth stream in smoother numbers flows.”’
Alexander Pope
The developments in microelectronics have revolutionized computer design. Inte-
grated circuit technology has increased the number and complexity of components
that can fit on a chip or a printed-circuit board. Component density has been
doubling every one-to-two years, and already a multiplier can fit on a very large
scale integrated (VLSI) circuit chip. As a result, the new technology makes it
feasible to build low-cost, special-purpose, peripheral devices to rapidly solve
sophisticated problems. Reflecting the changing technology, this section proposes
new multiprocessor structures and parallel algorithms for processing some basic
matrix computations.

We are interested in high-performance parallel algorithms that can be im-
plemented directly on low-cost hardware devices. By performance, we are not
referring to the traditional operation counts that characterize classical analyses of
algorithms, but rather, the throughput obtainable when a special-purpose
peripheral device is attached to a general-purpose host computer. This implies that
time spent in 1/0, control, and data movement as well as arithmetics must all be
considered. VLSI offers excellent opportunities for inexpensive implementation
of high-performance devices. Thus, in this section the cost of a device will be
determined by the expense of a VLSI implementation. ‘‘Fit the job to the bargain
components’’ (Blakeslee, p. 4).13

VLSI technology has made one thing clear. Simple and regular interconnec-
tions lead to cheap implementations and high densities, and high density implies
both high performance and low overhead for support components. (Sutherland
and Mead! contains a discussion of the importance of having simple and regular
geometries for data paths.) For these reasons, we are interested in designing paral-
lel algorithms that have simple and regular data flows. We are also interested in
using pipelining as a general method for implementing these algorithms in
hardware. By pipelining, processing may proceed concurrently with input and
output, and consequently overall execution time is minimized. Pipelining plus
multiprocessing at each stage of a pipeline should lead to the best-possible per-
formance. In the following, we demonstrate some simple and regular VLSI pro-

cessor arrays that are capable of pipelining matrix computations with optimal
speed-up.

*Contributed by H. T, Kung and Charles E. Leiserson, Department of Computer Science,
Camnegie-Mellon University. The first version of Section 8.3, including results reported in Sections
8.3.3 thru 8.3.6 of the present version, was written in April 1978 for submission as a paper to the
Symposium on Sparse Matrix Computations and Their Applications, which was held in Knoxville,
Tennessee, November 2-3, 1978, The paper was presented at the Symposium.
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In Section 8.3.2, we describe the basic hardware requirements and intercon-
nection schemes for the proposed VLSI processor arrays and discuss the feasibil-
ity of building these networks. Section 8.3.3 deals with the matrix-vector multi-
plication problem. Multiplication of two matrices is considered in Section 8.3.4. In
Section 8.3.5, we show that essentially the same interconnection scheme and al-
gorithm as those used for matrix multiplication in Section 8.3.4 can be applied to
find the LU-decomposition of a matrix. Section 8.3.6 is concerned with solving
triangular linear systems. We show that this problem can be solved by almost the
same network and algorithm for matrix—vector multiplication described in Section
8.3.3. Section 8.3.7 discusses applications and extensions of the results presented
in the previous sections. The applications include the computations of finite im-
pulse response filters, convolutions, and discrete Fourier transforms. Some con-
cluding remarks are given in the last section.

The size of each of our processor array networks is dependent only on the
band width of the band matrix to be processed and is independent of the length of
the band. Thus, a fixed-size processor array can pipeline band matrices with arbi-
trarily long bands. The pipelining aspect of our algorithms is, of course, most
effective for band matrices with long bands. For this reason most of the results in
this paper will be presented in terms of their applications to band matrices. It is
important to note, however, that all the results apply equally well to dense ma-
trices since a dense matrix can be viewed as a band matrix with the maximum
possible band width.

