A Reprint from the

PROCEEDINGS

Of SPIE-The International Society for Optical Engineering

Volume 298

Real-Time Signal Processing IV

August 25-28, 1981 |
San Diego, California |

Matrix triangularization by systolic arrays

W. M. Gentleman
Department of Computer Science, University of Waterloo
’ Waterloo, Ontario N2L 3G1, Canada

|

H. T. Kung E

Department of Computer Science, Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

© 1982 by the Society of Photo-Optical Instrumentation Engineers
Box 10, Bellingham, Washington 98227-0010 USA. Telephone 206/676-3290



Matrix triangularization by systolic arrays

W. M. Gentleman
Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

H. T. Kung
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Introduction

Given an n x p matrix X with p < n, matrix triangularization, or triangularization in short, is to determine
an n x n nonsingular matrix M such that

R
MX =
0

where R is p x p upper triangular, and furthermore to compute the entries in R. By triangularization, many
matrix problems are reduced to the simpler problem of solving triangular linear systems (sce for example,
Stewart!?). When X is a square matrix. triangularization is the major step in almost all dircct methods for
solving general lincar systems. When M is restricted to be an orthogonal matrix @, triangularization is also the
key step in computing least squares solutions by the QR decomposition, and in computing eigenvalues by the QR
algorithm. Triangularization is computationally expensive, however. Algorithms for performing it typically
require /7 operations on general n x n matrices. As a result, triangularization has become a bottleneck in some
real-time applications.!  This paper sketches unified concepts of using systolic arrays to perform real-time
triangularization for both general and band matrices. (Examples and general discussions of systolic architectures
can be found in other papers.8’) Under the same framework systolic triangularization arrays are derived for the
solution of linear systems with pivoting and for least squares computations. More detailed descriptions of the
suggested systolic arrays will appear in the final version of the paper.

Triangularization for General Matrices

Basic Ideas

Consider a partially triangularized matrix as shown in Figure 1 (a). The triangularization can be carried out
a step further by replacing the fourth row successively with some lincar combination of itself with the first row,
itself with the second row, and itsclf with the third row so that the resulting fourth row will have zeros in its first
three cntrics, as shown in Figure 1 (b). Clcarly this process can continue to the fifth row, the six row, and so on,
until the triangularization is complcte.

A triangular systolic-array as depicted in Figure 2 is well suited for the exccution of the triangularization
process described above. The systolic array consists of two types of cells, internal cells (represented by squares)
and boundary cells (represented by circles).  Intermal cells basically perform multiplies and adds, whcereas
boundary cclls perform divisions or reciprocals plus possibly other operations.  During the computation, X enters
the systolic array from its top boundary onc row after another row in a skewed order. Current cntrics in the i~th
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Figure 1. A step in triangularization for general matrices.
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Figure 2. Abstraction of a triangular systolic array for triangularizing a gencral matrix.
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row of R arc kept in the th row of the systolic array, one entry at cach cell. Initially zeroes are stored in all
cells, and when computation is complete, entrics in R will be readily read out, one from each cell.

The first row of the systolic array, i.e.. the top row of cells in the systolic array, turns every arriving row of
X into a row with zero in its first entry, and outputs results to the second row of the systolic array. Similarly, the
second row of the’ systolic array turns every row of X it receives into a row with zero in its second entry, and
outputs results to the third row of the systolic array, and so on. ‘While updating a row of X, a row of the systolic
array may also update current entrics of R that are stored in -ts cells. The boundary cell at the left end
determines parameters needed for both updates, and they are sent to the right to be used in actual updatings
taking place at internal cells. Because rows of X pass through the systolic array in the skewed order, parameters
determined at the boundary cell will rearch internal cells at right times.

Triangularization with Neighbor Piveting

Triangularization needed in solving lincar systems is classically performed by Gaussian elimination. For
numerical stability, Gaussian elimination in general requires pivoting, and the usual partial or complete pivoting
strategy is not suited to a systolic array since it may require global communication for pivot sclection. The
triangularization process outlined above suggests another pivoting strategy. This technique, called neighbor
pivoting here, introduces a zero to a row by subtracting a multiple of an adjacent row from it, interchanging the
two rows when necessary to prevent the multiple from exceeding unity. The fractional multiple suggests that
triangularization with neighbor pivoting is numerically stable. Indeed numerical experiments have confirmed

this.%-10 Figure 3 specifies cells in a triangular systolic array that can perform triangularization with neighbor
pivoting. At every cell cycle a boundary cell generates a multiplier m as well as a Boolean variable v, which
signals a row interchange when having value one.

INTERNAL CELL:
X if Vi, then
l begin
X - X em.X .

=~ out mom

(m_ v s X (M Vo) « «
[=tm_ v I * " R
v S end
Xout else
Xw‘ - x.ﬂl -+ m.m~X

BOUNDARY CELL:

it Ix_ ]2 Ix] then

begin
X.
" Vout * 1
m _ « if X, hen.-x/x
(M Vo) L = i X #0 t /%,
else 0:
X - X
end
eise
Vout = 0.

