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Abstract 

Algorithms designed for VLSI implementation are usually parallel and two-dimensional in the sense that 

many processing elements laid out on a silicon surface can operate simultaneously. These algorithms have 

been typically described by graphs or networks where nodes represent processing elements or registers and 

edges represent wires. Although for many purposes these traditional representations are adequate for specify­

ing VLSI algorithms, they are not suited for manuipulating algorithm designs. In this paper an algebraic 

representation, together with a semantics, is proposed for VLSI algorithm designs. By algebraic transfor­

mations analogous to some typically used in linear algebra, alternative but equivalent designs satisfying 

desirable properties such as locality and regularity in data communication can be derived. This paper 

describes this powerful algebra for manipulating designs, and provides a mathematical foundation for the 

algebraic transformations. The algebraic framework is more suitable for supporting formal manipulation on 

designs than the network or graph-theoretic models, especially for complex designs. As an application of the 

proposed algebra, die paper demonstrates its use in the design and verification of systolic algorithms. 
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1 . Introduction 
Over the past several years, many systolic algorithms have been proposed as solutions to computation-

bound problems (see, e.g., [6,10,12,14]). By exploiting the regularity and parallelism inherent to given 

problems and by employing high degrees of parallelism and pipelining, systolic algorithms implemented in 

VLSI achieve high performance with regular communication structures and low I/O requirements (see [12] 

for detailed discussions of advantages of systolic structures). A number of prototype machines for implement­

ing systolic algorithms, ranging from single-purpose chips [5,9,15], through application-oriented yet 

programmable systems [2, 23], to very general systems with reconfigurable interconnections [3,19, 20], have 

been designed and built More recently, building-block chips for systolic architectures have also been 

proposed or designed [8,1,18, 22], including the CMU programmable systolic chip (PSC) [7, 8]. The general 

question of automatically deriving systolic arrays and verifying their correctness, however, remains open, 

although several significant attempts have been made in this direction (see, e.g., [4,16,17,21]). Instead of 

suggesting methods for deriving or verifying systolic designs, we provide in this paper an algebra for 

manipulating VLSI algorithm designs in general. With this algebra a designer is able to manipulate designs 

by "pushing symbols," in order to conveniently meet desirable design criteria such as locality and regularity of 

data communication. 

Section 2 illustrates the notation and basic principles by considering the hardware implementation of a 

finite impulse response (FIR) filter. Two representations are proposed to specify a design with the property 

that from either representation we can derive the other. The z-graph representation is close to a hardware or 

VLSI specification of a design, and the algebraic representation is convenient for performing algebraic trans­

formations on a design. Starting with a design that corresponds directly to the mathematical definition of the 

filtering problem (and thus its correctness is obvious), we perform a set of algebraic transformations on its 

algebraic representation and obtain the algebraic representation of a systolic design, from which a systolic 

filtering array can be derived automatically. Section 3, the heart of this paper, provides a mathematical 

foundation for the algebraic transformations used in Section 2. These transformations are formally justified 

with respect to a proposed semantics for design. Once justified, they become "legal" transformations that can 

be applied freely to any design without impairing correctness. Section 4 presents another application of the 

algebra, namely, the derivation of a systolic infinite impulse response (IIR) filtering array. The last section 

contains some concluding remarks. 
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2. Basic Principles and Notation —Il lustrated by a 
FIR Filtering Example 

To illustrate the basic idea and notation of this paper, this section considers a concrete example—the FIR 

filtering problem. We will use many diagrams to make the presentation as clear as possible, although 

algebraic transformations of this paper rely only on the algebraic representation. We will perform algebraic 

transformations formally here and postpone their justification to Section 3. 

2 . 1 . FIR Filtering and z-Notation 
Consider the following FIR filter with weights wf. 

yi=z Wlxt+ nyr f- + 1 + w 3 x / + 2 + w4xi+y (2.1) 

Figure 2-1 depicts a straightforward design, called design S, for the hardware implementation of the filter. In 

the diagram, each ® and © represent a multiplier and adder, respectively and each 0 or •• represents a 

register capable of latching incoming data for one cycle time. Note that the cycle time must be long enough to 

allow data flow from register to register, possibly performing some computations in between. One of the 

objectives of systolic designs is to minimize the cycle time by avoiding long communications and large 

numbers of computations done inside each cycle, and thus maximize the throughput of die resulting system. 