8.3.2 The Basic Components and Array Structures

8.3.2.1 The Inner Product Step Processor

The single operation common to all the algorithms considered in this section is the
so-called inner product step, C « C + A X B. We postulate a processor that has
three registers R,, Ry, and R.. Each register has two connections, one for input
and one for output. Figure 8.6 shows two types of geometries for this processor.
Type (a) geometry will be used for matrix—vector multiplication and solution of
triangular linear systems (Sections 8.3.3 and 8.3.6), whereas type (b) geometry
will be used for matrix multiplication and LU-decomposition (Sections 8.3.4 and
8.3.5). The processor is capable of performing the inner product step and is called
the inner product step processor. We shall define a basic time unit in terms of the
operation of this processor. In each unit time interval, the processor shifts the data
on its input lines denoted by A, B, and C into R,, Ry, and R, respectively; com-
putes R, < R + R, X Ry, and makes the input values for R, and Ry together with
the new value of R, available as outputs on the output lines denoted by A, B, and
C, respectively. All outputs are latched and the logic is clocked so that when one
processor is connected to another, the changing output of one during a unit time
interval will not interfere with the input to another during this time interval. This is
not the only processing element we shall make use of, but it will be the work-
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Fig. 8.6 Geometries for the
inner product step processor.

"

A

(a) (b)

hor(sie. A special processor for performing division will be specified later when it is
used.

8.3.2.2  Processor Arrays

A device is typically composed of many interconnected inner product step pro-
cessors. The basic network organization we shall adopt for processors is mesh-
connected and all connections from a processor are to neighboring processors.
(See Fig. 8.7). ' ' |

The most widely known system based on this organization is the ILLIAC
IV.** If diagonal connections are added in one direction only, we shall call the
resulting scheme hexagonally mesh-connected, or hex-connected for short. We
shall demonstrate that linearly connected and hex-connected processors are
natural for matrix problems. ‘

Processors lying on the boundary of the processor array may have external
connections to the host memory. Thus, an input/output data path of a boundary
processor may sometimes be designated as an external input/output connection
for the device. A boundary processor may receive input from the host memory
through such an external connection, or it may receive a fixed value such as Zero.
On the other hand, a boundary processor may send data to the host memory
through an external output connection. An output of a boundary processor may

sometimes be ignored: this will be designated by omitting the corresponding out-
put line. ’

roon 838 ogR

(a) Linearly connected

(b) Orthogonally connected (c) Hexagonally connected

Fig. 8.7 Mesh-
connected processor
arrays.
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Throughout Section 8.3 we assume that the processors in an array are syn-
chronous as described in Section 8.3.2.1. However, it is possible to view the pro-
cessors as being asynchronous, each computing its output values when all its in-
puts are available as in a data flow model. For the purposes of this section we
believe the synchronous approach to be more direct and intuitive.

The hardware demands of the VLSI processor arrays described here are
readily seen to be modest. The processing elements are uniform, interprocessor
connections are simple and regular, and external connections are minimized. It is
our belief that construction of these processor arrays will prove to be cost-
effective. ‘

8.3.3 Matrix-Vector Multiplication

We consider the problem of multiplying a matrix A = (a;;) with a vector x =
(x1,. . .,xp)". The elements in the product y = (y1,. . -»yn)" can be computed by the
following recurrences:

yi(l) = 0’
E+D — ik
yietD = v+ agx,
= D
Yi = y"r.

Suppose A is an n X n band matrix with band width w = p+q—1. (See Fig. 8.8 for
the case whenp = 2 and ¢ = 3.) Then the above recurrences can be evaluated by
pipelining the x; and y; through w linearly connected processors. We illustrate the
algorithm for the band matrix-vector multiplication problem in Fig. 8.8. For this
case the linearly connected network has four processors. See Fig. 8.9.

The general scheme of our pipelining algorithm can be viewed as follows: The
y;, which are initially zero, move to the left while the x; are moving to the right and
the a;; are moving down. All the moves are synchronized. It turns out that each y;

14
T
ay 4y N -\‘1—‘ ."1_\
q dry Ay 423 0 X2 Y2
a3y 4y dxy dy X3 ¥3 Fig. 8.8 Multiplication O.f
= a vector by a band matrix
Aay a43 44 45 X4 Y withp =2 and ¢ = 3.
as3
0 . . .
L [ T —
A X y

SlesaEsE s
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l 434 Q43 1
l [
| |
| a33 A4 I
| |
| a3 azy |
| |
| an az; |
| ' -
I -~ . . .
| apy o 7 multiplication problem shown
L - in Fig. 8.8.
~ - |
I N ap -7 $ l
~ -~ |
f ~ e I |
| S I I
-
<« € yl €« y2 P
Xy————> e —> —> —

is able to accumulate all its terms, namely, a;;_sX; g, @i 1Xi—1, @;,i%i and Qi1 %41,
before it leaves the network. Figure 8.10 illustrates the first seven steps of the
algorithm.

