
Communication Complexity for Parallel Divide-and- Conquer

I-Chen Wu and H. T. Kung *

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper studies the relationship between parallel
computation cost and communication cost for perform-
ing divide-and-conquer (D&C) computations on a par-
allel system of p processors. The parallel computation
cost is the maximal number of the D&C nodes that any
processor in the parallel system may expand, whereas
the communication cost is the total number of cross
nodes. A cross node is a node which is generated b y
one processor but expanded b y another processor. A
new scheduling algorithm is proposed, whose parallel
computation cost and communication cost are at most
[N/p1 and pdh, respectively, for any D&C computa-
tion tree with N nodes, height h, and degree d . Also,
lower bounds on the communication cost are derived.
In particular, it is shown that for each scheduling al-
gorithm and for each positive EC < l, which can be
arbitrarily close to 0, there are values of N , h, d , p ,
and q(> O), for which i f the parallel computation cost
is between N l p (the minimum) and (1 + q) N / p , then
the communication cost must be at least (1 - E C) .pdh .
Therefore, the proposed scheduling algorithm is opti-
mal with respect to the communication cost, since the
parallel computation cost of the algorithm is near op-
timal.

1 Introduction

Divide and conquer (D&C) is a common compu-
tation paradigm, in which the solution to a problem
is obtained by solving subproblems recursively. Ex-
amples of D&C computations include various sorting

'This research was supported in part by the Defense
Advanced Research Projects Agency (DOD) monitored by
DARPA/CMO under Contract MDA972-90-C-0035, in part by
the National Science Foundation and the Defense Advanced
Research Projects Agency under Cooperative Agreement NCR-
8919038 with the Corporation for National Research Initiatives,
and in part by the Office of Naval Research under Contract
NO001 4-90- J- 1939.

methods such as quick sort [6], computational geome-
try procedures such as convex hull calculation [12], AI
search heuristics such as constraint satisfaction tech-
niques [5], adaptive data classification procedures such
as generation and maintenance of quadtrees [13], and
numerical methods such as multigrid algorithms [lo]
for solving partial differential equations.

A D&C computation can be viewed as a process
of expanding and shrinking a tree. Each node in the
tree corresponds to a problem instance, and children
of the node correspond to its subproblems. During
the computation, each internal (non-leaf) node goes
through two phases. The first phase is the divide phase
during which the problem instance associated with the
node is divided into subproblems. The second phase
is the combine phase during which the solution of the
problem instance associated with the node is derived
by combining solutions of the subproblems associated
with the node's children. After its creation each leaf
will perform some computation and return the results
to its parent. At a given time, nodes on a wavefront
that cuts across all paths from the root to leaves can
be active in performing divide, combine, or compute
operations. Along each path the wavefront first moves
down from the root to its leaf and then up from the
leaf to the root.

At first glance, one might think that it should be
straightforward to perform D&C in parallel, because
nodes on the wavefront can all be processed indepen-
dently. However, if one wants to achieve good load
balancing between the processors, then parallelizing
D&C becomes nontrivial. In fact, doing efficient D&C
on any real parallel machine has been a major chal-
lenge to researchers [3, 4, 9, 141 for many years.

The difficulties are due to the fact that many D&C
computations are highly dynamic in the sense that
these computations are data-dependent. During com-
putation, a problem instance can be expanded into
any number of subproblems depending on the data
that have been computed so far. In fact, the trees of

CH3062-7/91/0000/0151$01.~ 0 1991 IEEE
151

many D&C computations can be expected to be sparse
and irregular, and as a result, load balancing must be
adaptive to the tree structure and must be done dy-
namically at run time. This implies that coinputation
loads need to be moved around between processors
during computation. The challenge is then to devise
efficient scheduling algorithms which can achieve good
load balancing while minimizing the communication
cost for moving computations around.

In general there is a tradeoff between balancing
computation loads and minimizing communication
costs. The results of this paper quantify this tradeoff.
In particular, the paper establishes lower bounds on
the communication cost for any scheduling algorithm
based on how well it performs 1oa.d ba,la.ncing.

2 Summary of Results of This Paper

2.1 Definitions and Notation

The tree of a D&C computation is ca.lled a (N , h,, d) -
tree, if

0 N is the number of nodes in the tree,

h is the height of the tree, and

0 d is the maximal number of children of a node.
(We assume that d is at least 2, to allow pa.ra.lle1
processing of the tree.)

A node is said to be at tree level i if it is the i-th node
on the path from the root to the node. Therefore,
the root is a t level 1, and the height of the tree is the
maximal level number.

For the parallel system which will ca.rry out the
D&C computation, we a.ssume that

0 p is the number of processors in the system, a,nd

0 it takes one time step for a processor to expand
a node, i.e., to perform the divide operation for
an internal node, or to perform the compute op-
eration for a leaf node. For simplicity, we a.ssume
that a processor takes no time to perform a. com-
bine operation.

When a node is expanded, zero or more children
may be generated. More precisely, if a. node does not
generate any children, the node is a. leaf; if a node
generates one or more (up to d) children, the node is
an internal node. Each newly genera.t,ed node will i n
turn be expa.nded by some processor i n t,he fut.ure. A

frontier node is a node which has been generated but
has not been expanded.

A scheduling algorithm for a D&C computation
schedules nodes (i.e., frontier nodes) on processors for
expansion. We assume that scheduling algorithms
cannot "lookahead" . This non-lookahead assump-
tion is reasonable when dealing with irregular D&C
trees. In this type of tree, the number of children a
parent may have (if any) is typically data-dependent
and is therefore not known a priori.