Figure 2-L Design S (straightforward design). 

Figure 2-2 describes design S (ignoring the input and output registers Q ) with the usual z-notation, where a 

delay of k cycles is indicated by z~*. We see that in the z-notation the minimum cycle time is the time to 
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perform all the operations connected by edges with label z~°. Thus for design S the cycle time is at least the 

time to perform one multiplication (assuming that four hardware multipliers are available) and one 4-input 

addition. In the next section we show a systolic design for which only one multiplication and one 2-input 

addition will have to be done in each cycle. 

1 : > > 
Figure 2-2. Design S in the z-notation. 

2 . 2 . Systolic FIR Filtering and z-Graph Representation 
Figure 2-3 depicts a typical systolic design for FIR filtering, called design W2 in [12]. In tliis design the w/ 

stay and xt and both move systolically from left to right, but the x, move twice as slowly as the y,-. 
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Figure 2-3. Design W2: systolic FIR filtering array (a) and cell (b). 

Note that each x value passes from cell to-cell without changing. Figure 2-4 depicts the systolic array in the 

z-notation. 
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Figure 2-4. Design W2 in the z-notation 

,-2 

Figure 2-5. Design W2 in the z-graph representation. 

By grouping every pair of multiplication and addition as one node to be executed by a separate processor, 

we derive the z-graph representation of the design (Figure 2-5). The z-graph representation of a systolic 

design has the "systolic property'' that the input (the x in Figure 2-5) is distributed to all the nodes (v^Vj.v^yJ 

at different time instants and edges between nodes have labels z~k with k>\. One of objectives of this paper 

is to introduce an algebra for deriving designs whose z-graph representations will have the systolic property 

(see Section 4 below for precise conditions for a systolic design). Given a design like Figure 2-5, whose 

z-graph represent enjoys the systolic property, a corresponding systolic array design is readily obtained by 

simply passing the input x through the nodes with appropriate delays as depicted in Figure 2-6. It is 

instructive to examine the correspondence between Figure 2-3 and 2-6. 

v4 v3 

V 2. 

- l 

Figure 2-6. Design W2 in the graph representation. 
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2 . 3 . Algebraic Representation of Design 
In this and next sections we show that the systolic design W2 of the preceding section can be derived 

systematically by algebraic transformation analogous to some typically used in linear algebra. Our starting 

design is design C of Figure 2-7, which is a variant of the straightforward design, design S, of Figure 2-2. In 

design C the summadon is distributed over a cascade of four 2-input adders as shown in Figure 2-7. Figure 

2-8 describes design C in the z-graph representation. 

I \ ^ 2 Ì \Wi I 

-o 

-3 

X) (X) ( X ) ( X ) 

Figure 2-7. Design C— a variant of design S of Figure 2-2. 

- l -3 

Figure 2-8. Design C in the z-graph representation. 

Design C relies on the fact that in the filter computation (2.1) there are as many multiplications as additions. 

Similar designs apply to many other inner-product-like computations of this kind. Note that in design C of 

Figure 2-8 the edges linking nodes Vi.V2.V3 a n < ^ v4 a ^ have labels z~° and therefore the cycle time must be long 

enough to perform computations associated with all the nodes in sequence. Thus design C is not systolic. 

Assuming that design C in the z-graph representation (Figure 2-8) is given, our task is to transform it to the 

systolic design, design W2, of Figure 2-5 by linear algebra techniques. To this end, we formally associate the 

z-graph representation of design C of Figure 2-8 with an algebraic representation shown in Figure 2-9. To see 

the correspondence between the two representations, consider for example that 

v3 + z~2x, 

and 

(2.2) 

http://Vi.V2.V3
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(2.3) 

— T-0„ y=z 

V4j 

z"° 0 

0 0 
0 0 
0 0 

2 -° 0 

" z"3" 
v2 + z l 

+ 
) V3 z"1 

- _V4. 

v2 

v3 

v 4. 

Figure 2-9. Design C in the algebraic representation. 

Consistently with Figure 2-8, (2.2) states that at any time /, the value of node v2, v2(/), depends on the values 

of node v3 at time /, v3(/), and the value of input x at time / - 2 , x ( / -2) , and (2.3) states that the value of 

output y is the same as the value of node vl at any time. More precisely, 

v 2 (0=/ 2 [v 3 (0^( / -2) ] , (2.4) 

where f2 is a 2-variable function associated with v2 such that 

f2[a,b] = a+w2b. 