Note that when y, and y, are output they have the correct values. Observe
also that at any given time alternating processors are idle. Indeed, by coalescing
pairs of adjacent processors, it is possible to use w/2 processors in the network for
a general band matrix with band width w.

We now specify the algorithm more precisely. Assume that the processors are
numbered by integers 1, 2, . . . ,w from the left-end processor to the right-end
processor. Each processor has three registers, R4, R, and R,, which will hold
entries in A, x and y, respectively. Initially, all registers contain zeros. Each step
of the algorithm consists of the following operations (but for odd-numbered time
steps, only odd-numbered processors are activated, and for even-numbered time
steps, only even-numbered processors are activated):

1. Shift.
R, gets a new element in the band of matrix A.

R, gets the contents of register R, from the left neighboring node.
(The R, in processor 1 gets a new component of x.)

R, gets the contents of register R, from the right neighboring node.
(Processor 1 outputs its R, contents and the R, in processor w gets zero.)

2. Multiply and Add.
R, < R,+ R, XR,.

Fig. 8.9 The linearly connected
network for the matrix—vector
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¥, is fed into the fourth
processor initialized at 0.

x is fed into the first
processor while y, is moved
left one place. (From now

on the x; and ¥, keep moving
right and left, respectively.)

ayy enters the second
processor where yy is
updated ¥y <y +ay1xy.
Thus y; = ay1x;.

a1, and @y, enter the first
and third processors,
respespectively.

Yy =anx; Happx
and y, = ay X;.

n is output.
Yy T Ty,
Y3 T g%

Yy =mpxy tagpxy T ay3x;.
Y3 =aypx; T asx;.

¥, is output.
V3 =y Xy TagyX, T agyx
Yo T Yy Xy

21 dyy a3

31 dzp; dzs

a33

Q42 a3

€12

€22

€32

Cap

€13

€23

Fig. 8.11 Band matrix
multiplication.

by3

al ll]m Xy

Fig. 8.10 The first seven steps of the matrix-vector multiplication algorithm.

Using the type (a) inner product step processor postulated in Section 8.3.2.1, we
note that the three shift operations in step 1 can be done simultaneously, and that
each step of the algorithm takes a unit of time. Suppose the bandwidth of A is w. It
is readily seen that after w units of time the components of the product y = Ax

start shifting out from the left-end processor at the rate of one output every two /e, . . N Fi
units of time. Therefore, using our network all the n components of y can be ( 2 3 1 \' :g. 8.12 The hex‘conn“teq
computed in 2n + w time units, as compared to the O(wn) time needed for the l | b 01:.6 Sﬁor array for the matrix
ial aleorith . [ Mmulttplication problem shown

sequential algorithm on a uniprocessor. l | in Fig. 8.11

: Ca2 €33 Co4 Il T
8.3.4 Matrix Multiplication on a Hexagonal Array : :
This subsection considers the problem of multiplying two n X »n matrices. It is : . . . ,'

| G52 43 34 €35

I |

easy to see that the matrix product C = (¢y) of A = (a;) and B = (b;;) can be
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Fig. 8.13 Four steps during
the matrix multiplication

shown in Fig. 8.12.
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|
} computed by the following recurrences: — — — -
i i A G2 Gz A 0 1 Upp Uy Uyz Uy
| W =0 0
1 c u ’ a a
21 433 43 4y dys I 1
kD = C(;}c) + aybus, 2 0 Uyp Uz Ujg Ups
Cij = ¢, a1 dn a3 Ga dss ETREE Uzy Uss Uss
d41 @4y 43 Ly lyp gz 1 0
Let A and B be n X n band matrices of band width w, and w, respectively. We v a . )
. « . 52 53 .
show how the recurrences above can be evaluated by pipelining the ay;, b;;, and ¢y 52 Is3 .
through an array of w,w, hex-connected processors. The algorithm uses the same 0 0
principle as the one in Section 8.3.3. We illustrate the general scheme by consider- |
ing the matrix multiplication problem depicted in Fig. 8.11. The diamond-shaped 4 ‘ _" s - = —
U