The parallel computation cost T A (H) of a schedul-
ing algorithm A for a D&C computation tree H is
the maximum number of the nodes that any processor
may expand. Since there are N nodes and p proces-
sors, a lower bound on T A (H) is Tmin = [N / p] . The
parallel computation cost TA of algorithm A is defined
as the maximum T A (H) for all (N , h , d)-trees H .

The communication cost CA(H) of a scheduling al-
gorithm A for a D&C computation tree H is the total
number of cross nodes. A cross node is a node which
is generated by one processor but expanded by an-
other processor. Note that the processor expanding
a cross node needs to receive information from the
processor generating the node. Therefore, CA(H) is
a reasonable measure for capturing the interprocessor
communication cost in performing the divide phase of
all the internal nodes. (A similar definition of commu-
nication cost is used by Papadimitriou and Ullman in
[ll].) The communication cost CA of algorithm A is
defined as the maximum CA(H) for all (N , h , d)-trees
H .

2.2 Main Results

Theorem 1 For each scheduling algorithm A f o r a
parallel system of p processors, for each integerp', 0 <
p' 5 p , and for each N I h , and d with the following
two restrictions,

S1. N > 3pd2h, and

S2. h > [logd NI + [logdpdhl + 1,

there exists some (N , h , d)-tree H for which at least
one of the following two properties is true:

PI. the parallel computation cost of the algorithm is
TA(H) 2 N'/p';

P2. the communication cost of the algorithm is
Cd(H) 2 c',

where N' = N - 3pd2h, C' = p ' ~ , K = (d - l)h ' , and
h' = h - [logd NI - [logdpdh] - 1.

152

Many DScC computations are expected to satisfy
restrictions Sl and S2. Since N is usually an expo-
nential function of h , restriction S1 is easily satisfied
in these cases. Restriction S2 roughly requires that
N < dh-2/ph . If a tree is perfectly balanced and
each node has exactly d children, then N would be
C3(dh-') instead. A perfectly balanced tree is easy
for load balancing because the subtrees of each node
have the same computation load. Restrictions S1 and
S2 basically capture those interesting D&C computa-
tions with irregular trees. This class of D&C com-
putations are exactly those for which one finds it dif-
ficult to achieve good load balancing without paying
much in communication overheads. The lower bound
on C A (H) , stated in P2 of the theorem, provides an
explanation of why this must be the case.

The two properties P1 and P2 in Theorem 1 can be
expressed in terms of the quantities N , h , d (associated
with the DScC tree) and p (associated with the parallel
system) as follows. One can check that N' > (1 - t ~) N
and h' 2 (l - € h) h for each positive E N 5 1 and Eh 5 1 ,
provided that h 2 log, Ph+logd 3+6-10gd E N a.nd 2

then $& 2 e; if $& 2 N , then chh 2 logdN +

h' 2 (1 - 6h)h; if N 2 e, then N' 2 (1 - C N) N .)
From this and the fact that N' < N and h' < h ,
we note that N' and h' approach N and h respec-
tively, when both E N and Eh approa.ch 0. Therefore,
P1 and P2 in Theorem 1 become T . (H) = Q (N / p)
and C A (H) = R(pdh) for large h,, when p' is close to
p . Furthermore, we ca.n slightly change the theorem
as Corollary 1.

Eh

3pdzh (Note: if h 2 210gd ph+Iogd 3+6-10gd (N
N L C N . c h 1

logdpdh + 3 2 NI + rlogdpdh] + 1 = h - h', i.e.,

Corollary 1 For each scheduling algorithm for a par-
allel system of p processors, f o r each positive EC < 1,
which can be arbitrarily close to 0, there are values
of N , h, d , p , and q(> 0) , f o r which if the parallel
computation cost is between and (1 + ET): , then
t h e communication cost must be at least (1 - E C) C ~ ,
where C, = pdh.

Proof. Let p 2 $ and d 2 e. Then, let ET = 1.
2P And, let N and h be in the ra.nge as shown above with

6 h = and E N = $. One can check that ET)! 5

the communication cost must be a.t 1ea.st (1 - tc)Cu.
0

Theorem 1 also implies an important tradeoff re-
sult: if a scheduling algorithm wants to achieve a good
load balancing by parallel processing, then it must pay
a high price in communication cost. We can express
the tradeoff between TA and CA explicitly by show-
ing a lower bound on their product: TA . (CA + .).
If (p* - 1). 5 CA < p*., where 0 < p* 5 p , then
by Theorem 1, TA must be at least NI/,*. There-

that because of TA 2 N l p > N ' / p this tradeoff is
also satisfied when CA 2 p ~ . This tradeoff result is
summarized in the following corollary.

Corollary 2 For any scheduling algorithm A for a
parallel system of p processors, for all N , h , and d
with restrictions S1 and S2 as defined in Theorem 1,

fore, T A . (CA + .) > (N ' / p *) . p * % = N' . .. Note

TA . (CA + .) 2 N ' . n,

where N' and K: are defined in Theorem 1.

Theorem 2 A scheduling algorithm A can be devised
to have the property that the parallel computation cost
as TA = Tmin and the communication cost as CA 5
Cu(= pdh) for any (N , h , d)-tree.

The algorithm satisfying Theorem 2 has the mini-
mum parallel computation cost. By Corollary 1, the
algorithm is optimal with respect to the communiw
tion cost, since the parallel computation cost of the
algorithm is near optimal. These results also imply
that the lower bound on TA . (CA + K) in Corollary 2
is tight when both E N and Eh are arbitrarily close to
0.

Note that Theorems 1 and 2 are so formulated
that their results are system-independent. That is,
the results are independent from the interconnection
topology of the processors and various control over-
heads such as data structure maintenance and read-
ing/writing messages. Therefore, our upper and lower
bounds on CA are intrinsic to any parallel system.
These bounds give insights into actual communication
cost in a real implementation, but exactly how they
are related to the actual cost is a separate matter de-
pending on the implementation (see [15]).

