
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

1983

An algebra for VLSI algorithm design
H Kung
Carnegie Mellon University

Wen-shyoung Thomas Lin

Follow this and additional works at: http://repository.cmu.edu/compsci

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

Recommended Citation
, , , -

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F1489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F1489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1489&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 4 - 1 0 0

An Algebra for VLSI Algorithm Design

H. T. Kung andW. T. Lin

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

April, 1983

An early version of this paper is to appear in the Proceedings of
Conference on Elliptic Problem Solvers, Monterey, California, January 1983.

This research was supported in part by the Office of Naval Research under Contracts N00014-76-C-0370, NR
044-422 and N00014-80-C-0236, NR 048-659. W. T. Lin is with the Electrical Engineering Department of
Carnegie-Mellon University.

Abstract

Algorithms designed for VLSI implementation are usually parallel and two-dimensional in the sense that

many processing elements laid out on a silicon surface can operate simultaneously. These algorithms have

been typically described by graphs or networks where nodes represent processing elements or registers and

edges represent wires. Although for many purposes these traditional representations are adequate for specify­

ing VLSI algorithms, they are not suited for manuipulating algorithm designs. In this paper an algebraic

representation, together with a semantics, is proposed for VLSI algorithm designs. By algebraic transfor­

mations analogous to some typically used in linear algebra, alternative but equivalent designs satisfying

desirable properties such as locality and regularity in data communication can be derived. This paper

describes this powerful algebra for manipulating designs, and provides a mathematical foundation for the

algebraic transformations. The algebraic framework is more suitable for supporting formal manipulation on

designs than the network or graph-theoretic models, especially for complex designs. As an application of the

proposed algebra, die paper demonstrates its use in the design and verification of systolic algorithms.

Table of Contents
1. Introduction
2. Basic Principles and Notation —Il lustrated by a FIR Filtering Example

2.1. FIR Filtering and z-Notation
2.2. Systolic FIR Filtering and z-Graph Representation
2.3. Algebraic Representation of Design
2.4. Deriving Systolic Designs by Algebraic Transformations

3. Foundation for Algebraic Transformations

3.1. Semantics of Design
3.2. Canonical Algebraic Representation
3.3. Well-Defined Design and Equivalent Designs
3.4. Fundamental Results

4. Determining Algebraic Transformations
5. IIR Filtering— A Further Example
6. Concluding Remarks
References

List of Figures
Figure 2-1. Design S (straightforward design). 2
Figure 2-2. Design S in the z-notation. 3
Figure 2-3. Design W2: systolic FIR filtering array (a) and cell (b). 3
Figure 2-4. Design W2 in the z-notation 4
Figure 2-5. Design W2 in the z-graph representation. 4
Figure 2-6. Design W2 in the graph representation. 4
Figure 2-7. Design C— a variant of design S of Figure 2-2. 5
Figure 2-8. Design C in the z-graph representadon. • 5
Figure 2-9. Design C in the algebraic representation. 6
Figure 2-10. Design W2 in the algebraic representation. 7
Figure 2-11. Design corresponding to (2.10) and (2.11) in the z-graph representation. 9
Figure 3-1. Semantics of basic design constructs.. 10
Figure 5-1. Straightforward design for the IIR filter in the z-notation. 18
Figure 5-2. IIR filter in the z-graph representation. 18
Figure 5-3. IIR filter in the algebraic representation. 19
Figure 5-4. ^-slowed IIR filter in the algebraic representation. 19
Figure 5-5. Systolic IIR filter in the z-graph representation. .21
Figure 6-1. Designs for band matrix multiplication in the z-graph representation: (a) a non-systolic 23

design, and (b) a systolic design.

SECTION 1 INTRODUCTION - 1 -

1 . Introduction
Over the past several years, many systolic algorithms have been proposed as solutions to computation-

bound problems (see, e.g., [6,10,12,14]). By exploiting the regularity and parallelism inherent to given

problems and by employing high degrees of parallelism and pipelining, systolic algorithms implemented in

VLSI achieve high performance with regular communication structures and low I/O requirements (see [12]

for detailed discussions of advantages of systolic structures). A number of prototype machines for implement­

ing systolic algorithms, ranging from single-purpose chips [5,9,15], through application-oriented yet

programmable systems [2, 23], to very general systems with reconfigurable interconnections [3,19, 20], have

been designed and built More recently, building-block chips for systolic architectures have also been

proposed or designed [8,1,18, 22], including the CMU programmable systolic chip (PSC) [7, 8]. The general

question of automatically deriving systolic arrays and verifying their correctness, however, remains open,

although several significant attempts have been made in this direction (see, e.g., [4,16,17,21]). Instead of

suggesting methods for deriving or verifying systolic designs, we provide in this paper an algebra for

manipulating VLSI algorithm designs in general. With this algebra a designer is able to manipulate designs

by "pushing symbols," in order to conveniently meet desirable design criteria such as locality and regularity of

data communication.