L interconnection network for this case is shown in Fig. 8.12, where processors are
e hex-connected and data flows are indicated by arrows.
o il The elements in the bands of A, B, and C move through the network in three

Fig. 8.14 The LU-decomposition of a band matrix.

l ' n‘:ift directions synchronously. Egch Ci; 18 initializc?d to zero as %t enters the net}’vork g . .
o through the bottom boun'darle's. One' can easily see that' with the type (b) inner ;g triangular matrices L = (I;;) and U = (u;;) are evaluated according to the following |
’ I product processors described in Section 8.3.2.1, each ¢;;is able tq accu_mulate all § recurrences: |
its terms before it leaves the network through the upper boundaries. Figure 8.13 . W
!1’3’6 shows four consecutive steps in the execution of the algorithm. The reader is § @y T G
rB'h!iZ‘f; invited to study the data flow of th.is probl_em more closely _by making transparen- § a0 = g® 4 [~y
;’tz]ﬂﬁ.? cies of the band matrices (shown in the figures), and moving them over the net- . i R R
!:;;:g::xmx; work picture as described in the algorithm. % J' 0 o
i 'E'l.::t Let A and B be n X n band matrices of band width w, and w,, respectively. L =491 ifi= k:
m ‘,}‘.,,:ifi?ﬁ Then a network of w,ws hex-connected processors can pipeline the matrix "‘ l a®ul ifi> k,
:' ‘,,3;;’&!;? multiplication A X Bin 3n + min(wy, w,) units of time.
! %:};’;‘ﬁl Note that in any row or column of the network, out of every three consecutive - 0 ifk>j,
i processors, only one is active at any given time. It is possible to use about one ; ki 7 a® fk<i
b i third of the w,w, processors in the network for multiplying two band matrices 5‘ ki =J-

with band widths w; and w,. ‘,
‘ We show that the evaluation of these recurrences can be pipelined on a hex-

gongected processor array. A global view of this pipelined computation is shown
in Fig. 8.15 for the LU-decomposition problem depicted in Fig. 8.14. The pro-
cessor array in Fig. 8.15 is constructed as follows: The processors below the upper
boundaries are the standard type (b) inner product step processors and are hex-
f:onnected in exactly the same way as the matrix multiplication network presented |
in Section 8.3.4. The processor at the top, denoted by a circle, is a special pro- \

8.3.5. The LU-Decomposition of a Matrix on a Hexagonal Array

The problem of factoring a matrix A into lower and upper triangular matrices L
and U is called LU-decomposition. Figure 8.14 illustrates the LU-decomposition
of a band matrix withp = 4 and g = 4.

Once the L and U factors are known, it is relatively easy to invert A or solve

the linear system Ax = b. (We deal with the latter problem in Section 8.3.6.) This
section describes a parallel LU-decomposition algorithm that has hex-connected
data paths.

We assume that matrix A has the property that its LU-decomposition can be
done by Gaussian elimination without pivoting. (This is true, for example, when A is
a symmetric positive-definite, or an irreducible, diagonally dominant matrix.) The

cessor. It computes the reciprocal of its input and passes the result southwest and
also passes the same input northward unchanged. The other processors on the
upper boundaries are again type (b) inner product step processors, but their orien-
tation is changed: the ones on the upper left boundary are rotated 120 degrees

clockwise; the ones on the upper right boundary are rotated 120 degrees coun-
terclockwise.
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Fig. 8.16 Four steps during the
LU-decomposition shown in

Fig. 8.15 The hex-connected
processor array for pipelining the
LU-decomposition of the band
matrix in Fig. 8.14.
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The flow of data on the network is indicated by arrows in the figure. As in the
matrix multiplication algorithm, each processor only operates every third time
step. Figure 8.16 illustrates four consecutive steps during the execution of the
algorithm. Note that in the figure, because A is a band matrix withp =4 and g = 4,
we have a%,; = asyq; and a9 = a4 for 1 < k < i andi = 2. Thus as,, for
example, can be viewed as a % when it enters the network.