Section 3 describes the algorithm of Theorem 2.
Section 4 presents a simplified version of Theorem 1
and its proof to help the reading of this paper. A
complete proof of Theorem 1 is given in Section 5 .

2.3 Relation to Past Work

There have been several approaches in performing
parallel D&C. A simple approach (e.g., in [2]) is to

I53

expand all the nodes above a fixed level on one pro-
cessor and then distribute nodes at this level to other
processors. Load balancing would be done poorly in
this approach when the tree is irregular. Another ap-
proach [14] is to distribute generated nodes, and to
have each processor perform load balancing based on
load status information from its neighbor processors.
For this scheme, the communication cost ca.n be very
high in tlie worst case.

Recently, some researchers have ma.de efforts to re-
duce communication overhead. A popular approach
[4, 9, 161 is based on the “donate-highest-subtree”
strategy, in which an idle processor will be given fron-
tier nodes as near to the root as possible. Since a
subtree rooted near the top usually has many nodes
and these nodes can all be expanded locally, this strat-
egy tends to reduce the amount of interprocessor com-
munication. Ferguson and Korf [3] presented a D&C
scheme with several processors scheduled first to a
node and then to their children. The idea behind their
scheme is also that of distributing front,ier nodes near
the root to idle processors.

Although the methods described in the previous
pa.ragraph all attempt to reduce communica.tion over-
head, they do not use global informa.tion to ba.lance
the 1oa.d. It turns out that the communication cost
for these methods can still be high in the worst case.
For example, we estimate that the communication cost
is O(dh’”gdP) for Ferguson and Kerf's scheme, and is
O(min(p2h, pdh’)) for the scheme in [4] with round-
robin scheduling.

In contrast, the communica,tioii cost for the
scheduling algorithm of this paper (Section 3) is as
low as O(pdh) (Theorem 2). This is partly due to tlie
fact that our algorithm is able to ma.ke effective use of
global information (i.e., “global pool” in Section 3).

Most importantly, we note that none of the previous
work has any lower bound results on the communica-
tion cost for parallel D&C computations. It appears
that our lower bounds in Theorem 1 and Corollaries 1
and 2 are the first lower bound results for those DStC
computations whose tree structures are dynamic in the
sense that the tree structure is determined only at run
time. Previous results on computation and coinmuni-
cation cost tradeoffs such as those in [7, 8, 111 deal with
only static computation graphs, whose topologies are
known before the computation st.arts.

3 A Scheduling Algorithm and Upper
Bounds

This section describes a new scheduling algorithm
which can achieve the upper bounds in Theorem 2
for both parallel computation cost and communication
cost. The bounds hold for any D&C computation, i.e.,
for any (N , h, d)-tree no matter how irregular it is.

Proposed Scheduling Algorithm

The scheduling algorithm uses a data structure,
called a Global Pool (abbr. GP), to keep track of
frontier nodes at a particular tree level which have
not been taken by any processor for expansion. This
level, identified by a variable gl, has the property that
nodes at higher levels have all been taken by proces-
sors. Every processor will try to take a node from
the G P to work on whenever it becomes idle. For the
proof of Theorem 2, it suffices to assume that the GP
is maintained by some single processor. (See [15] for
a distributed scheme where the G P is maintained by
multiple processors.)

Initially, the G P contains only the root and the
value of gl is one. The G P becomes empty when all of
its nodes at level gl have been taken by the processors.
At this moment, all the processors are requested to
send in their frontier nodes at level gl + 1 in the next
time step when all the nodes a t level g1+ 1 have been
generated. Then the G P is filled with this set of new
nodes, and gl is increased by one. This process is
repeated until all the nodes have been expanded.

The key idea of this algorithm is what each pro-
cessor will do after it has taken a node from the GP.
The processor will do a depth-first traversal. Conse-
quently] the processor can exhaust all possible work
locally before asking for a new node from the GP. As
a result, we can prove (below) that the communica-
tion cost can be as low as C,. While not related to
parallel computation cost and communication cost, an
important advantage of this local depth-first strategy
is that it uses the minimum amount of memory.

In essence the scheduling algorithm described here
uses a breadth-first scheme to distribute big chunks
of computations to processors, and has each processor
after receiving a computation follow the depth-first
strategy locally. Therefore, the algorithm is a hybrid
method, which interestingly will do a purely depth-
first traversal of the tree in the case that only one
processor is used.

Suppose that we define the parallel computaiion
time to be the time (in terms of number of time steps)
when the last node is expanded by a processor. Then

154

the parallel computation time of the algorithm de-
scribed here is at most [N / p + h l . To see this, we
note that some processors may become idle only when
the number of nodes in the GP is smaller than the
number of idle processors. In the worst case all the p
processors may become idle at the end of some time
step, but at this time there is only one node in the GP.
Thus, in the next time step, as many as p - 1 proces-
sors may be idle. This situation can happen a t most
h times. Therefore, in the entire D&C computation,
additional h(p - 1) nodes could have been expanded
if there were no idle processors a t any time step. This
implies that the parallel computation time is at most

Note that parallel computation time defined in the
previous paragraph is different from parallel compu-
tation cost defined in Section 2.1. Being able to take
into account processor waiting time induced by inter-
node dependency, parallel computation time may be
of more practical interest than parallel computation
cost.