Section 2 illustrates the notation and basic principles by considering the hardware implementation of a

finite impulse response (FIR) filter. Two representations are proposed to specify a design with the property

that from either representation we can derive the other. The z-graph representation is close to a hardware or

VLSI specification of a design, and the algebraic representation is convenient for performing algebraic trans­

formations on a design. Starting with a design that corresponds directly to the mathematical definition of the

filtering problem (and thus its correctness is obvious), we perform a set of algebraic transformations on its

algebraic representation and obtain the algebraic representation of a systolic design, from which a systolic

filtering array can be derived automatically. Section 3, the heart of this paper, provides a mathematical

foundation for the algebraic transformations used in Section 2. These transformations are formally justified

with respect to a proposed semantics for design. Once justified, they become "legal" transformations that can

be applied freely to any design without impairing correctness. Section 4 presents another application of the

algebra, namely, the derivation of a systolic infinite impulse response (IIR) filtering array. The last section

contains some concluding remarks.

SECTION 2 BASIC PRINCIPLE AND NOTATION - 2 -

2. Basic Principles and Notation —Il lustrated by a
FIR Filtering Example

To illustrate the basic idea and notation of this paper, this section considers a concrete example—the FIR

filtering problem. We will use many diagrams to make the presentation as clear as possible, although

algebraic transformations of this paper rely only on the algebraic representation. We will perform algebraic

transformations formally here and postpone their justification to Section 3.

2 . 1 . FIR Filtering and z-Notation
Consider the following FIR filter with weights wf.

yi=z Wlxt+ nyr f- + 1 + w 3 x / + 2 + w4xi+y (2.1)

Figure 2-1 depicts a straightforward design, called design S, for the hardware implementation of the filter. In

the diagram, each ® and © represent a multiplier and adder, respectively and each 0 or •• represents a

register capable of latching incoming data for one cycle time. Note that the cycle time must be long enough to

allow data flow from register to register, possibly performing some computations in between. One of the

objectives of systolic designs is to minimize the cycle time by avoiding long communications and large

numbers of computations done inside each cycle, and thus maximize the throughput of die resulting system.

Figure 2-L Design S (straightforward design).

Figure 2-2 describes design S (ignoring the input and output registers Q) with the usual z-notation, where a

delay of k cycles is indicated by z~*. We see that in the z-notation the minimum cycle time is the time to

SECTION 2 BASIC PRINCIPLE AND NOTATION - 3 -

perform all the operations connected by edges with label z~°. Thus for design S the cycle time is at least the

time to perform one multiplication (assuming that four hardware multipliers are available) and one 4-input

addition. In the next section we show a systolic design for which only one multiplication and one 2-input

addition will have to be done in each cycle.

1 : > >
Figure 2-2. Design S in the z-notation.

2 . 2 . Systolic FIR Filtering and z-Graph Representation
Figure 2-3 depicts a typical systolic design for FIR filtering, called design W2 in [12]. In tliis design the w/

stay and xt and both move systolically from left to right, but the x, move twice as slowly as the y,-.

(a)

r " 1
1 v 1
. %i
1 1

*2 v l I

i 1
\

\ 1
1 1
1 1
r - "I
LT 2.:

N 1 1
1 1
1 1
1 1
! w<

\
r " 1
1 v 1
. %i
1 1

/

\

l I

i 1
?

\ 1
1 1
1 1
r - "I
LT 2.:

)

\

1 1
1 1
1 1
1 1
! w<

/

\

?

r " 1
1 v 1
. %i
1 1

l I

i 1

s

\ 1
1 1
1 1
r - "I
LT 2.: /

1 1
1 1
1 1
1 1
! w< ?

(b)

in , I 1 1 X 1

I I
I I

I

>but

X

•*out

•*in ;

X

Figure 2-3. Design W2: systolic FIR filtering array (a) and cell (b).

Note that each x value passes from cell to-cell without changing. Figure 2-4 depicts the systolic array in the

z-notation.

SECTION 2 BASIC PRINCIPLE AND NOTATION

-2

U) M M M

-1

Figure 2-4. Design W2 in the z-notation

,-2

Figure 2-5. Design W2 in the z-graph representation.

By grouping every pair of multiplication and addition as one node to be executed by a separate processor,

we derive the z-graph representation of the design (Figure 2-5). The z-graph representation of a systolic

design has the "systolic property'' that the input (the x in Figure 2-5) is distributed to all the nodes (v^Vj.v^yJ

at different time instants and edges between nodes have labels z~k with k>\. One of objectives of this paper

is to introduce an algebra for deriving designs whose z-graph representations will have the systolic property

(see Section 4 below for precise conditions for a systolic design). Given a design like Figure 2-5, whose

z-graph represent enjoys the systolic property, a corresponding systolic array design is readily obtained by

simply passing the input x through the nodes with appropriate delays as depicted in Figure 2-6. It is

instructive to examine the correspondence between Figure 2-3 and 2-6.

v4 v3

V 2.

- l

Figure 2-6. Design W2 in the graph representation.

SECTION 2 BASIC PRINCIPLE AND NOTATION -5 -

2 . 3 . Algebraic Representation of Design
In this and next sections we show that the systolic design W2 of the preceding section can be derived

systematically by algebraic transformation analogous to some typically used in linear algebra. Our starting

design is design C of Figure 2-7, which is a variant of the straightforward design, design S, of Figure 2-2. In

design C the summadon is distributed over a cascade of four 2-input adders as shown in Figure 2-7. Figure

2-8 describes design C in the z-graph representation.

I \ ^ 2 Ì \Wi I

-o

-3

X) (X) (X) (X)

Figure 2-7. Design C— a variant of design S of Figure 2-2.

- l -3

Figure 2-8. Design C in the z-graph representation.

Design C relies on the fact that in the filter computation (2.1) there are as many multiplications as additions.