There are several equivalent networks that reflect only minor changes to the
network presented in this section. For example, the elements of L and U can be
retrieved as output in a number of different ways. Also, the “*—1"’ input to the
network can be changed to a ‘‘+1” if the special processor at the top of the net-
work computes minus the reciprocal of its input.

IfAis an n X n band matrix with band width w = p + q — 1, a processor array
having no more than pq hex-connected processors can compute the LU-
decomposition of A in 3n + min(p,q) units of time. If A is an n X n dense
matrix, this means that n* hex-connected processors can compute the L and
U matrices in 4n units of time, which includes I/O time.

The remarkable fact that the matrix multiplication network forms a part of the
LU-decomposition network is due to the similarity of their defining recurrences.
In any row or column of the LU-decomposition network, only one out of every
three consecutive processors is active at a given time. As we observed for matrix
multiplication, the number of processors can be reduced to about pg/3.

8.3.6 Triangular Linear Systems

Suppose that we want to solve a linear system Ax = b. Then after having done
with the LU-decomposition of A (e.g., by methods described in Section 8.3.5), we
still have to solve two triangular linear systems, Ly = b and Ux = y. This section
concerns itself with the solution of triangular linear systems. An upper triangular
linear system can always be rewritten as a lower triangular linear system. Without
loss of generality, this section deals exclusively with lower triangular linear sys-
tems.

Let A = (a;;) be a nonsingular n X n band lower triangular matrix. Suppose

that A and an n-vector b = (b, . . . ,b,)T are given. The problem is to compute x =
(x4 . . . ,X,)7 such that Ax = b. The vector x can be computed by the following
recurrences:

ygn = 0,

k+1) (K
i = ¥ + ayxy,

Xi = (b;i—y{ay.
Suppose that A is a band matrix with band width w = q. (See Fig. 8.17 for the case

when g = 4.) Then the above recurrences can be evaluated by the algorithm and
network almost identical to those used for band matrix-vector multiplication in
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Section 8.3.3. (Observe the similarity of the defining recurrences for these two
problems.) We illustrate our result by considering the linear system prqblem in
Fig. 8.17. For this case, the network and the general scheme of the algorithm are
described in Fig. 8.18.

- — ~ .
an X1 b
dy 42 Y2 by

q 0
ay; a3 ds X3 by
= b

: a gy Q43 dsq Xg = 4

Fig. 8.17 The band (lower) 4

triangular linear system gy G5z dsy dss s bs

where g = 4.

3 g ; ;
O - -
A AY b
|
43 asy |
{
|
a33 42 I
|
432 041)

Fig. 8.18 The linearly connected
- network for solving the linear system

/: shown in Fig. 8.17.
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The y;, which are initially zero, move leftward through the network while the
X;, a;;, and b; are moving as indicated in Fig. 8.18. The left-end processor is special
in that it performs x;< (b; — y;)/a;. (In fact, the special processor introduced in
Section 8.3.5 to solve the LU-decomposition problem is a special case of this more
general processor.) Each y; accumulates inner product terms in the rest of the
processors as it moves to the left. At the time y, reaches the left-end processor, it
has the value a;;x; + @jox5 + - - - + ;,:-1%;-1, and consequently the x; computed by
x; < (b; — y;)a;; at the processor will have the correct value. Figure 8.19 demon-

STEP

NUMBER CONFIGURATION COMMENTS

el

i

¥, enters processor 4.

¥, moves left one position.

Lt

7

I
LRl

Yy, enters processor 4,

L
Ut

X =(b; =y May,.
x, = bl/a11 ,since y; = 0.)

Py = s
4 LTI . N Yy Sy %
X
a  — «— Vale— «—
22 3 || e —(h —
5 ¥ a Xy = by =2y,
X —d —> = | = Yy Tag;x.
b x

=ay,% +a32x2.