However, to prove Theorem 2, we need to establish
an upper bound on the parallel computation cost of
the algorithm. We will do this and also establish an
upper bound on the communication cost of the algo-
rithm.
Proof of Theorem 2. To achieve the [N / p l up-
per bound on parallel computation cost, we will need
to add some fair scheduling feature to the algorithm
described above. Whenever the number of nodes in
the GP is smaller than the number of idle processors,
we will select the active processors for the next time
step from all the p processors in a. fair way. That is,
processors take turn to become active using a round-
robin scheme. This ensures at the end of any time
step that the total number of nodes expanded by a
processor so far will not exceed that expanded by any
other processor by more than one. Thus when all the
N nodes are expanded, each processor will have ex-
panded at most [N / p 1 . This proves that the parallel
computation cost of the scheduling algorithm with the
fair scheduling feature is at most [N / p 1 .

The communication cost of the algorithm is at most
the number of frontier nodes entering the GP, as this
represents the only interprocessor communication ac-
tivity for the entire algorithm. Since by using depth-
first search each processor has at most d local nodes at
each level (as illustrated in Figure l), the GP can col-
lect at most p d nodes each time that g l increases. This
will happen a t most h times, so the total number of
nodes entering the GP is bounded above by C, = pdh.
0

[(N + h(P - W P 1 I TNlP + h1.

:frontier node r/

Figure 1: At most d frontier nodes at each level on a
processor (d = 3) .

Note that in a practical implementation, the fair
scheduling feature may not be used since minimiz-
ing parallel computation cost may not be important.
Without the fair scheduling feature, the parallel com-
putation cost would become [N / p + h1. However, the
communication cost can be reduced to p(d - l) h , if a
processor right after expanding a node will schedule
one child, if any, of the node for expansion at the next
time step.

The scheduling algorithm described in this section
is being used as a basis for developing a parallel pro-
gramming model for D&C computations. To obtain
practical insights, we plan to implement a program-
ming system based on the model on the 26-host Nec-
tar network system [l] developed at Carnegie Mellon
University.

4 A Simplified Version of Theorem 1

This section presents Theorem 3 (see below), which
is a simplified version of Theorem 1 dealing with only
two processors. A relatively simple proof of Theorem
3 is given. This simple proof captures the essence of a
more complicated proof of Theorem 1 given in Section
5. It is advised that the reader read this simple proof
first to understand the ideas.

Theorem 3 For each scheduling algorithm A for a
parallel system of two processors, f o r each N , h , and
d with the followang three restrictions,

si. N > 3dh,

s2. h > [log, NI + 2, and

155

S 3 . h - [lo& NI - 2 is an even integer,

there exists some (N, h , d)-tree H for which at least
one of the following two properties is true:

Q1. the parallel computation cost of Ihe algorithm is
T d (H) 2 N - 3dh,;

Q2. the communication cost of the algorithm is
C d (H) >_ h’(d - I) ,

where h’ = (h - [lo& N] - 2)/2.

Note that restrictions S1 and S2 correspond to
those in Theorem 1 . Restriction S3 is for a minor
technical convenience, namely, ensuring that h’ an in-
teger.

Theorem 3 implies, for example, that if the com-
munication cost is small (in the sense t1ia.t Q2 does
not hold), then the parallel computation cost must be
large (in the sense that Q1 holds). In pr t icular , if
C a (H) < h’(d - 1) and if 3dh << N , then the parallel
computa.tion cost will be close to N .

Proof of Theorem 3. Suppose that we a.re given a
scheduling algorithm A for performing a D&C compu-
tation on processors PI and P2. For algorithm A, we
will prove the existence of a (IV, h , d)-tree H for which
at least one of Q1 and Q2 must hold.

By playing an adversary game with algorithm A,
we will construct the tree by growing it from the root
one step at a time. A time step consists of two phases,
node scheduling phase and node expansion phase. In
the node scheduling phase, algorithm A schedules a
node or no node for each processor to execute. Then,
in the node expansion phase, these scheduled nodes
are expanded. In this phase we will determine the
number of children each scheduled node will generate.

We will first define a special class of subtrees which
will be used to describe some sufficient conditions un-
der which a tree can grow to a (N, h,d)-tree. We will
then give the main part of the proof including a de-
scription of the tree construction procedure.

HF D- S u b t ree

Definition 1 At any given time during the tree
construction, a High.-an,d-FuIl-Degree subtree (abbv.
HFD-subtree) is a subtree, which. is rooted at a node
at or above level h - N I , and which has been
constructed using the following rules:

A l . nodes above level h. generate d children; and

A2. nodes at level h, geaercrie 11.0 ch.ildren

f
h

I
nodes

at most h nodes bn the path
(a)

(b)

Figure 2: Growing the current tree to a (N , h, d)-tree.

Note that rules A1 and A2 imply that a node which is
above level h and has no children must be a frontier
node.

Lemma 1 A t any given time during the tree con-
struction, if the current free satisfies the following four
properties:

11. the total number of generated nodes is at most N -
h - d (generated nodes include the root);

12. the height is at most h;

13. the degree of any node is at most d; and

14. the tree contains an HFD-subtree,

then a construction procedure can be devised to grow
the tree to a (N,h,d)- tree:

Proof. We first note that in the HFD-subtree of I4
there exist nodes which are above level h and have
no children. Otherwise, the subtree would have been
“fully grown” to level h , according to rules A1 and
A2. Since its root is a t and above level h - [lo& N I ,
this fully grown HFD-subtree would have at least
dflogdN1(> N) nodes. This contradicts 11. As noted
above, those nodes in the current HFD-subtree which
a.re above level h and have no children must all be
frontier nodes.

156

Let H I be the current tree. We will identify a set of
“padding nodes” which can be added to H1 to make
it a (N , h , d)-tree.

If H1 has height less than h or degree less than d,
we will grow it by extending the current HFD-subtree
from one of its frontier nodes which a.re a,bove level
h. Let v be this frontier node, as shown in Figure 2.
We generate d children for w and crea.te a pa.th from
v to a node at level h, as shown in Figure 2 (a). The
resulting tree, called H2, has height h, degree d, and
no more than (N - h - d) + d + h = N nodes.