Similar designs apply to many other inner-product-like computations of this kind. Note that in design C of

Figure 2-8 the edges linking nodes Vi.V2.V3 a n < ^ v4 a ^ have labels z~° and therefore the cycle time must be long

enough to perform computations associated with all the nodes in sequence. Thus design C is not systolic.

Assuming that design C in the z-graph representation (Figure 2-8) is given, our task is to transform it to the

systolic design, design W2, of Figure 2-5 by linear algebra techniques. To this end, we formally associate the

z-graph representation of design C of Figure 2-8 with an algebraic representation shown in Figure 2-9. To see

the correspondence between the two representations, consider for example that

v3 + z~2x,

and

(2.2)

http://Vi.V2.V3

SECTION 2 BASIC PRINCIPLE AND NOTATION - 6 -

(2.3)

— T-0„ y=z

V4j

z"° 0

0 0
0 0
0 0

2 -° 0

" z"3"
v2 + z l

+
) V3 z"1

- _V4.

v2

v3

v 4.

Figure 2-9. Design C in the algebraic representation.

Consistently with Figure 2-8, (2.2) states that at any time /, the value of node v2, v2(/), depends on the values

of node v3 at time /, v3(/), and the value of input x at time / - 2 , x (/ -2) , and (2.3) states that the value of

output y is the same as the value of node vl at any time. More precisely,

v 2 (0=/ 2 [v 3 (0^(/ -2)] , (2.4)

where f2 is a 2-variable function associated with v2 such that

f2[a,b] = a+w2b.

This defines one-to-one correspondence between the z-graph representation of a design and its algebraic

representation, in the sense that from either representation one can derive the other. Note that the plus sign

in (2.2) represents some combination of information by (2.4) rather than the usual arithmetic addition. In

Section 3.2 below semantics for algebraic expressions involving the " symbol such as (2.2) will be given.

y = [z-°o 0 <T

It is readily seen from Figure 2-5 that the algebraic representation of design W2 is that shown in Figure

2-10.

SECTION 2 BASIC PRINCIPLE AND NOTATION -7-

— - -
0 z

< 0 0
v3 0 0

-V4_ . 0 0

0 0
1 .

+
L v3 z" 2

- V4_ - 2 ' ° .

LV4.

Figure 2-10. Design W2 in the algebraic representation.

2.4. Deriving Systolic Designs by Algebraic Transformations
In this section we demonstrate that the algebraic representation of the systolic design, design W2, can be

obtained from that of design C through formal algebraic transformations; in the next section we will provide a

mathematical foundation for these transformations. To simplify notation, we denote the algebraic represen­

tation ofdesignCby

v*— Av+bx, (2.5)

T
(2.6)

where matrix A and vectors b, c are defined according to Figure 2-9. Consider the diagonal matrix

2 - 3 0 0 0

0 z " 2 0 0

0 0 z " 1 0
0 0 0 z"

and its "formal" inverse

SECTION 2 BASIC PRINCIPLE AND NOTATION -8-

D 1 -

z 3 0 . 0 0

0 z 2 0 0

0 0 z 1 0

0 0 0 z c

Let

u-Dv. (2.7)

Then

v=D~lu.

Multiplying (2.5) by D, we have

Dv^DAv+Dbx.

By (2.7) and (2.8), (2.9) and (2.6) become

u*-(DAD-l)u + (Db)x,

and

y=(cTD-i)Ui

respectively. Through formal calculation, one can check that

(2.8)

(2.9)

(2.10)

(2.11)

DAD1 =

0 z" 1 0 0

0 0
0 0
0 0

z-1 0

Db =

-6

--4

-0

and c r D l - [z 3 0 0 0

Thus (2.10) and (2.11) are the algebraic representation of the design "whose z-graph representation is shown in

Figure 2-11.

We have transformed design C of Figure 2-8 to the design of Figure 2-11. After renaming the value of

SECTION 2 BASIC PRINCIPLE AND NOTATION - 9 -

- o - 6

Figure 2-11. Design corresponding to (2.10) and (2.11) in the z-graph representation.

output y at time / to be that of output y at time / + 3 , the design becomes exacdy the systolic design W2 of

Figure 2-5. In conclusion, we have derived a systolic design by applying a transformation D to the algebraic

representation of a non-systolic design.

SECTION 3 FOUNDATION FOR ALGEBRAIC TRANSFORMATIONS • 10 -

3. Foundation for Algebraic Transformations
In Section 2.4 we illustrated that a systolic design could be derived by formal algebraic manipulations

similar to those used in linear algebra. This section provides a mathematical foundation for these formal

manipulations. To do so, we first need to give a semantics for VLSI algorithm design.

3 .1 . Semantics of Design
We define the semantics of a design to be a function of time that the design implements. More precisely,

the semantics of some basic design constructs given in either the z-graph representation or the algebraic

representation are summarized in the table of Figure 3-1 with the following comments:

SYNTAX SEMANTICS

z-graph representation algebraic representation

l . 0 v/ i s a f u n c t i o n o f t i m e d e f i n e d

1 i n t e r m s o f s o m e a s s o c i a t e d

f u n c t i o n / / .

S Z * ' 1

2 . x ~ v t «— z l v 2 + z j x + z k v 3 F u n c t i o n v j i s d e f i n e d b y

M O = / i | > (' - 0 , * (> -J) , M ' - *) L

i

M O = / i | > (' - 0 , * (> -J) , M ' - *) L

y >y -k 1
y (0 = viV-k). 3 . Q . —>y j y = z"*v/ y (0 = viV-k).