« Vi |le— « Yyl e—
6 a 4y 3
—> 32 | —» —> — Y, =d,, X .
, x, — %, — 4 T 4%
-« «— Yy le— <« X, is output.
7 —> —| %4 | —_ X3 = (by —y3)/ay,.
X, T Yy T ax X,
\ < Yy &= Vs | &=
a,. ey Yy =a X tagnx, tagx;.
8 — 43 1 — 52 | — Ve =dox
, x, x, — s = d5y%y-
A4y -« <« Ys | «— X, is output.
9 . R —| % | —s *q = (b, _34’:1)/“44'
4 b, X Xy Vs Tagyxy T agyxy.

Fig. 8.19 Solving a lower
band triangular system
(g = 4).
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strates the first seven steps of the algorithm. From the figure one can check that
the final values of x;, x,, x;, and x, are all correct. With this network we can solve
an n X n band triangular linear system with band width w = g in 2n + g units of
time. As we observed for the matrix—vector multiplication problem, the number of
processors required by the network can be reduced to w/2.

8.3.7 Applications and Comments

8.3.7.1 \Variants of the Algorithms and Networks

Variants of the basic algorithms and networks presented above will often be used
in actual practice. No attempt is given here for listing all the possible variants; it is
important that the reader understand the basic principles used so that he or she
can construct appropriate variants for specific problems.

As pointed out in Section 8.3.1, although most of our illustrations are done for
band matrices, all the algorithms work for the regular n X n dense matrix. In this
case the band width of the matrix is w = 2n — 1. If the band width of a matrix is so
large that a corresponding algorithm requires more processors than a given net-
work provides, then one should decompose the matrix and solve each subproblem
on the network. For instance, the matrix multiplication of twon X n matrices or the
LU-decomposition of ann X n matrix can be done in O(n®/k?) time on ak X k array,
for k < n.

One can often reduce the number of processors required by an algorithm if the
matrix is known to be sparse or symmetric. For example, the matrices arising
from a set of finite differences or finite elements approximations to differential
equations are usually ‘‘sparse band matrices.”” These are band matrices whose
nonzero entries appear only in a few of those lines in the band that are parallel to
the diagonal. In this case by introducing proper delays to each processor for shift-
ing its data to its neighbors, the number of processors required by the algorithm in
Section 8.3.3 can be reduced to the number of those diagonal lines that contain
nonzero entries. This variant is useful for performing iterative methods involving
sparse band matrices. Another example is concerned with the LU-decomposition
problem considered in Section 8.3.5. If matrix A is symmetric positive-definite,
then it is possible to use only the left portion of the hex-connected network, since
in this case Uis simply DL?, where D is the diagonal matrix (a).

The optimal choice of the size of the network to solve a particular problem
depends upon not only the problem but also the memory bandwidth to the host
computer. For achieving high performance, it is desirable to have as many pro-
cessors as possible in the network, provided they can all be kept busy doing useful
computations. .

It is possible to use our algorithms and networks to solve some nonnumerical
problems when appropriate interpretations are given to the addition (+) and mul-
tiplication (X) operations. For example, some pattern-matching problems can be
viewed as matrix problems with comparison and Boolean operations. It can be
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instructive to View the + and X operations as operations in an abstract algebraic
structure, such as a semi-ring, and then to examine how our results hold in these
abstract settings.

8.3.7.2 Convolution, Filter, and Discrete Fourier Transform

There are a number of important problems that can be formulated as matrix—-vector
multiplication problems and thus can be solved rapidly by the algorithm and net-
work in Section 8.3.3. The problems of computing convolutions, finite impulse
response (FIR) filters, and discrete Fourier transforms are such examples. If a
matrix has the property that the entries on any line parallel to the diagonal are all
the same, then the matrix is a Toeplitz matrix. The convolution problem is simply
the matrix-vector multiplication where the matrix is a triangular Toeplitz matrix
(see Fig. 8.20).