M = -Xin /X

Figure 3. Cell definitions for a triangular systolic array for performing
triangularization with ncighbor pivoting.
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The idea of performing neighbor pivoting in Gaussian climination was known at least as early as 1960 for a

loxa}l)" different reason® - it was used for the purpose of minimizing storage requirements rather than for
avoiding global communications.

Orthogonal Triangularization

The classical procedure of performing a sequence of plane rotations (known also as Givens rotations) for
orthogonal triangularization is a special case of the general triangularization process described earlier.
Conscquently a triangular systolic array with cells defined in Figure 4 can perform orthogonal triangularization.
It is of interest to note that the same parallclism as used in the present systolic array was actually assumed in a
previous error analysis of QR decompositions by Givens rotations.*

INTERNAL CELL:
xh
|
‘:'l Xoot © =S X + € X,
(C. .S Vol Xit0C .S,
o — e S SN X X + S.X,
xout
BOUNDARY CELL:
if Xin =0 then
begin
X, Cor = 1:
St =0
(Cout -Sout ! end
eise
begin -

/%2, x2 :
Cour = X/V x2exg
S out * Xin/ xz.x?“ ;

X vV XTe Xy

end

Figure 4. Ccll definitions for a triangular systolic array for performing orthogonal
triangularization with Givens rotations.

Observe that in this case boundary cclls are considerably more complex than internal cefls.  Boundary cells
computc squarc roots as well as reciprocals, whercas internal cells perform only additions and multiplications.
Since all the celis in the systolic array must operate at the same throughput rate, boundary cclls could form a
botticneck for the overall performance. Thus it is desirable to reduce the complexity of boundary cclls so that it
can be closc to that of internal cells. In Gentleman? and Hammarling® methods are described for performing
Givens rotations without square roots.  Using similar techniques, systolic arrays for performing orthogonal
triangularization that ‘involve no square roots have been devised.  For cxample, in onc of these designs a
boundary cell performs five multiplications and onc reciprocal at cach cycle. To carry out.the scaling needed for
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the square root free scheme, boundary cells on the diagonal of the systolic array are now required to be linearly

“connected, as depicted in Figure 2. Detailed cell definitions of this square root free systolic array will be given
in the final version of the paper.

On-the-fly Linear Least Squares Computations

Let X be an n x p matrix X with p < n, and y an n-vector, the linear least squares problem is to determine

a p-vector b such that Iy - Xbli2 is minimized, where the norm is the usual Euclidean norm. The use of the QR
decomposition to solve the least squares problem has proven to be a successful method. Assuming X has full
rank, the method consists of the following steps.

Step 1 (Orthogonal Triangularization). Find an n x n orthogonal matrix 'Q such that

R
ox =
0

where R is p x p upper triangular.
Step 2 (Solution of Triangular Linear System). Solve

Rb = Qly
for b, where Q; is the matrix consisting of the first p rows of Q.

Step 1 can be carried out by a triangular systolic array as described earlier. Note that Q,y can be formed at the
same time as X being orthogonally triangularized by treating y a$ an additional column of X in its right-hand
side. By a result in Kung and Leiserson’, step 2 can be realized with a lincar systolic array. Chaining the two
“systolic arrays together, as shown in Figure 5, forms a powerful system capable of producing on-the-fly the least
squares fit to all the data that have arrived up to any given moment. Since Givens transformations without

squarc roots actually solve the weighted lincar least square problem, 23 exponential decays or other appropriate
weights are readily incorporated in the system.

It should be obvious that a similar system can be formed for solving general linear systems using neighbor
pivoting or orthogonal triangularization. For this case the former costs about half as much as the latter in terms
of the required hardware.

‘A Remark

In Bojanczk, Brent and Kung! a different systolic array for performing the orthogonal triangularization for
squarc matrices is described. ‘That scheme was designed for providing a numerically stable solution for solving
lincar systems and the convenience of performing the @R algorithm in finding cigenvalues, as opposed to solving
the least squarcs problem. With that scheme, when computation is complete factors of Q rather than entries of
R arc ‘stored inside the systolic array.

Triangularization for Band Matrices

When triangularization is to be done on a band matrix, it is possible to organize the systolic array so that its
size depends on the band width of the matrix rather than on the order of the matrix. Figure 6 illustrates the
gencral idea of how to construct such a systolic array. As in the preceding section, by defining the two kinds of
cclls appropriatcly the systolic array can perform triangularization with neighbor pivoting or orthogonal
triangularization.
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Figure 5. On-the-fly least squares solutions using systolic arrays.

Concluding Remarks

Being ablc to perform ncighbor pivoting and Givens rotations by systolic arrays appears to be an important
recalization. Because of this matrix triangularization or other similar computations such as reduction of a general
matrix to its Hessenberg form can all be handled with relatively simple special-purpose modules. Results of this
paper and other papc:rsL7 suggest that a few types of simple VI.SI chips can used to configure a large varicty of
systolic arrays for rcal-time matrix computations. These linear algebra chips should be built in the ncar future.
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Figure 6. Systolic array for triangularizing a band matrix.
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