This defines one-to-one correspondence between the z-graph representation of a design and its algebraic 

representation, in the sense that from either representation one can derive the other. Note that the plus sign 

in (2.2) represents some combination of information by (2.4) rather than the usual arithmetic addition. In 

Section 3.2 below semantics for algebraic expressions involving the " symbol such as (2.2) will be given. 

y = [z-°o 0 <T 

It is readily seen from Figure 2-5 that the algebraic representation of design W2 is that shown in Figure 

2-10. 
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— - -
0 z 

<  0 0 
v3 0 0 

-V4_ . 0 0 

0 0 
1 . 

+ 
L v3 z" 2 

- V4_ - 2 ' ° . 

LV4. 

Figure 2-10. Design W2 in the algebraic representation. 

2.4. Deriving Systolic Designs by Algebraic Transformations 
In this section we demonstrate that the algebraic representation of the systolic design, design W2, can be 

obtained from that of design C through formal algebraic transformations; in the next section we will provide a 

mathematical foundation for these transformations. To simplify notation, we denote the algebraic represen­

tation ofdesignCby 

v*— Av+bx, (2.5) 

T 
(2.6) 

where matrix A and vectors b, c are defined according to Figure 2-9. Consider the diagonal matrix 

2 - 3 0 0 0 

0 z " 2 0 0 

0 0 z " 1 0 
0 0 0 z" 

and its "formal" inverse 
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D 1 -

z 3 0 . 0 0 

0 z 2 0 0 

0 0 z 1 0 

0 0 0 z c 

Let 

u-Dv. (2.7) 

Then 

v=D~lu. 

Multiplying (2.5) by D, we have 

Dv^DAv+Dbx. 

By (2.7) and (2.8), (2.9) and (2.6) become 

u*-(DAD-l)u + (Db)x, 

and 

y=(cTD-i)Ui 

respectively. Through formal calculation, one can check that 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

DAD1 = 

0 z" 1 0 0 

0 0 
0 0 
0 0 

z-1 0 

Db = 

-6 

--4 

-0 

and c r D l - [ z 3 0 0 0 

Thus (2.10) and (2.11) are the algebraic representation of the design "whose z-graph representation is shown in 

Figure 2-11. 

We have transformed design C of Figure 2-8 to the design of Figure 2-11. After renaming the value of 
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- o - 6 

Figure 2-11. Design corresponding to (2.10) and (2.11) in the z-graph representation. 

output y at time / to be that of output y at time / + 3 , the design becomes exacdy the systolic design W2 of 

Figure 2-5. In conclusion, we have derived a systolic design by applying a transformation D to the algebraic 

representation of a non-systolic design. 
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3. Foundation for Algebraic Transformations 
In Section 2.4 we illustrated that a systolic design could be derived by formal algebraic manipulations 

similar to those used in linear algebra. This section provides a mathematical foundation for these formal 

manipulations. To do so, we first need to give a semantics for VLSI algorithm design. 

3 .1 . Semantics of Design 
We define the semantics of a design to be a function of time that the design implements. More precisely, 

the semantics of some basic design constructs given in either the z-graph representation or the algebraic 

representation are summarized in the table of Figure 3-1 with the following comments: 

SYNTAX SEMANTICS 

z-graph representation algebraic representation 

l . 0 v/ i s a f u n c t i o n o f t i m e d e f i n e d 

1 i n t e r m s o f s o m e a s s o c i a t e d 

f u n c t i o n / / . 

S Z * ' 1 

2 . x ~ v t «— z l v 2 + z j x + z k v 3 F u n c t i o n v j i s d e f i n e d b y 

M O = / i | > ( ' - 0 , * ( > -J ) , M ' - * ) L 

i 

M O = / i | > ( ' - 0 , * ( > -J ) , M ' - * ) L 

y >y -k 1 
y ( 0 = viV-k). 3 . Q . —>y j y = z"*v/ y ( 0 = viV-k). 

Figure 3-1. Semantics of basic design constructs. 