Figure 3-1. Semantics of basic design constructs.

1. Each node v,- in the z-graph representation or each variable v, in the algebraic representation is a
function of time defined in terms of some implicit Junction fj associated with v/.

2. The value of node or variable vx at time /, v^/), is f\v2{t-0, x(t-j), v 3 (/ - k)], where v2(/ - 0 is the
value of v2 at time /— /, x{t—j) is die value of input x at time /-y, and v3(/— k) is the value of v3 at
time / - k,

3. The value of output y at time / is the same as the value of v,- at time i-k. (If k=0, symbol z~k can
be omitted from the z-graph representation as Figures 2-5 and 2-8.)

SECTION 3 FOUNDATION FOR ALGEBRAIC TRANSFORMATIONS -11 -

Note that for designs of Figures 2-8 and 2-11, implicit function fi, /=1,2,3, associated widi node v, or iij

with weight w/, is defined by

and implicit function^ associated with node v4 or uA is defined by

f[b]=wAb,

where a and b are the left and top inputs to the node, respectively. Note that implicit functions f are

functions independent of time. As far as the algebraic transformations of this paper are concerned, the

semantics of implicit functions need not be specified, as they are invariant under these transformations. This

is the reason why we call them implicit functions.

3.2. Canonical Algebraic Representation
As shown in Figures 2-5 and 2-8, a general design in the z-graph representation has input x, output y and

nodes vlf • • •, vn. By grouping multiple expressions for defining individual functions vlf • • •, vn into a single

matrix expression, the algebraic representation of a general VLSI algorithm design often has the form:

v+-Av+bxt (3.1)

y=crv1 (3.2)

where A=(z~aij) is an nxn matrix, b=(z~\ • •, z~hn)T, v=(v l f • •, vn)T, and c r =(z~ c i , • • •, z~cn) with only

one nonzero entry. This canonical form of algebraic representation has been illustrated by Figures 2-9 and

2-10, and will be assumed in the rest of the paper except the concluding remarks section.

3.3. Well-Defined Design and Equivalent Designs
For /= 1, •. •, /2, the /-th component of (3.1) is

v /^-z"" f l/iv1 + z " a 6 v 2 + . . • + z~ainvn +z'bnx. (3.3)

That is, (3.1) is a collection of expressions (3.3) for /= 1, • • •, n. For defining the semantics of design (3.1) and

(3.2), (3.3) means that function v, satisfies

'viO)=MviO-<*b)Mi-*b)' • • •>*„ (/ - a / / t U(/ -6 j)] (3.4)

for some implicit function f associated with node v„ and (3.2) means that

)tt)=Vj(t-Cj)t

where - cj is the exponent of the only nonzero entry in vector cT. (Mechanically, we can think that in the

transformation from (3.3) to (3.4) ' W is replaced with " = ") Here we use the convention that a zero entry

of A, b or cT is z" 0 0 and it is omitted from expressions (3.3) and (3.4).

SECTION 3 FOUNDATION FOR ALGEBRAIC TRANSFORMATIONS -12 -

We say that a design is well-defined starting from some /0, if for / = 1 , and / > /0, v/(/) is completely

determined by values in the sets W/ 7): / ' < /} and {v,(/0: /' < t}y /= 1, • • •, n, and this property holds for any

implicit functions. In view of (3.4) a sufficient condition for design (3.1) to be well-defined is that ay's are all

positive. This is, however, not a necessary condition. It is instructive to see that design C of Figure 2-9 is

well-defined in spite of the fact that for this design a 1 2 =a 2 3 = tf34 = 0. From Figure 2-9, we have

VL(/)=/i[yz(d.j</-3)i

v 2 (0=/ 2 [v 3 (0^/ -2)] f

v 3 (0 = ^ [v 4 (/) , ^ - l)] ,

V 4(0=/4Md].

Therefore

vx (/) =/x K K K WO], *(/-1)] , - 2)1 3)],

v2 (/)=/ 2 K K M01. tit- i) l 2)1

^(d=J5KW/)].x(/-i)l

v 4(/)=/ 4W/)l

We see that for / = 1 , • • • ,4, v,(0 is completely determined by values in the set {^(/0- tf<t} for any implicit

functions ff, and thus design C is well-defined. It is easy to prove that a sufficient and necessary condition for

a design to be well-defined is that in its z-graph representation there does not exist any cycle whose edges all

have label z"°. Verifying this condition for a design can be done in linear time. Hereafter we are only

interested in designs that are well-defined.

Consider a well-defined design (3.1), with some implicit function associated with each node. Given an

input function (of time) JC and initial values v^t) for t < /0, by (3.4) design (3.1) defines a unique vector

function (of time) v=(v l f • • •, v^7* and together with (3.2), defines a unique output function (of time) y. We

say two output functions A and B are essentially the same if A(t) = B(t+ a), where a is some constant, for all /

greater than certain time intant.

Definition 3.1: Two given designs are equivalent, if for any initial values given for one design,
there exist initial values for the odier design such that with the same input function the two
designs produce essentially the same output function.

In the following section we will show that design defined by (2.5) and (2.6) and one defined by (2.10) and

(2.11) are equivalent

*
In the semantics literature, function vsuch defined is called the "fixpoint solution" of "fixpoint equation" (3.1).