If H2 has less than N nodes, we will pa,d it with
nodes in the fully grown HFD-subtree which a.re reach-
able from the current frontier nodes and other padding
nodes, as illustrated in Figure 2 (b). Since the fully
grown HFD-subtree has at least N nodes, it has suf-
ficient nodes which can be added to H2 to ma.ke it a
(N , h , d)-tree.

After having identified all these padding nodes, we
now have a “blueprint” for a construction procedure
to follow. More precisely, the construction procedure
will just generate all those padding nodes in the da.rk
region in Figure 2 (b). 0

Main Part of Proof of Theorem 3

The tree construction procedure consists of three
stages. Each stage uses a.n independent set of rules in
constructing the tree.

Figure 3: Two a r e a in the constructed tree.

In stage 1, we expand each node with exactly d
children. Stage 1 terminates at time TI when a total
of 2h’ or 2h’+ 1 nodes have just been expanded. (Note
that at this time the tree is completely inside area
1 of Figure 3.) Since the number of frontier nodes
increases by d - 1 each time when a node is expanded,
there are exactly 2h’(d - 1) + 1 or (2h’ + I) (d - 1) + 1
frontier nodes at time TI. Without loss of generality,
we assume that processor P I has generated at least
h‘(d - 1) frontier nodes.

Stage 2 starts right after TI. In this stage every
node above level h expanded by processor PI will have

d children, while every node at level h or expanded by
processor P2 will have no children. Stage 2 terminates
at time T2 when one of the following two conditions
becomes true:

C1 At least h’(d- 1) cross nodes have been scheduled.

C2 At least N - h - 2d nodes have been generated.

The following shows that C1 or C2 must become
true sometime, i.e., T2 exists. Recall that by the end
of stage 1 processor PI has generated at least h’(d- 1)
frontier nodes. In stage 2 processor PI will generate
nodes in the subtrees rooted at those frontier nodes
which are still in PI . For each of these subtrees, since
its root is in area 1 of Figure 3, the subtree can have
a t least N - h - 2d nodes unless some of these nodes
are moved to processor P 2 from processor 9. If C1
does not hold, then fewer than h’(d - 1) nodes can
be moved from PI to P2. Consequently, some subtree
will have at least N - h - 2d nodes, and thus C2 will
be true.

Stage 3 starts right after time T2. Lemma 2 below
shows that properties 11-14 of Lemma 1 hold for the
tree at time T2. In stage 3, we follow the procedure
described in the proof of Lemma 1 to grow the tree to
a (N , h , d)-tree.

Lemma 2 At any time in stage 1 or 2, including time
T2, the tree satisfies properties Il-Id of Lemma 1.

Proof. It is obvious from the descriptions of stages
1 and 2 that I2 and I3 are satisfied. For 11, we note
that the total number of nodes generated in stage 1 is
at most (2h’+ l) d + 1, and thus at most N - h - d by
restriction S1 of Theorem 3. In stage 2, I1 obviously
holds when C2 is not true. Suppose that C2 becomes
true at time T2. Since the tree has no more than
N - h - 2d nodes in the previous time step and since
at most d nodes can be generated (in processor P I) in
one time step, there are at most N - h - d nodes at
time T2.

Property I4 clearly holds for stage 1 by examining
its description. It remains to prove that I4 holds for
stage 2. The proof is similar to the earlier proof of the
fact that C1 or C2 must become true in stage 2. Re-
call that in stage 1 processor PI has generated at least
h’(d- 1) frontier nodes. We note that any of these sub-
trees rooted at these nodes is an HFD-subtree if the
subtree does not contain any expanded cross node.
Since the number of cross nodes expanded (not just
scheduled) through time T2 is less than h’(d - l), one
of these subtrees must be an HFD-subtree. Note that
if C2 becomes true at time Tz (in the node scheduling

157

phase), the node scheduled has not been expanded.
0

To complete the proof of Theorem 3, we observe
that if C1 becomes true a t some time in stage 2 or 3,
it will remain true for the rest of the tree construction
process. Therefore property Q2 of Theorem 3 will hold
for the final (N , h, d)-tree.

Now assuming that C1 never holds at any time in
stage 2 or 3, we want to show that property Q1 of
Theorem 3 will hold for the final (N I h , d)-tree. We
derive an upper bound on the total number of nodes
expanded by processor P2. The upper bound is the
sum of four terms U1, U2, U3 and U4. In stage 1 ,
processor Pz has expanded at most U1 = 2h’+l nodes.
At time T I , processor P2 can have generated up to
(h’+ l) (d- 1) + 1 frontier nodes, each of which can be
expanded at most once by processor P2 in stage 2 or
3. It is also possible for processor Pz to expand nodes
which are generated by PI but subsequently moved
to P2. The total number of these nodes is at most
Cd(H) 5 U3 = h’(d - 1). Moreover, to ta.ke ca.re of
the nodes generated after T2 in sta.ge 3, processor PZ
may expand up to U4 5 h + 2d nodes. Therefore the
total number of nodes expanded by processor P2 is at
most U = U1 + U2 + U3 + U4 5 3dh. This implies that
processor PI has expanded at least N - U = N - 3dh;
that is, property Q1 holds. 0

5 Proof of Theorem 1

Suppose that we are given a scheduling algorithm A
for performing a D&C computation on a parallel sys-
tem of p processors. For algorithm A, we will prove
the existence of a (N , h , d)-tree H for which either only
p’ processors are active for expanding most of nodes
(at least N’ nodes) or at least C’ nodes are moved be-
tween processors to balance their computation loads.
For the former, the parallel computation cost will be
high, i.e., Td(H) 2 N‘/p’ (property P l) . For the
latter, the number of cross nodes will be large, i.e.,
CA(H) 2 C’ (property P2).