— n i —
a4 X1 by
a, a *2 by
0
43 4 &4 X3 by
ay a3 4y @ X4 = by Fig. 8.20 The convolution
of vectors ¢ and x.
as  ay a3 ap 4; X bs
L S O A L

A p-tap FIR filter can be viewed as a matrix—vector multiplication where the
matrix is a band upper triangular Toeplitz matrix with band width w = p. Figure
8.21 represents the computation of a 4-tap filter.

. . —
ay  a, az a4 X1 i
0
ay ay as d4 X9 )
a4 a4z 4 X3 Y3
a4y 4y dz 44 X4 = Y4 Fig. 8.21 A 4-tap FIR filter
with coefficients a,, a,,
as, and ay.
0
L N R L
A x y
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1 X by
w3 X2 by
wb X3 by
w? Xy = b, Fig. 8.22 The discrete Fourier
transform of vector x.
. Xg bs

|

On the other hand, an s-point discrete Fourier transform is the matrix-vector
multiplication, where the (i, j) entry of the matrix is @9~ and  is a primitive
nth root of unity (see Fig. 8.22).

Therefore, using a linearly connected network of size O(n) both the convolu-
tion of two n-vectors and the n-point discrete Fourier transform can be computed
in O(n) units of time, rather than O(n log n) as required by the sequertial FFT
algorithm. Moreover, note that for the convolution and filter problems each pro-
cessor has to receive an entry of the matrix only once, and this entry can be
shipped to the processor through horizontal connections and can stay in the pro-
cessor during the rest of the computation. For the discrete Fourier transform prob-
lem each processor can in fact generate on-the-fly the powers of w it requires. As a
result, for these three problems it is not necessary for each processor in the net-
work to have the external input connection on the top of the processor, as de-
picted in Fig. 8.9.

In the following we describe how the powers of  can be generated on-the-fly
during the process of computing an n-point discrete Fourier transform. The re-
quirement is that if a processor is / units apart from the middle processor, then at
time i + 2 the processor must have the value of w/**%, for all i, j. This requirement
can be fulfilled by using the algorithm below. We assume that each processor has
one additional register R,. All processors except the middle one perform the fol-
lowing operations in each step, but for odd- (respectively, even-) numbered time
steps, only processors that are odd (even) units apart from the middle processor
are activated. For all processors except the middle one the contents of both R,
and R; are initially <‘0”’.

1. Shift. If the processor is in the left- (respectively, right-) hand side of the
middle processor, then
R , gets the conterits of register R, from the right- (respectively,
left-) neighboring processor.
R, gets the contents of register R, from the right- (respectively, left-)
neighboring processor.
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2. Multiply.
R, <R, XR,.

The middle processor is special; it performs the following operations at every
even-numbered time step. For this processor the contents of both R, and R; are
initially ““1°".

2. Rt<_Rt X w.

8.3.7.3 The Common Memory Access Pattern

Note that all the algorithms given in this section store and retrieve elements of the
matrix in the same order. (See Figs. 8.9, 8.12, 8.15, and 8.18.) Therefore, we
recommend that matrices always be arranged in memory according to this particu-
lar ordering so that they can be accessed efficiently by any of the algorithms.

8.3.7.4 The Pivoting Problem, and Orthogonal F actorization

In Section 8.3.5 we assume that the matrix A has the property that there is no need
of using pivoting when Gaussian elimination is applied to A. What should one do if
A does not have this nice property? (Note that Gaussian elimination becomes very
inefficient on mesh-connected processors if pivoting is necessary.) This question
motivated us to consider Givens’s transformation (see, for example, Ham-
mering') for triangularizing a matrix, which is known to be a numerically stable
method. It turns out that, like Gaussian elimination without pivoting, the orthog-
onal factorization based on Givens’s transformation can be implemented natu-
rally on mesh-connected processors, although a pipelined implementation appears
to be more complex. (Results on Givens’s transformation will be reported
elsewhere.) (Sameh and Kuck'® considered parallel linear system solvers based on
Givens’s transformation, but they did not give solutions to the processor com-
munication problem considered here.)