SECTION 3 FOUNDATION FOR ALGEBRAIC TRANSFORMATIONS - 1 3 -

3.4. Fundamental Results
To express our results on algebraic transformations, we need the following definitions. Let D=(z~di) be an

nxn diagonal matrix.

1. For v=(v l f • •, v^ 7 , define Dv to be u=(ult • • •, w n) rsuch that for /= 1, • • •, ny

for all / for which Vjit-dj) is defined. Thus, D can be viewed as an operator that maps a vector
function v to another vector function Dv.

2. For 6=(z~*i, . . • ,z~b*)T, define Db to be e=(z~eit • • • ,z~en)Twhere

*/=<//+6,

for /= 1, • • •, n.

3. Let A = (z~aij) be an «xai matrix. Define DA to be an nxn matrix B=(z~bij) where

bij=di+aij

for /, y = 1, • • •, n. Product AD is defined similarly. We can easily check that

(DA)D-l = D(AD~l),

and thus we can simply denote them by DAD"1.

Here we use the convention that

oo =dj+ oo

for any d\. Thus zero entries of b or A remain to be zero entries in Db or DA, respectively.

Lemma 3.1: Suppose that v and u are defined by well-defined designs

v«- i4v+foc (3.5)

and

u<-(DAD-l)u + (Db)x, (3.6)

with their initial values satisfying

ut(t+dj)=vM (3.7)

for t< /q. Then

u=Dv.

Proof: Let v,- and ut be the /-th components of v and u, respectively. Note that
DAD"l = (z -di+drai)) and Db^(z"di"\z"d^\ • • • ,z"dn"bn)T. Thus, ut defined by
(3.6) satisfies

SECTION 3 FOUNDATIONFORALGEBRAICTRANSFORMATIONS -14-

uM = fi[ui(t-di+ ^ - f l / i) , u2(t-dt+ d2-ai2), • • •,
un(t-dj+ dn- ain), x(t-br d$,

Replacing t with t+di in the above equation, we have

«/(/+^ = - / / k (/ + r f 1 - a A) , i i 2 (/ + 4-flft), • • •, (3.8)
ujj+dn-a^x(t-bjj[.

By (3.4),

v , - (/) = y j [v i (/ - f l a) , ^ (/ - f l a) , • • • , v ^ - f l ^ , ^ / - ^ ! . (3.9)

We prove by induction on / that for / = 1 , • • •, n,

Uid + d^ViU) (3.10)

for t= t0, /Q + 1 , t0 + 2, •. •. By (3.7), (3.10) holds for / < /0. Thus,

ujito + d r ciij) = vj(t0 - a$

for any j for which azy> 0. Since designs (3.5) and (3.6) are well-defined, (3.8) and (3.9) imply that

W / (^) + ^) = V | (0 .

that is, (3.10) holds for /= By induction (3.10) holds for /= / 0 + 1 , ^ + 2, • • •, and so on. •

The following lemma can be proven by a similar method:

Lemma 3.2: If

y—cTv and u = Dv,

then

y=(cTD~l)v.

Immediately following from Lemmas 3.1 and 3.2, we have the following result:

Theorem 3.1: Design

v<— Av+bx,

T
y—cv

is equivalent to design

u+-(DAD-l)u + (Db)x,

y=(cTD~l)v,

assuming that both designs are well-defined.

SECTION 3 FOUNDATION FOR ALGEBRAIC TRANSFORMATIONS -15 -

The above theorem is essentially the "retiming lemma" of Leiserson and Saxe [17]. Not using the algebraic

notation and approach taken here, they had to rely on a very long (4 pages) and rather unclean proof.

In the following, we introduce another transformation whose function is to scale down the throughput of an

existing design. Consider a well-defined design M with input function x and output function y, and another

design M' with input function x* and output function y\ We say that design M' is a k-slowed design of M for

some positive integer ky if the following holds for some integer p:

for any initial values for M, there exist initial values for M'
such that if

'(/+•/>)=*(/)

for all /, then

y'(kt+p)=y(0

for all / where y{t) is defined

Therefore as far as the outside world is concerned, the function of a ^-slowed design is the same as that of the

original design, except that input and output are taken in and out, respectively, once every k time units. The

usefulness of ^-slowed designs in the derivation of systolic designs was first pointed out in [17], and it will

become clear in the next two sections. The following lemma shows a simple way to implement a well-defined,

^-slowed design.

Lemma 3.3: If

V ^ V + 6 J C , (3.11)

T

y=c V
is a well-defined design, then the design

v ' ^ V + i V , (3.12)

y'=c'Tv', (3.13)

with A'=(z~kaif), bf=(z~k\ • • • z~kbn)T

% and c,T-{z"kc\ • • • z~kcn) is a well-defined, ^-slowed
design.

Proof: Since in their z-graph representations the two designs have the same set of edges with
label z"°, well-defineness of one design implies that of the other. Let v,- and v/ be the z-th
components of v and v', respectively. Without loss of generality, assume that the output functions
y and y' of the two designs satisfy

X/)=v , (/ -Cj) , and / (/ 0 = v / (/ , - * c i) f

respectively. Suppose that the original design is well-defined starting from t0. It suffices to prove
that if

SECTION 3 FOUNDATION FOR ALGEBRAIC TRANSFORMATIONS -16 -

for all /, and

v / (* o = v / (d

for /= 1, • • •,n and /< /0, then

(3.14)

for all / for which y(t) is defined. The proof is similar to that of Lemma 3.1 and is omitted.