By playing an adversary game with algorithm d,
we will construct the tree by growing it from the root
one step at a time. The definition of time step is the
same as that in the proof of Theorem 3.

We will give some more definitions in Section 5.1
and then give the main part of t,liis proof in Section
5.2. All the related lemmas are in Section 5.3.

5.1 Definitions

To help derive a lower bound on the number of
cross nodes, we introduce the following relation be-
tween subtrees.

Definition 2 A set of subtrees is processor-or-
ancestry independent (abbr. PA-independent) ij for
each pair of subtrees in the set at least one of the fol-
lowing two properties is satisfied:

1. Processor Independence: the roots of these two
subtrees are generated on different processors;

2. Ancestry Independence: neither is a subtree of the
That is, there is no ancestor-descendant other.

relationship between the two roots.

Note that for two PA-independent subtrees rooted
at nodes r1 and r2, if node PI is an ancestor of node
rz , then both nodes must be generated on different
processors. This implies that there must exist at least
one cross node on the path from node r1 (inclusive)
to the parent (inclusive) of node r2. Therefore, from
this property, if there are k PA-independent subtrees
each of which has at least one expanded cross node,
then there are at least k expanded cross nodes in the
tree. This is shown in Lemma 3 (in Section 5.3).

Definition 3 A n HFDC-subtree is an HFD-subtree
(as defined in Definition 1) or a subtree with at least
one cross node already expanded. If the root of an
HFDC-subtree is generated on processor P , the sub-
tree is called an HFDC-subtree on processor P .

By Lemma 3 and Definition 3, if there are k PA-
independent HFDC-subtrees and fewer than k ex-
panded cross nodes, then there exists an HFD-subtree,
as shown in Lemma 4. We will use this lemma to show
the existence of an HFD-subtree during some periods
of the tree construction procedure.

5.2 Main Part of Proof of Theorem 1

The tree construction procedure, like that in Sec-
tion 4, consists of three stages. Basically, this proce-
dure, summarized in Figure 4, is similar to that in Sec-
tion 4, except that in stage 1 we use more sophisticated
rules to prove a better lower bound of the number of
cross nodes. (Note that if h >> logd N and p = 2 the
lower bound of communication cost in this theorem is
approximately twice as large as that in Theorem 3.)

In stage 1 , we will repeatedly apply rules Rl-R4
(in Figure 4) until time TI when one of the conditions

158

Stage 1
Apply the following four rules:

R1. Nodes in area 1 (shown in Figure 5) will generate d children.
R2. Cross nodes in areas 2 and 3 (shown in Figure 5) will not generate any children.
83. Non-cross nodes in areas 2 and 3 (excluding level h) will generate d children.
R4. Nodes at level h will not generate any children.

C1. For some p' processors, at least h' non-cross nodes have been expanded on each processor.
C2. At least C' cross nodes have been scheduled.
C3. At least N - (p d + d + h) nodes have been generated.

Repeat rules Rl-R4 until time 7'1 when any of the following three conditions holds:

Stage 2 (continued from time 2'1 when C1 holds) a
Find a set r of p' processors with the following two properties:

B1. There are at least C' PA-independent HFDC-subtrees in r.
B2. There are at most h' non-cross nodes expanded on each of the other p - p' processors in the set F.
R5. Nodes (excluding those at level h) in r will generate d children.
R6. Nodes in r will not generate any children.
R7. Nodes at level h will not generate any children.

C4. At least C' cross nodes have been scheduled.
C5. At least N - (pd + d + h) nodes have been generated.

Apply the following three rules:

Repeat rules R5-R7 until time 2'2 when either of the following two conditions holds:

Stage 3 (continued from time TI when C2 or C3 holds or from time Tz when C4 or C5 holds.)
Use the construction procedure described in the proof of Lemma 1 to grow the tree to a (N, h, d)-tree.

~

Figure 4: Tree construction procedure.

T- t'
t
1

Figure 5: Three areas in the constructed tree.

Cl-C3 holds. Rules Rl-R4 ensure that each subtree
rooted in area 1 or 2 is always an HFDC-subtree be-
cause in constructing the subtree either rules A1 and
A2 are followed (using R1, R3, and R4) or some cross
nodes are expanded (using R2). Basically, the pro-
cedure in stage 1 attempts to produce at least C'
PA-independent HFDC-subtrees on some p' proces-
sors (property B1) while preventing ea.ch of the other
p - p' processors froin expanding more tha,n h.' non-
cross nodes (property B2). (Recall t1ia.t in the proof of
Theorem 3 subtrees rooted a t frontier nodes at. time
TI are PA-independen t H F DC-su btrees.)

If condition C1 holds at time 7'1 , then from Figure
G we can find a set I' of p' processors for which condi-
tion C1 and property B2 hold. According to Lemma.

t--- p processors-
Time

4 B 2 a n d C l hold.
. \

Each processor expands exactly h' non-cross nodes.

=:Each processor expands at least h' non-cross nodes.
:Each processor expands fewer than K non-cross nodes.

Figure 6: Around the time when condition C1 be-
comes true.

5, there are at least K(= (d - 1)h') PA-independent
HFDC-subtrees on each processor which has expanded
h' non-cross nodes. So there are at least e'(= p ' ~) PA-
independent HFDC-subtrees in I' at this time. There-
fore, property B1 holds, and we are ready for stage
2.