8.3.8 Concluding Remarks

Research in interconnection networks and algorithms has been traditionally
motivated by large scale parallel array computers such as [ILLIAC IV.61718 The
results presented here were, however, motivated by the advance in VLSI, though
they are certainly applicable to parallel array processors. We have shown that
many basic computations can be done very efficiently by special-purpose multi-
processors, which may be built cheaply using VLSI technology. The important
feature common to all of our algorithms is that their data flows are very simple and
regular, and they are pipeline algorithms. We have discovered that some data
flow patterns are fundamental in matrix computations. For example, the two-way
flow on the linearly connected network is common to both matrix—vector multi-
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plication and solution of triangular linear systems (Sections 8.3.3 and 8.3.6), and the
three-way flow on the hexagonally mesh-connected network is common to both
matrix multiplication and LU-decomposition (Sections 8.3.4 and 8.3.5). A practi-
cal implication of this fact is that one device may be used for solving many differ-
ent problems. Moreover, we note that almost all the processors needed in any of
these devices are the inner product step processor postulated in Section 8.3.2. A
careful design for this processor is desirable since it is the workhorse for all the
devices presented. '

For the important problem of solving a dense system of » linear equations in
O(n) time on n X n mesh-connected processors, we have improved upon the re-
cent results of Kant and Kimura'®. The basis of their results is a theorem on de-
terminants that was known to J. Sylvester in 1851. Their algorithm requires that
the matrix be ‘*‘strongly nonsingular’’ in the sense that every square submatrix is
nonsingular. It is sufficent for our algorithms that the matrix be symmetric
positive-definite or irreducible diagonally dominant.

Hoare*® and Thurber and Wald” describe some matrix multiplication al-
gorithms on an orthogonally connected processor array. Unlike our results, their
algorithms require that one or more of the three matrices involved in matrix mul-
tiplication have to stay in the array statically during the computation. This means
extra I/O time and extra logic in each processing element in the network. Because
of the use of hexagonal connection for the array, we are able to pipeline all three
matrices through the network.

Inter-processor communications will likely continue to dominate the cost of
parallel algorithms and systems. Communication paths inherently take more space
and energy than processing elements in many problems of practical interest. We
regard the problem of minimizing communication costs as fundamental. We hope
the results of this section have demonstrated that the communication problem in
parallel algorithms is not only tractable but also interesting. We expect that a large
number of algorithms having small communication costs will be discovered in the
future.

8.4 HIERARCHICALLY ORGANIZED MACHINES

We know that human organizations use hierarchical structure to extract the
greatest possible benefit from the daily activities of tens of thousands of individu-
als. We know that complex systems can be constructed by subdividing them into
less complex systems, which are again subdivided, as many times as necessary,
until the resulting systems are simple enough to construct easily. In Section 8.5 we
show that the organization of real estate on the silicon surface dictates a hierarchi-
cal communication system for any devices that must support global communica-
tion. Such hierarchical communication exists in conventional computers only in a
limited way. Are there new machine structures that communicate hierarchically,
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that support systems consisting of an arbitrary hierarchy of subsystems, and that
can coordinate the activities of any number of submachines?

8.4.1 Binary Trees

Consider any number of processors physically arranged as a binary tree. Each
processor has two subprocessors that it can control. These subprocessors, in turn,
have two sub-subprocessors, and so on. A possible layout of such a binary pro-
cessor tree is shown in Fig. 8.23. At the lowest level a small array of ordinary
memory cells, labeled M,, is accessed by the lowest level processors, labeled P,
The combination of one lowest level processor with its associated memory is the
element of computing power. These units are grouped together in pairs and ac-
cessed by the next level processor, labeled P,. Two P;’s with their associated
lower level units are grouped together and accessed by the next level higher pro-
cessor, labeled P,. This arrangement is repeated recursively until an entire silicon
chip is covered by the processor-memory hierarchy. The rate at which information
can be transferred within a processor is independent of the level of the processor.
As the wires within a processor get longer, the drivers must become proportion-
ately larger to drive them. The highest level processor that communicates off the
silicon chip to the outside world has large drivers and hence is able to drive off-

Pyl M, M, |, Pyl M, My | P,
I B

PR P H P pH P H P

I
Py M, M, |P, Pl M, My | P,

P, — P, — P,
Pyl M, M, |2, Py M, M, |2, Fig. 8.23 Layout for a binary processor tree.
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