SECTION 4 DETERMINING ALGEBRAIC TRANSFORMATIONS - 1 7 -

4. Determining Algebraic Transformations
Given a well-defined design, we want to determine a ^-slowed design and Z)=(z"^) such that design

u+-(DA'D-l)u + (Db/)x/,

yf={c'TD~l)u

will be well-defined and systolic. This imposes the following conditions on the entries of DAfD~l and Dbf:

CI. F o r / = 1 , • • • tn,

dj+ kay-dj>l.

{This assures not only that the design is well-defined, but also diat the cycle time only has to be
long enough to perform the computation of at most one node.}

C2. All nonzero entries of any column of DA 'D~l and Dbf must be distinct.
{This assures that the value of a node at any time never has to be sent to more than one node
simultaneously, and thus no broadcasting or fanout of data is needed.}

It is an easy exercise to show that if the original design is well-defined, that is, in its z-graph representation

there does not exist cycles whose edges all have label z"°, then there exist k and D for which conditions CI

and C2 are satisfied. To maximize throughput we are interested in a solution which has the smallest-possible

k. It turns out that for some designs to satisfy CI and C2, k must be greater than one, as to be illustrated by

IIR filtering example in the next section. This is the reason why we perform transformations on a ^-slowed

design, with £ > 1, rather than the original design.

SECTION 5 IIR FILTERING— A FURTHER EXAMPLE -18 -

5. IIR Filtering— A Further Example
Consider the implementation of the following infinite impulse response (IIR) filter with weights wf.

yt= ^ / - 1 + ^ - 2 + * № + w4xHl. (5.1)

The above equation states that at any given time /, the value of output y depends on the values of y at times

/ - 1 and / - 2 , and input x at times / and / - 1 . Figure 5-1 depicts a straightforward design for the IIR filter in

the z-notation.

v
W

4

z"
1 z-°

f \H>2 N f

Figure 5-1. Straightforward design for the IIR filter in the z-notation.

Similar to the FIR design of Figure 2-7, the 4-input adder of Figure 5-1 can be distributed over a cascade of

four 2-input adders. This forms a design with four identical nodes, whose z-graph representation is depicted

in Figure 5-2. Figure 5-3 describes the algebraic representation of the design.

Figure 5-2. IIR filter in the z-graph representation.

According to Lemma 3.3, a ^-slowed design can be obtained by changing labels z~h to z~kh for any h. The

algebraic representation of the ^-slowed IIR filter is described in Figure 5-4, and is denoted by

v<— A'v+b'x,

/T

SECTION 5 IIR FILTERING— A FURTHER EXAMPLE -19 -

Vi
v2

v3
V4.

Figure 5-3. IIR filter in the algebraic representation.

y — = [z"° 0 0 0

vi
H
V3
V4*J

Figure 5-4. AT-slowed IIR filter in the algebraic representation.

We seek a diagonal matrix D such that the design described by

u*-(DAfD~1)u + (Db')xf,

y=(c,TD-l)u,

will be well-defined and systolic. By condition CI of Section 4,

k>l,

SECTI0N5 I1RF1LTERING—AFURTHEREXAMPLE -20-

c^-d^l,

4-upl­
and by condition C2,

d^k+d,.

One can check that a solution with the minimum-possible value for k is that k=2 and

Note that

D =

0

z" 1 0 0

0 0
0 0

z"° 0

z z z" 1

z " 3 0
0 0
0 0

0 0
1 .

z
0
0

z" 1

0 J

Db = and STDl=[z 2 0

Thus the resulting systolic IIR filtering array in the z-graph representation is shown in Figure 5-5. This

systolic array was previously described in [11].

SECTION 6 CONCLUDING REMARKS

- 3 - 2

z z

jf 1 ^

u? J >(u 7 ^

Figure 5-5. Systolic IIR filter in the z-graph representation.

SECTION 6 CONCLUDING REMARKS • 22 -

6. Concluding Remarks
We proposed two representations for specifying a design—the z-graph representation and the algebraic

representation. From either representation we can derive the other. The z-graph representation is readily

mappable to a hardware or VLSI implementation, whereas the algebraic representation is suitable for al­

gebraic transformations. For algebraic transformations, only algebraic representations of designs are needed.

By working within an algebraic framework, rather than a network or graph-theoretic framework, one can use

powerful algebraic operators to manipulate designs and can deal with abstraction conveniently. For example,

using matrix notation, a simple algebraic expression such as (3.1) can represent design of arbitrary size.

A more general algebraic representation than the one described in (3.1) and (3.2) is:

v<-Av+Bx% (6.1)

y=CTv, (6.2)

where input x and output y are vectors rather than scalars, and B and C are matrices rather than vectors b and

c. This general form of representation seems to cover all the interesting VLSI algorithm designs that we know

of and can anticipate. For example, for the design of Figure 6-1(a) for multiplying a bidiagonal upper

triangular matrix with a bidiagonal lower triangular matrix, we have

0 I " 0 z~° 0

z" 0 0 zl 0

0 z-° 0 z-° f

z-° 0 0 z\

and

z-° 0

0 0
0 0 z"° 0

Without loss of generality we can always assume that there is only one nonzero entry in each row of CT, that

is, at any time the value of each output yt is equal to that of some node at that time or earlier. Results and

definitions of this paper can all be extended in a straightforward way to this general form of the algebraic

representation (6.1) and (6.2). For example we can show that starting with the non-systolic design of Figure

6-1(a), a systolic solution with the minimum-possible value for k is that k= 1 and

SECTION 6 CONCLUDING REMARKS - 23 -

z"° 0 0 0

0 z"° 0 0

0 0 z 1 0

_ 0 0 0 z' l _

The resulting systolic array is illustrated in Figure 6-1(b), which is precisely the systolic design for band matrix

multiplication proposed in [21]. Detailed discussions of this and other results including the use of the

proposed algebra in the derivation of two-level pipelined systolic arrays [13] and systolic arrays for priority

queues and LU-decomposition of matrices will appear in forthcoming papers.