1. Each node v,- in the z-graph representation or each variable v, in the algebraic representation is a 
function of time defined in terms of some implicit Junction fj associated with v/. 

2. The value of node or variable vx at time /, v^/), is f\v2{t-0, x(t-j), v 3 ( / - k)], where v2(/ - 0 is the 
value of v2 at time /— /, x{t—j) is die value of input x at time /-y, and v3(/— k) is the value of v3 at 
time / - k, 

3. The value of output y at time / is the same as the value of v,- at time i-k. (If k=0, symbol z~k can 
be omitted from the z-graph representation as Figures 2-5 and 2-8.) 
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Note that for designs of Figures 2-8 and 2-11, implicit function fi, /=1,2,3, associated widi node v, or iij 

with weight w/, is defined by 

and implicit function^ associated with node v4 or uA is defined by 

f[b]=wAb, 

where a and b are the left and top inputs to the node, respectively. Note that implicit functions f are 

functions independent of time. As far as the algebraic transformations of this paper are concerned, the 

semantics of implicit functions need not be specified, as they are invariant under these transformations. This 

is the reason why we call them implicit functions. 

3.2. Canonical Algebraic Representation 
As shown in Figures 2-5 and 2-8, a general design in the z-graph representation has input x, output y and 

nodes vlf • • •, vn. By grouping multiple expressions for defining individual functions vlf • • •, vn into a single 

matrix expression, the algebraic representation of a general VLSI algorithm design often has the form: 

v+-Av+bxt (3.1) 

y=crv1 (3.2) 

where A=(z~aij) is an nxn matrix, b=(z~\ • •, z~hn)T, v=(v l f • •, vn)T, and c r =(z~ c i , • • •, z~cn) with only 

one nonzero entry. This canonical form of algebraic representation has been illustrated by Figures 2-9 and 

2-10, and will be assumed in the rest of the paper except the concluding remarks section. 

3.3. Well-Defined Design and Equivalent Designs 
For /= 1, •. •, /2, the /-th component of (3.1) is 

v /^-z"" f l/iv1 + z " a 6 v 2 + . . • + z~ainvn +z'bnx. (3.3) 

That is, (3.1) is a collection of expressions (3.3) for /= 1, • • •, n. For defining the semantics of design (3.1) and 

(3.2), (3.3) means that function v, satisfies 

'viO)=MviO-<*b)Mi-*b)' • • •>*„ ( / - a / / t U( / -6 j ) ] (3.4) 

for some implicit function f associated with node v„ and (3.2) means that 

)tt)=Vj(t-Cj)t 

where - cj is the exponent of the only nonzero entry in vector cT. (Mechanically, we can think that in the 

transformation from (3.3) to (3.4) ' W is replaced with " = ") Here we use the convention that a zero entry 

of A, b or cT is z" 0 0 and it is omitted from expressions (3.3) and (3.4). 
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We say that a design is well-defined starting from some /0, if for / = 1 , and / > /0, v/(/) is completely 

determined by values in the sets W/ 7): / ' < /} and {v,(/0: /' < t}y /= 1, • • •, n, and this property holds for any 

implicit functions. In view of (3.4) a sufficient condition for design (3.1) to be well-defined is that ay's are all 

positive. This is, however, not a necessary condition. It is instructive to see that design C of Figure 2-9 is 

well-defined in spite of the fact that for this design a 1 2 =a 2 3 = tf34 = 0. From Figure 2-9, we have 

VL(/)=/i[yz(d.j</-3)i 

v 2 (0=/ 2 [v 3 (0^/ -2 ) ] f 

v 3 ( 0 = ^ [ v 4 ( / ) , ^ - l ) ] , 

V 4(0=/4Md]. 

Therefore 

vx (/) =/x K K K WO], *( /-1)] , - 2)1 3)], 

v2 (/)=/ 2 K K M01. tit- i ) l 2)1 

^(d=J5KW/)].x(/-i)l 

v 4(/)=/ 4W/)l 

We see that for / = 1 , • • • ,4, v,(0 is completely determined by values in the set {^(/0- tf<t} for any implicit 

functions ff, and thus design C is well-defined. It is easy to prove that a sufficient and necessary condition for 

a design to be well-defined is that in its z-graph representation there does not exist any cycle whose edges all 

have label z"°. Verifying this condition for a design can be done in linear time. Hereafter we are only 

interested in designs that are well-defined. 