In stage 2, we will repeatedly apply rules R5-R7
until time Tz when condition C4 or C5 holds. (Note
that these rules are exactly the same as those of stage
2 in Section 4.) According to property B1, initially,

159

there are at least C’ PA-independent HFDC-subtrees
in r. In stage 2, these subtrees continue to be HFDC-
subtrees, because either rules A1 and A2 are followed
(using R5 and R7) or some cross nodes are expanded
(using R6). In addition, by rule RG, the set 1; of
tlie other p - p’ processors will not genera.te a.ny new
nodes.

Now, we want to show that one of the conditions
C2-C5 must become true at time TI or T2. According
to Lemma 6 (in Section 5.3), at any time in sta.ge 1 or
2 properties 11-14 of Lemma 1 hold; so, at any time in
stage 1 or 2 the tree will be able to grow to a (N , h, d)-
tree by Lemma 1. Hence, if C2 or C4 never hold, C3
or C5 becomes true.

Stage 3 starts right after one of the conditions C2-
C5 becomes true. (If C2 or C3 holds at TI, this implies
that stage 2 is empty.) Since Lemma G also shows
that properties 11-14 of Lemma 1 hold for the tree at
time TI or Tz, in stage 3 we will follow the procedure
described in the proof of Lemma. 1 to grow the tree to
a (N , h , d)-tree H.

To complete the proof, we observe t1ia.t if Cd(H) 2
C’ it will remain true for the rest of tlie tree construc-
tion process. Therefore property P2 of Theorem 3 will
hold for H.

Now, assuming that Cd(Hj < c’, we want to prove
that property P1 holds for H. Since C2 and C4 never
hold, either C3 will become true at time 7’1 or C5 will
become true at time T2. First, suppose that condition
C5 becomes true at time T2. To prove that property
P1 holds in this case, we will derive a.n upper bound on
tlie total number of nodes expanded in r. The upper
bound consists of five terms U1, U2, U3, Uq, a.nd US.
Assume tha,t there are C1 < U1 = C’ cross nodes
expanded in r in stage 1. In sta.ge 1, the processors
in r have expanded at most U2 = (p - p’)h’ non-cross
nodes due to property B2. These nodes expanded in
stage 1 will generate a t most U3 = ((11 - p’jhd + C1)d
frontier nodes in a t time TI, of which can be
expanded at most once in r. After time 7’1, it is also
possible for the processors in to expand nodes moved
from the processors in r . The tota.1 number of these
nodes is 5 Cd(H) - c1. Moreover, t,o ta.ke ca.re
of tlie nodes generated after T2, processors in T may
expand up to U5 5 pd + d + h nodes. Therefore, the
tota.1 number of nodes expaaded in r is at, most, U =
U1 + Uz +U, +U, + Us 5 3pd2h. This implies t,lia.t tlie
processors in r have expa.iided a.t least N - U = N -
3pd2h nodes; therefore, Td(H) 2 (N - 3pd2h)/p‘ 2
N’/p‘ , i.e., . property P1 holds.

Suppose that condition C3 becomes true a.t time
TI. Since condition C1 does not hold in sta.ge 1, we

can find a set r of p’ processors with property B2 (see
Figure 6 also). Since stage 2 is empty for this case, we
ca.n let time T2 be the same as T I . Thus, we can use
the same technique as above to prove that property
P1 holds. 0

5.3 Relevant Lemmas

Lemma 3 Suppose that there are k PA-independent
subtrees a2 some tame during the computation. If each
of these subtrees has at least one expanded cross node,
then the total number of expanded cross nodes in the
whole tree constructed so far as at least I C .

Proof. This proof is not trivial because among these
subtrees those with ancestry relationship may contain
a same expanded cross node.

expanded cross node

%, %,$. 5 :PA-independent subtrees.

Figure 7: Expanded cross nodes corresponding to PA-
independent subtrees.

In this proof, we will prune the k PA-independent
subtrees one by one under the restriction that the sub-
tree being pruned contains no other subtrees which
have not been pruned yet. (For the example illus-
trated in Figure 7, we can prune the subtrees in the
order: &, 73, ;rZ, and 71.) For this proof, it suffices
to prove that each pruned subtree has a t least one
expanded cross node.

Initially, the first pruned subtree obviously has at
least one expanded cross node by the assumption of
the lemma. As mentioned in Section 5.1, for any two
PA-independent subtrees 7 and 7’ rooted at nodes
r and r’ respectively, if r is an ancestor of T ‘ , there
must exist a t least one expanded cross node on the
path from r (inclusive) to the parent (inclusive) of T’

due to processor independence. Therefore, if we prune
7’ at r’, 7 still has at least one expanded cross node.
Hence, after we prune each subtree under the above
restriction, each of the remaining subtrees will still

I60

have at least one expanded cross node. This implies
that the next pruned subtree also has at least one ex-
panded cross node. So, each pruned subtree has at
least one expanded cross node. 0

Leinina 4 At some time, if there are k PA-
independent HFDC-subtrees and fewer than k ex-
panded cross nodes, there exists an HFD-subtree. 0

Proof. Assume that there exists no HFD-subtree.
Thus, each of these PA-independent HFDC-subtrees
has a.t least one expanded cross node according to the
definition of HFDC-subtree. By Lemma 3, there are
at least 6 expanded cross nodes. This is contradictory
to the assumption of the lemma.. 0

Area 1 n

: Non-cross node

Area 2

1 a single Processor

Area 3

Figure 8: In stage 1, any non-cross node’s ancestors
in area 2 must lime been genera.ted on the same pro-
cessor.

Leinina 5 In stage 1, if a processor h,as expanded
h’ non-cross nodes, th.en th.ere are a t least K PA-
independent HFDC-subtrees on t h e processor.