Figure 6-1. Designs for band matrix multiplication in the z-graph
representation: (a) a non-systolic design, and (b) a systolic design.

We view that major contributions of this paper are at the proposed semantics for VLSI algorithm design,

algebraic representation and transformations, and the mathematical foundation for these transformations.

With these algebraic tools, we are able to manipulate designs by "pushing symbols" as we do in algebra, and

to prove theorems about design transformations (e.g., Theorem 3.1). without relying on any drawings. Deriv­

ing systolic design is just of one of many potential applications of the proposed algebra.

Acknowledgments

We want to thank Allan Fisher and Monica Lam for their comments on an early draft of the paper.

REFERENCES 24

References
[1] Avila, J. and Kuekes, P.

One-Gigaflop VLSI Systolic Processor.
In Proceedings of SPIE Symposium, Vol 431, Real-Time Signal Processing VI, pages 159-165. Society

of Photo-Optical Instrumentation Engineers, August, 1983.

[2] Blackmer, J., Frank, G. and Kuekes, P.
A 200 Million Operations per Second (MOPS) Systolic Processor.
In Proceedings of SPIE Symposium, Vol 298, Real-Time Signal Processing IV, pages 10-18. Society of

Photo-Optical Instrumentation Engineers, August, 1981.

[3] Bromley, K., Symanski, J.J., Speiser, J.M., and Whitehouse, H J .
Systolic Array Processor Developments.
In Kung, H.T., Sproull, R.F., and Steele, G.L., Jr. (editors), VLSI Systems and Computations, pages

273-284. Computer Science Department, Carnegie-Mellon University, Computer Science Press,
Inc., October, 1981.

[4] Chen, M.C. and Mead, C.A.
A Hierarchical Simulator Based on Formal Semantics.
In Bryant, R. (editor), Proceedings of the Third Caltech Conference on Very Large Scale Integration,

pages 207-223. California Institute of Technology, Computer Science Press, Inc., March, 1983.

[5] Corry. A. and Patel, K.
A CMOS/SOS VLSI Correlator.
In Proceedings of1983 International Symposium on VLSI Technology', Systems and Applications, pages

134-137. 1983.

[6] Fisher, A.L. and Kung, H.T.
Special-Purpose VLSI Architectures: General Discussions and a Case Study.
In VLSI and Modern Signal Processing. Prentice-Hall, November, 1982.

[7] Fisher, A.L., Kung, H.T., Monier, L.M. and Dohi, Y.
Architecture of the PSC: A Programmable Systolic Chip.
In Proceedings of the 10th Annual International Symposium on Computer Architecture, pages 48-53.

June, 1983.

[8] Fisher, A.L., Kung, H.T., Monier, L.M., Walker, H. and Dohi, Y.
Design of the PSC: A Programmable Systolic Chip.
In Bryant, R. (editor), Proceedings of the Third Caltech Conference on Very Large Scale Integration,

pages 287-302. California Institute of Technology, Computer Science Press, Inc., March, 1983.

[9] Foster, M.J. and Kung, H.T.
The Design of Special-Purpose VLSI Chips.
Computer Magazine 13(1):26-40, January, 1980.
Reprint of the paper appears in Digital MOS Integrated Circuits, edited by Elmasry, M.I., IEEE Press

Selected Reprint Series, 1981, pp. 204-217.

[10] Kung, H.T.
Let's Design Algorithms for VLSI Systems.
In Proceedings of Conference on Very Large Scale Integration: Architecture, Design, Fabrication, pages

65-90. California Institute of Technology, January, 1979.
Also available as a CMU Computer Science Department technical report, September 1979.

REFERENCES 25

[11] Kung, H.T.
Special-Purpose Devices for Signal and Image Processing: An Opportunity in VLSI.
In Proceedings of the SPIE, Vol. 241, Real-Time Signal Processing III, pages 76-84. Society of

Photo-Optical Instrumentation Engineers, July, 1980.

[12] Kung, H.T.
Why Systolic Architectures?
Computer Magazine 15(l):37-46, January, 1982.

[13] Kung, H.T., Ruane, L.M., and Yen, D.W.L. •
Two-Level Pipelined Systolic Array for Multidimensional Convolution.
Image and Vision Computing 1(1):30-36, February, 1983.
An improved version appears as a CMU Computer Science Department technical report, November

1982.

[14] Kung, H.T. and Leiserson, C.E.
Systolic Arrays (for VLSI).
In Duff, I. S. and Stewart, G. W. (editors), Sparse Matrix Proceedings 1978, pages 256-282. Society for

Industrial and Applied Mathematics, 1979.
A slightly different version appears in Introduction to VLSI Systems by C. A. Mead and L. A. Conway,

Addison-Wesley, 1980, Section 8.3, pp. 37-46.