Consider a well-defined design (3.1), with some implicit function associated with each node. Given an 

input function (of time) JC and initial values v^t) for t < /0, by (3.4) design (3.1) defines a unique vector 

function (of time) v=(v l f • • •, v^7* and together with (3.2), defines a unique output function (of time) y. We 

say two output functions A and B are essentially the same if A(t) = B(t+ a), where a is some constant, for all / 

greater than certain time intant. 

Definition 3.1: Two given designs are equivalent, if for any initial values given for one design, 
there exist initial values for the odier design such that with the same input function the two 
designs produce essentially the same output function. 

In the following section we will show that design defined by (2.5) and (2.6) and one defined by (2.10) and 

(2.11) are equivalent 

* 
In the semantics literature, function vsuch defined is called the "fixpoint solution" of "fixpoint equation" (3.1). 
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3.4. Fundamental Results 
To express our results on algebraic transformations, we need the following definitions. Let D=(z~di) be an 

nxn diagonal matrix. 

1. For v=(v l f • •, v^ 7 , define Dv to be u=(ult • • •, w n) rsuch that for /= 1, • • •, ny 

for all / for which Vjit-dj) is defined. Thus, D can be viewed as an operator that maps a vector 
function v to another vector function Dv. 

2. For 6=(z~*i, . . • ,z~b*)T, define Db to be e=(z~eit • • • ,z~en)Twhere 

*/=<//+6, 

for /= 1, • • •, n. 

3. Let A = (z~aij) be an «xai matrix. Define DA to be an nxn matrix B=(z~bij) where 

bij=di+aij 

for /, y = 1, • • •, n. Product AD is defined similarly. We can easily check that 

(DA)D-l = D(AD~l), 

and thus we can simply denote them by DAD"1. 

Here we use the convention that 

oo =dj+ oo 

for any d\. Thus zero entries of b or A remain to be zero entries in Db or DA, respectively. 

Lemma 3.1: Suppose that v and u are defined by well-defined designs 

v«- i4v+foc (3.5) 

and 

u<-(DAD-l)u + (Db)x, (3.6) 

with their initial values satisfying 

ut(t+dj)=vM (3.7) 

for t< /q. Then 

u=Dv. 

Proof: Let v,- and ut be the /-th components of v and u, respectively. Note that 
DAD"l = (z -di+drai)) and Db^(z"di"\z"d^\ • • • ,z"dn"bn)T. Thus, ut defined by 
(3.6) satisfies 



SECTION 3 FOUNDATIONFORALGEBRAICTRANSFORMATIONS -14-

uM = fi[ui(t-di+ ^ - f l / i ) , u2(t-dt+ d2-ai2), • • •, 
un(t-dj+ dn- ain), x(t-br d$, 

Replacing t with t+di in the above equation, we have 

«/(/+^ = - / / k ( / + r f 1 - a A ) , i i 2 ( / + 4-flft), • • •, (3.8) 
ujj+dn-a^x(t-bjj[. 

By (3.4), 

v , - ( / ) = y j [ v i ( / - f l a ) , ^ ( / - f l a ) , • • • , v ^ - f l ^ , ^ / - ^ ! . (3.9) 

We prove by induction on / that for / = 1 , • • •, n, 

Uid + d^ViU) (3.10) 

for t= t0, /Q + 1 , t0 + 2, •. •. By (3.7), (3.10) holds for / < /0. Thus, 

ujito + d r ciij) = vj(t0 - a$ 

for any j for which azy> 0. Since designs (3.5) and (3.6) are well-defined, (3.8) and (3.9) imply that 

W / ( ^ ) + ^ ) = V | ( 0 . 

that is, (3.10) holds for /= By induction (3.10) holds for /= / 0 + 1 , ^ + 2, • • •, and so on. • 

The following lemma can be proven by a similar method: 

Lemma 3.2: If 

y—cTv and u = Dv, 

then 

y=(cTD~l)v. 

Immediately following from Lemmas 3.1 and 3.2, we have the following result: 

Theorem 3.1: Design 

v<— Av+bx, 

T 
y—cv 

is equivalent to design 

u+-(DAD-l)u + (Db)x, 

y=(cTD~l)v, 

assuming that both designs are well-defined. 
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The above theorem is essentially the "retiming lemma" of Leiserson and Saxe [17]. Not using the algebraic 

notation and approach taken here, they had to rely on a very long (4 pages) and rather unclean proof. 