Proof. As mentioned in Sectmion 5.2, each subtree
rooted in area 1 or 2 is always an HFDC-subtree in
stage 1. Thus it suffices to prove that at least K: nodes
with ancestry independence in areas 1 and 2 will be
generated on the processor after h‘ non-cross nodes
have been expanded. By rules Rl-R3, for any non-
cross node, all of its ancestors in area 2 (with h’ + 1
levels) must be non-cross nodes as shown in Figure 8.
So, all the nodes generated by the first h’ non-cross
nodes must be in areas 1 and 2. Since each of the h’
non-cross nodes will generate d children and can re-
move at most one ancestor, these non-cross nodes will,

in total, generate at least (d - l)h’(= K) nodes with
ancestry independence. 0

Lemma 6 At any time in stage 1 o r 2, including time
TI or Tz, the tree satisfies properties 11-14 of Lemma
1.

Proof. It is obvious from rules Rl-R7 that I2 and
I3 are satisfied. In addition, it is also obvious that I1
holds before condition C3 or C5 becomes true. Con-
sider the first time step when at least N - (pd + h + d)
nodes have been generated (i.e., condition C3 or C5
holds). Since the tree has no more than N-(pd+h+d)
nodes in the previous time step and since a t most pd
nodes will be generated in each time step, there are
at most N - h - d nodes in the current time step.
In the rest of this proof, we will show that I4 always
holds (i.e., there always exists an HFD subtree) in each
stage.

In stage 1, all the nodes in area 1 will generate d
nodes by rule R1. So, before all the nodes in area
1 have been expanded, there must exist one frontier
node in area 1, of which the subtree (with only one
node) is an HFD-subtree. After all the nodes in area 1
are expanded, there are at least d r l o g d p d h 1 > - pdh 2 C’
subtrees rooted at the top level of area 2. Obviously,
these subtrees are PA-independent. They are also
HFDC-subtrees because each subtree rooted in area
1 or 2 in stage 1 is always an HFDC-subtree as de-
scribed in Section 5.2. Since the number of expanded
cross nodes is always less than C’ (due to condition
C2), there has always been an HFD-subtree up to time
TI by Lemma 4. Thus, we can conclude that there al-
ways exists an HFD-subtree in stage l.

In stage 2, initially, there are at least C’ PA-
independent HFDC-subtrees in I’ (property Bl).
These subtrees will continue to be HFDC-subtrees in
this stage as described in Section 5.2. In stage 2, due
to condition C4 the number of expanded cross nodes
is always less than C’; so, there always exists an HFD-
subtree by Lemma4. 0

Acknowledgement

Comments from Robert Cohn, Routo Terada, and
Sha.ng-Hwa Teng a.re appreciated.

161

References [15] I.-C. Wu. Efficient parallel divide-and-conquer for
a class of interconnection topologies. To appear in
the Second Annual International Symposium on AI-
gorithms, Taipei, December 1991.

search problems. PhD thesis, U.C. Berkeley, Novem-
ber 1989.

[l] E. A. Arnould, F. J. Bitz, E. C. Cooper, H. T. Kung,
R. D. Sansom, and P. A. Steenkiste. The design of

ticomputers. In Third Intern. Conf. on Architecture1
Support for Programming Languages and Operating
Systems (ASPLOS 111), Boston, Massachusetts, April
1989.

[2] H.E. Bal. The shared data-object model OS a paradigm
for programming distributed systems. PhD thesis,
Vrije Universiteit, Amsterdam, Netherlands, 1989.

[3] C. Ferguson and R.E. Korf. Distributed tree search
and its application to alpha-beta prunning. In Pro-
ceedings of the 7th National Conference on Artificial
Intelligence (AAAI 1988), pages 128-132, Saint Paul,
August 1988.

[4] R. Finkel and U. Manber. DIB - a Distributed Im-
plementation of Backtracking. A CM Transactions on
Programming Languages and Systems, 9(2):235-256,
April 1987.

[5] R.M. Haralick and G.L. Elliott. Increasing tree search
efficiency for constraint satisfact,ion problems. Artifi-
cial intelligence, 14(3):263-313, October 1980.

[GI C.A.R. Hoare. Quicksort. Computer Journal, 5:lO-15,

[7] D.N. Jayasimha. Communication and Synchroniza-
tion in Parallel Computation. PhD t,hesis, Dept of CS,
University of Illinois at Urbana-Champaign, Septem-
ber 1988.

The communica-
tion complexity of parallel algorithms. Technical Re-
port CSRD 629, university of Illinois at Urbana-
Champaign, 1986.

[9] V. Kumar and V. N . Rao. Parallel depth-first search,
part I: implementation. Internchond Journal of Par-
allel Programming, 16(6):479-499, 1987.

[IO] J.M. Ortega and R.G. Voigt.. Solut.ion of part,ial dif-
ferential equations on vector and parallel computers.
SIAM Review, 27(2):149-240, 1985.

[I13 C.H. Papadimitriou and J.D. Ullman.
A communication-time tradeoff. S1.4hl J . Comput.,

[I23 F.P. Preparata and M.I. Shamos. Computa,tional Ge-
ometry: an introduction. Springer-Verlag, New York,
1985.

[13] H. Samet. Applications of .Spatial Data Struc-
tures: Computer Graphics, Image processing, and
GIS. Addison-Wesley, Reading, MA., 1990.

[14] W. Shu and L. V. Kale. A dynamic scheduling strat-
egy for Chare-Kernel system. In Proceedings of Su-
percomputing '89, pages 389-398, New York, NY,
November 1989.

Nectar: a network backplane for heterogelleous mul- [16] Y. Zhang. Pamllel Algorithms for Combinatorial

1962.

[8] D.N. Jayasimha and M.C. Loui.

16(4):639-646, August, 1987.

162