[15] Kung, H.T. and Song, S.W.
A Systolic 2-D Convolution Chip.
In Preston, K., Jr. and Uhr, L. (editors). Multicomputer and Image Processing: Algorithms and

Programs, pages 373-384. Academic Press, 1982.

[16] Lam, M. and Mostow, J.
A Transformational Model of VLSI Systolic Design.
In Uehara, T. and Barbacci, M. (editors), Proceedings of the 6th International Symposium on Computer

Hardware Description Languages and their Applications, pages 65-77. IFIP, May, 1983,

[17] Leiserson, C.E. and Saxe, J.B.
Optimizing Synchronous Systems.
Journal of VLSI and Computer Systems l(l):41-68,1983.

[18] Sorasen, O., Solberg, B., and Alker, H.-J.
VLSI Implemented Systolic Array Processor for Vector Processing.
In Anceau, F. and Aas, E.J. (editors), VLSI '83, pages 307-316. North-Holland, August, 1983.

[19] Symanski, J.J.
Systolic Array Processor Implementation.
In Proceedings ofSPIE Symposium, Vol 298% Real-Time Signal Processing IV, pages 27-32. Society of

Photo-Optical Instrumentation, August, 1981.

[20] Symanski, J.J.
Progress on a Systolic Processor Implementation.
In Proceedings of SPIE Symposium, Vol 341, Real-Time Signal Processing V, pages 2-7. Society of

Photo-Optical Instrumentation, May, 1982.

REFERENCES 26

Weiser, U. and Davis, A.
A Wavefront Notation Tool for VLSI Array Design.
In Kung, H.T., Sproull, R.F., and Steele, G.L., Jr. (editors), VLSI Systems and Computations, pages

226-234. Computer Science Department, Carnegie-Mellon University, Computer Science Press,
Inc., October, 1981.

Weste, N.H.E., Burr, DJ . and Ackland, B.D.
A Systolic Processing Element for Speech Recognition.
In Proceedings of1982 IEEE International Solid-State Circuits Conference, pages 274-275. February,

1982.

Yen, D.W.L. and Kulkarni, A.V.
Systolic Processing and an Implementation for Signal and Image Processing.
IEEE Transactions on Computers C-31(1Q): 1000-1009, October, 1982.

UNCLASSIFIED
S E C U R I T Y C L A S S I rjCATlON Or THIS P A : , E ' H ' h a n . D a f a Ent + rrd)

R E P O R T DOCUMENTATION PAGE READ INSTrUCTIONS
BEFORE CO" 'L F.1ING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO.
C M U - C S - 8 4 - 1 0 0

3 . RECIPIENT'S C A T A L O G NUMBER

4. TITLE (und Subtitle)
AN ALGEBRA FOR VLSI ALGORITHM DESIGN

5. TYPE OF REPORT & PERIOD COVERED

I n t e r i m

4. TITLE (und Subtitle)
AN ALGEBRA FOR VLSI ALGORITHM DESIGN

6 . PERFORMING ORG. REPORT NUMBER

7. AUTHORf»;
H . T . Kung , W . T . L i n N R 0 4 4 - 4 2 2 , N R 0 4 8 - 6 5 9

N 0 0 0 1 4 - 8 0 - C - 0 2 3 6

9. PERFORMING ORGANIZATION NAME AND ADDRESS
C a r n e g i e - M e l l o n U n i v e r s i t y
Computer S c i e n c e Depa r tmen t
P i t t s b u r g h , PA 15213

10. PROGRAM ELEMENT. PROJECT. TASK AREA 6 WORK UNIT NUMBERS

H. CONTROLLING OFFICE NAME AND ADDRESS
O f f i c e of Nava l R e s e a r c h
A r l i n g t o n , VA 22217

12. REPORT DATE
^ p r i l 1 9 8 3

H. CONTROLLING OFFICE NAME AND ADDRESS
O f f i c e of Nava l R e s e a r c h
A r l i n g t o n , VA 22217 13. NUMBER OF PAGES

3 1
U . MONITORING AGENCY NAME & ADDRESŜ // difteront from Controlling Office) 15. SECURITY CLASS, (of thia report)

UNCLASSIFIED

U . MONITORING AGENCY NAME & ADDRESŜ // difteront from Controlling Office)

15«. DECL ASSI F | CATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved f o r . p u b l i c r e l e a s e ; d i s t r i b u t i o n u n l i m i t e d

17. DISTRIBUTION STATEMENT (of the Abstract entered In Block 20, if different from Report)

A p p r o v e d f o r p u b l i c r e l e a s e ; d i s t r i b u t i o n u n l i m i t e d

16. SUPPLEMENTARY NOTES

19. KEY WORDS (d ntinue on reverse stae it necessary &nd identify by block nvnr.ber)

20. ABSTRACT (Continue on reverse tide it necee*ejy mnd iocntity by block number)

1
DD y J A S M ? 3 1473 E D I T I O N or 1 Nov es is O ^ O L E T E H ; C ' A S S I E I E D

SCCUniTì CLARIFICATION Of THIS PAGE (Vr.er. Fr.fred)

	Carnegie Mellon University
	Research Showcase @ CMU
	1983

	An algebra for VLSI algorithm design
	H Kung
	Wen-shyoung Thomas Lin
	Recommended Citation