In the following, we introduce another transformation whose function is to scale down the throughput of an 

existing design. Consider a well-defined design M with input function x and output function y, and another 

design M' with input function x* and output function y\ We say that design M' is a k-slowed design of M for 

some positive integer ky if the following holds for some integer p: 

for any initial values for M, there exist initial values for M' 
such that if 

*'(*/+•/>)=*(/) 

for all /, then 

y'(kt+p)=y(0 

for all / where y{t) is defined 

Therefore as far as the outside world is concerned, the function of a ^-slowed design is the same as that of the 

original design, except that input and output are taken in and out, respectively, once every k time units. The 

usefulness of ^-slowed designs in the derivation of systolic designs was first pointed out in [17], and it will 

become clear in the next two sections. The following lemma shows a simple way to implement a well-defined, 

^-slowed design. 

Lemma 3.3: If 

V ^ V + 6 J C , (3.11) 

T 

y=c V 
is a well-defined design, then the design 

v ' ^ V + i V , (3.12) 

y'=c'Tv', (3.13) 

with A'=(z~kaif), bf=(z~k\ • • • z~kbn)T

% and c,T-{z"kc\ • • • z~kcn) is a well-defined, ^-slowed 
design. 

Proof: Since in their z-graph representations the two designs have the same set of edges with 
label z"°, well-defineness of one design implies that of the other. Let v,- and v/ be the z-th 
components of v and v', respectively. Without loss of generality, assume that the output functions 
y and y' of the two designs satisfy 

X/ )=v , ( / -Cj) , and / ( / 0 = v / ( / , - * c i ) f 

respectively. Suppose that the original design is well-defined starting from t0. It suffices to prove 
that if 
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for all /, and 

v / ( * o = v / ( d 

for /= 1, • • •,n and /< /0, then 

(3.14) 

for all / for which y(t) is defined. The proof is similar to that of Lemma 3.1 and is omitted. 



SECTION 4 DETERMINING ALGEBRAIC TRANSFORMATIONS - 1 7 -

4. Determining Algebraic Transformations 
Given a well-defined design, we want to determine a ^-slowed design and Z)=(z"^) such that design 

u+-(DA'D-l)u + (Db/)x/, 

yf={c'TD~l)u 

will be well-defined and systolic. This imposes the following conditions on the entries of DAfD~l and Dbf: 

CI. F o r / = 1 , • • • tn, 

dj+ kay-dj>l. 

{This assures not only that the design is well-defined, but also diat the cycle time only has to be 
long enough to perform the computation of at most one node.} 

C2. All nonzero entries of any column of DA 'D~l and Dbf must be distinct. 
{This assures that the value of a node at any time never has to be sent to more than one node 
simultaneously, and thus no broadcasting or fanout of data is needed.} 

It is an easy exercise to show that if the original design is well-defined, that is, in its z-graph representation 

there does not exist cycles whose edges all have label z"°, then there exist k and D for which conditions CI 

and C2 are satisfied. To maximize throughput we are interested in a solution which has the smallest-possible 

k. It turns out that for some designs to satisfy CI and C2, k must be greater than one, as to be illustrated by 

IIR filtering example in the next section. This is the reason why we perform transformations on a ^-slowed 

design, with £ > 1, rather than the original design. 
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5. IIR Filtering— A Further Example 
Consider the implementation of the following infinite impulse response (IIR) filter with weights wf. 

yt= ^ / - 1 + ^ - 2 + * № + w4xHl. (5.1) 

The above equation states that at any given time /, the value of output y depends on the values of y at times 

/ - 1 and / - 2 , and input x at times / and / - 1 . Figure 5-1 depicts a straightforward design for the IIR filter in 

the z-notation. 

v
W

4 

z"
1 z-° 

f \H>2 N f 

Figure 5-1. Straightforward design for the IIR filter in the z-notation. 

Similar to the FIR design of Figure 2-7, the 4-input adder of Figure 5-1 can be distributed over a cascade of 

four 2-input adders. This forms a design with four identical nodes, whose z-graph representation is depicted 

in Figure 5-2. Figure 5-3 describes the algebraic representation of the design. 

Figure 5-2. IIR filter in the z-graph representation. 

According to Lemma 3.3, a ^-slowed design can be obtained by changing labels z~h to z~kh for any h. The 

algebraic representation of the ^-slowed IIR filter is described in Figure 5-4, and is denoted by 

v<— A'v+b'x, 

/T 
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Vi 
v2 

v3 
V4. 

Figure 5-3. IIR filter in the algebraic representation. 

y — = [ z"° 0 0 0 

vi 
H 
V3 
V4*J 

Figure 5-4. AT-slowed IIR filter in the algebraic representation. 

We seek a diagonal matrix D such that the design described by 

u*-(DAfD~1)u + (Db')xf, 

y=(c,TD-l)u, 

will be well-defined and systolic. By condition CI of Section 4, 

k>l, 
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c^-d^l, 

4-upl­
and by condition C2, 

d^k+d,. 

One can check that a solution with the minimum-possible value for k is that k=2 and 

Note that 

D = 

0 

z" 1 0 0 

0 0 
0 0 

z"° 0 

z z z" 1 

z " 3 0 
0 0 
0 0 

0 0 
1 . 

z 
0 
0 

z" 1 

0 J 

Db = and STDl=[ z 2 0 

Thus the resulting systolic IIR filtering array in the z-graph representation is shown in Figure 5-5. This 

systolic array was previously described in [11]. 
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- 3 - 2 

z z 

jf 1 ^ 

u? J >( u 7 ^ 

Figure 5-5. Systolic IIR filter in the z-graph representation. 
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6. Concluding Remarks 
We proposed two representations for specifying a design—the z-graph representation and the algebraic 

representation. From either representation we can derive the other. The z-graph representation is readily 

mappable to a hardware or VLSI implementation, whereas the algebraic representation is suitable for al­

gebraic transformations. For algebraic transformations, only algebraic representations of designs are needed. 

By working within an algebraic framework, rather than a network or graph-theoretic framework, one can use 

powerful algebraic operators to manipulate designs and can deal with abstraction conveniently. For example, 

using matrix notation, a simple algebraic expression such as (3.1) can represent design of arbitrary size. 

A more general algebraic representation than the one described in (3.1) and (3.2) is: 

v<-Av+Bx% (6.1) 

y=CTv, (6.2) 

where input x and output y are vectors rather than scalars, and B and C are matrices rather than vectors b and 

c. This general form of representation seems to cover all the interesting VLSI algorithm designs that we know 

of and can anticipate. For example, for the design of Figure 6-1(a) for multiplying a bidiagonal upper 

triangular matrix with a bidiagonal lower triangular matrix, we have 

0 I " 0 z~° 0 

z" 0 0 zl 0 

0 z-° 0 z-° f 

z-° 0 0 z\ 

and 

z-° 0 

0 0 
0 0 z"° 0 

Without loss of generality we can always assume that there is only one nonzero entry in each row of CT, that 

is, at any time the value of each output yt is equal to that of some node at that time or earlier. Results and 

definitions of this paper can all be extended in a straightforward way to this general form of the algebraic 

representation (6.1) and (6.2). For example we can show that starting with the non-systolic design of Figure 

6-1(a), a systolic solution with the minimum-possible value for k is that k= 1 and 
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z"° 0 0 0 

0 z"° 0 0 

0 0 z 1 0 

_ 0 0 0 z' l _ 

The resulting systolic array is illustrated in Figure 6-1(b), which is precisely the systolic design for band matrix 

multiplication proposed in [21]. Detailed discussions of this and other results including the use of the 

proposed algebra in the derivation of two-level pipelined systolic arrays [13] and systolic arrays for priority 

queues and LU-decomposition of matrices will appear in forthcoming papers. 

Figure 6-1. Designs for band matrix multiplication in the z-graph 
representation: (a) a non-systolic design, and (b) a systolic design. 

We view that major contributions of this paper are at the proposed semantics for VLSI algorithm design, 

algebraic representation and transformations, and the mathematical foundation for these transformations. 

With these algebraic tools, we are able to manipulate designs by "pushing symbols" as we do in algebra, and 

to prove theorems about design transformations (e.g., Theorem 3.1). without relying on any drawings. Deriv­

ing systolic design is just of one of many potential applications of the proposed algebra. 
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